Skip to content

Latest commit

 

History

History
88 lines (68 loc) · 2.03 KB

74-search-a-2d-matrix.md

File metadata and controls

88 lines (68 loc) · 2.03 KB

74. Search a 2D Matrix - 搜索二维矩阵

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

  • 每行中的整数从左到右按升序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

示例 1:

输入:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 3
输出: true

示例 2:

输入:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 13
输出: false

题目标签:Array / Binary Search

题目链接:LeetCode / LeetCode中国

题解

这题很显然用二分法。

用ruby的话,可以一行搞定~

Language Runtime Memory
java 0 ms 38.6 MB
class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if (matrix.length == 0 || matrix[0].length == 0) return false;
        int l = 0, r = matrix.length - 1;
        while (l < r) {
            int m = l + r + 1 >> 1;
            if (matrix[m][0] <= target) l = m;
            else r = m - 1;
        }
        int i = l;
        l = 0; r = matrix[0].length - 1;
        while (l <= r) {
            int m = l + r >> 1;
            if (matrix[i][m] == target) return true;
            if (matrix[i][m] > target) r = m - 1;
            else l = m + 1;
        }
        return false;
    }
}
Language Runtime Memory
ruby 52 ms N/A
# @param {Integer[][]} matrix
# @param {Integer} target
# @return {Boolean}
def search_matrix(matrix, target)
    return matrix.flatten.include?(target)
end