-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
165 lines (122 loc) · 4.89 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import numpy as np
import os
import xml.etree.ElementTree as ET
import tensorflow as tf
import copy
import cv2
class BoundBox:
def __init__(self, x, y, w, h, c = None, classes = None):
self.x = x
self.y = y
self.w = w
self.h = h
self.c = c
self.classes = classes
self.label = -1
self.score = -1
def get_label(self):
if self.label == -1:
self.label = np.argmax(self.classes)
return self.label
def get_score(self):
if self.score == -1:
self.score = self.classes[self.get_label()]
return self.score
class WeightReader:
def __init__(self, weight_file):
self.offset = 4
self.all_weights = np.fromfile(weight_file, dtype='float32')
def read_bytes(self, size):
self.offset = self.offset + size
return self.all_weights[self.offset-size:self.offset]
def reset(self):
self.offset = 4
def normalize(image):
image = image / 255.
return image
def bbox_iou(box1, box2):
x1_min = box1.x - box1.w/2
x1_max = box1.x + box1.w/2
y1_min = box1.y - box1.h/2
y1_max = box1.y + box1.h/2
x2_min = box2.x - box2.w/2
x2_max = box2.x + box2.w/2
y2_min = box2.y - box2.h/2
y2_max = box2.y + box2.h/2
intersect_w = interval_overlap([x1_min, x1_max], [x2_min, x2_max])
intersect_h = interval_overlap([y1_min, y1_max], [y2_min, y2_max])
intersect = intersect_w * intersect_h
union = box1.w * box1.h + box2.w * box2.h - intersect
return float(intersect) / union
def interval_overlap(interval_a, interval_b):
x1, x2 = interval_a
x3, x4 = interval_b
if x3 < x1:
if x4 < x1:
return 0
else:
return min(x2,x4) - x1
else:
if x2 < x3:
return 0
else:
return min(x2,x4) - x3
def draw_boxes(image, boxes, labels):
for box in boxes:
xmin = int((box.x - box.w/2) * image.shape[1])
xmax = int((box.x + box.w/2) * image.shape[1])
ymin = int((box.y - box.h/2) * image.shape[0])
ymax = int((box.y + box.h/2) * image.shape[0])
cv2.rectangle(image, (xmin,ymin), (xmax,ymax), (0,255,0), 3)
cv2.putText(image,
labels[box.get_label()] + ' ' + str(box.get_score()),
(xmin, ymin - 13),
cv2.FONT_HERSHEY_SIMPLEX,
1e-3 * image.shape[0],
(0,255,0), 2)
return image
def decode_netout(netout, obj_threshold, nms_threshold, anchors, nb_class):
grid_h, grid_w, nb_box = netout.shape[:3]
boxes = []
# decode the output by the network
netout[..., 4] = sigmoid(netout[..., 4])
netout[..., 5:] = netout[..., 4][..., np.newaxis] * softmax(netout[..., 5:])
netout[..., 5:] *= netout[..., 5:] > obj_threshold
for row in range(grid_h):
for col in range(grid_w):
for b in range(nb_box):
# from 4th element onwards are confidence and class classes
classes = netout[row,col,b,5:]
if np.sum(classes) > 0:
# first 4 elements are x, y, w, and h
x, y, w, h = netout[row,col,b,:4]
x = (col + sigmoid(x)) / grid_w # center position, unit: image width
y = (row + sigmoid(y)) / grid_h # center position, unit: image height
w = anchors[2 * b + 0] * np.exp(w) / grid_w # unit: image width
h = anchors[2 * b + 1] * np.exp(h) / grid_h # unit: image height
confidence = netout[row,col,b,4]
box = BoundBox(x, y, w, h, confidence, classes)
boxes.append(box)
# suppress non-maximal boxes
for c in range(nb_class):
sorted_indices = list(reversed(np.argsort([box.classes[c] for box in boxes])))
for i in range(len(sorted_indices)):
index_i = sorted_indices[i]
if boxes[index_i].classes[c] == 0:
continue
else:
for j in range(i+1, len(sorted_indices)):
index_j = sorted_indices[j]
if bbox_iou(boxes[index_i], boxes[index_j]) >= nms_threshold:
boxes[index_j].classes[c] = 0
# remove the boxes which are less likely than a obj_threshold
boxes = [box for box in boxes if box.get_score() > obj_threshold]
return boxes
def sigmoid(x):
return 1. / (1. + np.exp(-x))
def softmax(x, axis=-1, t=-100.):
x = x - np.max(x)
if np.min(x) < t:
x = x/np.min(x)*t
e_x = np.exp(x)
return e_x / e_x.sum(axis, keepdims=True)