-
Notifications
You must be signed in to change notification settings - Fork 0
/
averitec_evaluate.py
311 lines (251 loc) · 10.8 KB
/
averitec_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import argparse
import json
import scipy
import numpy as np
import sklearn
import nltk
from nltk import word_tokenize
def pairwise_meteor(candidate, reference):
return nltk.translate.meteor_score.single_meteor_score(
word_tokenize(reference), word_tokenize(candidate)
)
def compute_all_pairwise_scores(src_data, tgt_data, metric):
scores = np.empty((len(src_data), len(tgt_data)))
for i, src in enumerate(src_data):
for j, tgt in enumerate(tgt_data):
scores[i][j] = metric(src, tgt)
return scores
def print_with_space(left, right, left_space=45):
print_spaces = " " * (left_space - len(left))
print(left + print_spaces + right)
class AVeriTeCEvaluator:
verdicts = [
"Supported",
"Refuted",
"Not Enough Evidence",
"Conflicting Evidence/Cherrypicking",
]
pairwise_metric = None
max_questions = 10
metric = None
averitec_reporting_levels = [0.1, 0.2, 0.25, 0.3, 0.4, 0.5]
def __init__(self, metric="meteor"):
self.metric = metric
if metric == "meteor":
self.pairwise_metric = pairwise_meteor
def evaluate_averitec_veracity_by_type(self, srcs, tgts, threshold=0.25):
types = {}
for src, tgt in zip(srcs, tgts):
score = self.compute_pairwise_evidence_score(src, tgt)
if score <= threshold:
score = 0
for t in tgt["claim_types"]:
if t not in types:
types[t] = []
types[t].append(score)
return {t: np.mean(v) for t, v in types.items()}
def evaluate_averitec_score(self, srcs, tgts):
scores = []
for src, tgt in zip(srcs, tgts):
score = self.compute_pairwise_evidence_score(src, tgt)
this_example_scores = [0.0 for _ in self.averitec_reporting_levels]
for i, level in enumerate(self.averitec_reporting_levels):
if score > level:
this_example_scores[i] = src["pred_label"] == tgt["label"]
scores.append(this_example_scores)
return np.mean(np.array(scores), axis=0)
def evaluate_veracity(self, src, tgt):
src_labels = [x["pred_label"] for x in src]
tgt_labels = [x["label"] for x in tgt]
acc = np.mean([s == t for s, t in zip(src_labels, tgt_labels)])
f1 = {
self.verdicts[i]: x
for i, x in enumerate(
sklearn.metrics.f1_score(
tgt_labels, src_labels, labels=self.verdicts, average=None
)
)
}
f1["macro"] = sklearn.metrics.f1_score(
tgt_labels, src_labels, labels=self.verdicts, average="macro"
)
f1["acc"] = acc
return f1
def evaluate_questions_only(self, srcs, tgts):
all_utils = []
for src, tgt in zip(srcs, tgts):
if "evidence" not in src:
# If there was no evidence, use the string evidence
src_questions = self.extract_full_comparison_strings(
src, is_target=False
)[: self.max_questions]
else:
src_questions = [
qa["question"] for qa in src["evidence"][: self.max_questions]
]
tgt_questions = [qa["question"] for qa in tgt["questions"]]
pairwise_scores = compute_all_pairwise_scores(
src_questions, tgt_questions, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_questions))
assignment_utility *= reweight_term
all_utils.append(assignment_utility)
return np.mean(all_utils)
def get_n_best_qau(self, srcs, tgts, n=3):
all_utils = []
for src, tgt in zip(srcs, tgts):
assignment_utility = self.compute_pairwise_evidence_score(src, tgt)
all_utils.append(assignment_utility)
idxs = np.argsort(all_utils)[::-1][:n]
examples = [
(
(
srcs[i]["questions"]
if "questions" in srcs[i]
else srcs[i]["string_evidence"]
),
tgts[i]["questions"],
all_utils[i],
)
for i in idxs
]
return examples
def compute_pairwise_evidence_score(self, src, tgt):
"""Different key is used for reference_data and prediction.
For the prediction, the format is
{"evidence": [
{
"question": "What does the increased federal medical assistance percentage mean for you?",
"answer": "Appendix A: Applicability of the Increased Federal Medical Assistance Percentage ",
"url": "https://www.medicaid.gov/federal-policy-guidance/downloads/smd21003.pdf"
}],
"pred_label": "Supported"}
And for the data with fold label:
{"questions": [
{
"question": "Where was the claim first published",
"answers": [
{
"answer": "It was first published on Sccopertino",
"answer_type": "Abstractive",
"source_url": "https://web.archive.org/web/20201129141238/https://scoopertino.com/exposed-the-imac-disaster-that-almost-was/",
"source_medium": "Web text",
"cached_source_url": "https://web.archive.org/web/20201129141238/https://scoopertino.com/exposed-the-imac-disaster-that-almost-was/"
}
]
}]
"label": "Refuted"}
"""
src_strings = self.extract_full_comparison_strings(src, is_target=False)[
: self.max_questions
]
tgt_strings = self.extract_full_comparison_strings(tgt)
pairwise_scores = compute_all_pairwise_scores(
src_strings, tgt_strings, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_strings))
assignment_utility *= reweight_term
return assignment_utility
def evaluate_questions_and_answers(self, srcs, tgts):
all_utils = []
for src, tgt in zip(srcs, tgts):
src_strings = self.extract_full_comparison_strings(src, is_target=False)[
: self.max_questions
]
tgt_strings = self.extract_full_comparison_strings(tgt)
pairwise_scores = compute_all_pairwise_scores(
src_strings, tgt_strings, self.pairwise_metric
)
assignment = scipy.optimize.linear_sum_assignment(
pairwise_scores, maximize=True
)
assignment_utility = pairwise_scores[assignment[0], assignment[1]].sum()
# Reweight to account for unmatched target questions
reweight_term = 1 / float(len(tgt_strings))
assignment_utility *= reweight_term
all_utils.append(assignment_utility)
return np.mean(all_utils)
def extract_full_comparison_strings(self, example, is_target=True):
example_strings = []
if is_target:
if "questions" in example:
for evidence in example["questions"]:
# If the answers is not a list, make them a list:
if not isinstance(evidence["answers"], list):
evidence["answers"] = [evidence["answers"]]
for answer in evidence["answers"]:
example_strings.append(
evidence["question"] + " " + answer["answer"]
)
if (
"answer_type" in answer
and answer["answer_type"] == "Boolean"
):
example_strings[-1] += ". " + answer["boolean_explanation"]
if len(evidence["answers"]) == 0:
example_strings.append(
evidence["question"] + " No answer could be found."
)
else:
if "evidence" in example:
for evidence in example["evidence"]:
example_strings.append(
evidence["question"] + " " + evidence["answer"]
)
if "string_evidence" in example:
for full_string_evidence in example["string_evidence"]:
example_strings.append(full_string_evidence)
return example_strings
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate the veracity prediction.")
parser.add_argument(
"-i",
"--prediction_file",
default="data_store/dev_veracity_prediction.json",
help="Json file with claim, evidence, and veracity prediction.",
)
parser.add_argument(
"--label_file",
default="data_store/averitec/dev.json",
help="Json file with labels.",
)
args = parser.parse_args()
with open(args.prediction_file) as f:
predictions = json.load(f)
with open(args.label_file) as f:
references = json.load(f)
scorer = AVeriTeCEvaluator()
q_score = scorer.evaluate_questions_only(predictions, references)
print_with_space("Question-only score (HU-" + scorer.metric + "):", str(q_score))
p_score = scorer.evaluate_questions_and_answers(predictions, references)
print_with_space("Question-answer score (HU-" + scorer.metric + "):", str(p_score))
print("====================")
v_score = scorer.evaluate_veracity(predictions, references)
print("Veracity F1 scores:")
for k, v in v_score.items():
print_with_space(" * " + k + ":", str(v))
print("--------------------")
print("AVeriTeC scores:")
v_score = scorer.evaluate_averitec_score(predictions, references)
for i, level in enumerate(scorer.averitec_reporting_levels):
print_with_space(
" * Veracity scores (" + scorer.metric + " @ " + str(level) + "):",
str(v_score[i]),
)
print("--------------------")
print("AVeriTeC scores by type @ 0.25:")
type_scores = scorer.evaluate_averitec_veracity_by_type(
predictions, references, threshold=0.25
)
for t, v in type_scores.items():
print_with_space(" * Veracity scores (" + t + "):", str(v))