-
Notifications
You must be signed in to change notification settings - Fork 14
/
srsPUCCHProcessorFormat0Unittest.m
380 lines (319 loc) · 15.7 KB
/
srsPUCCHProcessorFormat0Unittest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
%srsPUCCHProcessorFormat0Unittest Unit tests for PUCCH Format 0 processor function.
% This class implements unit tests for the PUCCH Format 0 processor function using the
% matlab.unittest framework. The simplest use consists in creating an object with
% testCase = srsPUCCHProcessorFormat0Unittest
% and then running all the tests with
% testResults = testCase.run
%
% srsPUCCHProcessorFormat0Unittest Properties (Constant):
%
% srsBlock - The tested block (i.e., 'pucch_processor').
% srsBlockType - The type of the tested block, including layer
% (i.e., 'phy/upper/channel_processors').
%
% srsPUCCHProcessorFormat0Unittest Properties (ClassSetupParameter):
%
% outputPath - Path to the folder where the test results are stored.
%
% srsPUCCHProcessorFormat0Unittest Properties (TestParameter):
%
% numerology - Subcarrier numerology (0, 1).
% allocation - Structure containing the number of symbols and if it
% uses intra-slot frequency hopping.
% payload - Structure containing the number of ACK bits and a logical
% flag indicating whether the PUCCH carries SR information
% or not.
%
% srsPUCCHProcessorFormat0Unittest Methods (TestTags = {'testvector'}):
%
% testvectorGenerationCases - Generates a test vector according to the provided
% parameters.
%
% srsPUCCHProcessorFormat0Unittest Methods (TestTags = {'testmex'}):
%
% mexTest - Tests the mex wrapper of the srsRAN PUCCH processor for Format 0.
%
% srsPUCCHProcessorFormat0Unittest Methods (Access = protected):
%
% addTestIncludesToHeaderFile - Adds include directives to the test header file.
% addTestDefinitionToHeaderFile - Adds details (e.g., type/variable declarations)
% to the test header file.
%
% See also matlab.unittest, nrPUCCHDMRS.
% Copyright 2021-2024 Software Radio Systems Limited
%
% This file is part of srsRAN-matlab.
%
% srsRAN-matlab is free software: you can redistribute it and/or
% modify it under the terms of the BSD 2-Clause License.
%
% srsRAN-matlab is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% BSD 2-Clause License for more details.
%
% A copy of the BSD 2-Clause License can be found in the LICENSE
% file in the top-level directory of this distribution.
classdef srsPUCCHProcessorFormat0Unittest < srsTest.srsBlockUnittest
properties (Constant)
%Name of the tested block.
srsBlock = 'pucch_processor_format0'
%Type of the tested block.
srsBlockType = 'phy/upper/channel_processors/pucch'
end
properties (ClassSetupParameter)
%Path to results folder (old 'pucch_processor_format0' tests will be erased).
outputPath = {['testPUCCHProcessorFormat0', char(datetime('now', 'Format', 'yyyyMMdd''T''HHmmss'))]}
end
properties (TestParameter)
%Subcarrier numerology (0, 1).
numerology = {0, 1}
%Valid combinations of number of OFDM symbols and intra-slot
%frequency hopping.
allocation = {...
struct('numSymbols', 1, 'freqHopping', false), ...
struct('numSymbols', 2, 'freqHopping', false), ...
struct('numSymbols', 2, 'freqHopping', true), ...
}
%Valid combinations of payload.
payload = { ...
struct('nofHarqAck', 0, 'sr', true), ...
struct('nofHarqAck', 1, 'sr', true), ...
struct('nofHarqAck', 2, 'sr', true), ...
struct('nofHarqAck', 1, 'sr', false), ...
struct('nofHarqAck', 2, 'sr', false), ...
}
%Number of receive ports.
NumRxPorts = {1, 2, 4}
end % of properties (TestParameter)
methods (Access = protected)
function addTestIncludesToHeaderFile(~, fileID)
%addTestIncludesToHeaderFile Adds include directives to the test header file.
fprintf(fileID, '#include "../../../support/resource_grid_test_doubles.h"\n');
fprintf(fileID, '#include "srsran/phy/upper/channel_processors/pucch/pucch_processor.h"\n');
fprintf(fileID, '#include "srsran/support/file_vector.h"\n');
fprintf(fileID, '#include <optional>\n');
end
function addTestDefinitionToHeaderFile(~, fileID)
%addTestDetailsToHeaderFile Adds details (e.g., type/variable declarations) to the test header file.
fprintf(fileID, 'struct pucch_entry {\n');
fprintf(fileID, ' pucch_processor::format0_configuration config;\n');
fprintf(fileID, ' std::vector<uint8_t> ack_bits;\n');
fprintf(fileID, ' std::optional<uint8_t> sr;\n');
fprintf(fileID, '};\n');
fprintf(fileID, 'struct test_case_t {\n');
fprintf(fileID, ' pucch_entry entry;\n');
fprintf(fileID, ' file_vector<resource_grid_reader_spy::expected_entry_t> grid;\n');
fprintf(fileID, '};\n');
end
end % of methods (Access = protected)
methods (Test, TestTags = {'testvector'})
function testvectorGenerationCases(testCase, numerology, allocation, payload, NumRxPorts)
%testvectorGenerationCases Generates a test vector for the given
% numerology, allocation, payload and number of receive ports,
% while using a random NCellID, random NSlot, random symbol and
% PRB length.
import srsTest.helpers.writeResourceGridEntryFile
% Generate a unique test ID by looking at the number of files
% generated so far.
testID = testCase.generateTestID;
[rxGrid, pucchDataIndices, payloadData, pucch, carrier] = generateSimData(numerology, allocation, payload, NumRxPorts);
% Extract the elements of interest from the grid.
nofRePort = length(pucchDataIndices);
rxGridSymbols = complex(nan(1, NumRxPorts * nofRePort));
rxGridIndices = complex(nan(NumRxPorts * nofRePort, 3));
onePortIndices = nrPUCCHIndices(carrier, pucch, 'IndexStyle', 'subscript', 'IndexBase', '0based');
for iRxPort = 0:(NumRxPorts - 1)
offset = iRxPort * nofRePort;
rxGridSymbols(offset + (1:nofRePort)) = rxGrid(pucchDataIndices);
indices = onePortIndices;
indices(:, 3) = iRxPort;
rxGridIndices(offset + (1:nofRePort), :) = indices;
end
% Write each complex symbol, along with its associated index,
% into a binary file.
testCase.saveDataFile('_test_input_symbols', testID, ...
@writeResourceGridEntryFile, rxGridSymbols, rxGridIndices);
% Generate a 'slot_point' configuration.
slotPointConfig = {...
numerology, ... % numerology
carrier.NFrame * carrier.SlotsPerFrame + carrier.NSlot, ... % system slot number
};
secondHopConfig = {};
if allocation.freqHopping
secondHopConfig = {pucch.SecondHopStartPRB};
end
% Reception port list.
portsString = ['{' num2str(0:(NumRxPorts - 1), "%d,") '}'];
cyclicPrefixString = ['cyclic_prefix::' upper(carrier.CyclicPrefix)];
% Generate PUCCH common configuration.
pucchConfig = {...
'std::nullopt', ... % context
slotPointConfig, ... % slot
cyclicPrefixString, ... % cp
pucch.NSizeBWP, ... % bwp_size_rb
pucch.NStartBWP, ... % bwp_start_rb
pucch.PRBSet, ... % starting_prb
secondHopConfig, ... % second_hop_prb
pucch.SymbolAllocation(1), ... % start_symbol_index
pucch.SymbolAllocation(2), ... % nof_symbols
pucch.InitialCyclicShift, ... % initial_cyclic_shift
pucch.HoppingID, ... % n_id
payload.nofHarqAck, ... % nof_harq_ack
payload.sr, ... % sr_opportunity
portsString, ... % ports
};
% Generate test case cell.
testCaseCell = {...
pucchConfig, ... % config
num2cell(payloadData.ACK), ... % ack_bits
num2cell(payloadData.SR), ... % sr
};
% Generate the test case entry.
testCaseString = testCase.testCaseToString(testID, ...
testCaseCell, true, '_test_input_symbols');
% Add the test to the file header.
testCase.addTestToHeaderFile(testCase.headerFileID, testCaseString);
end % of function testvectorGenerationCases
end % of methods (Test, TestTags = {'testvector'})
methods (Test, TestTags = {'testmex'})
function mexTest(testCase, numerology, allocation, payload, NumRxPorts)
%mexTest Tests the mex wrapper of the srsRAN PUCCH processor for Format 0.
% mexTest(testCase, numerology, allocation, payload, NumRxPorts) runs a
% short simulation with a PUCCH transmission specified by the given
% numerology, allocation, payload and number of receive ports,
% while using a random NCellID, random NSlot and random symbol and
% PRB length.
import srsMEX.phy.srsPUCCHProcessor
[rxGrid, ~, payloadData, pucch, carrier] = ...
generateSimData(numerology, allocation, payload, NumRxPorts);
srspucch = srsPUCCHProcessor;
uci = srspucch(carrier, pucch, rxGrid, NumHARQAck = payload.nofHarqAck, NumSR = payload.sr);
% The processor output should be valid.
assertTrue(testCase, uci.isValid, 'The PUCCH Format 0 detection should be valid.');
% Check the ACK content.
assertLength(testCase, uci.HARQAckPayload, payload.nofHarqAck, 'Wrong number of ACK bits.');
if (payload.nofHarqAck > 0)
assertEqual(testCase, uci.HARQAckPayload, int8(payloadData.ACK), 'Wrong ACK bits.');
end
% Check the SR content.
if payload.sr
assertLength(testCase, uci.SRPayload, 1, 'PUCCH Format 0 with more than one SR bit.');
assertEqual(testCase, uci.SRPayload, int8(payloadData.SR), 'Wrong SR bit.');
else
assertEmpty(testCase, uci.SRPayload, 'Found SR bit with unconfigured SR occasion.');
end
% CSI Part 1 and Part 2 should be empty.
assertEmpty(testCase, uci.CSI1Payload, 'The PUCCH has a nonempty CSI Part 1 field.');
assertEmpty(testCase, uci.CSI2Payload, 'The PUCCH has a nonempty CSI Part 2 field.');
end % of function mexTest(testCase, numerology, allocation, payload, NumRxPorts)
end % of methods (Test, TestTags = {'testmex'})
end % of classdef srsPUCCHProcessorFormat0Unittest
% For the given simulation set-up, generates the received resource grid. It also
% returns the indices of the REs carrying PUCCH data, the value of payload bits,
% the PUCCH Format0 configuration and the carrier configuration.
function [rxGrid, pucchDataIndices, payloadData, pucch, carrier] = generateSimData(numerology, allocation, payload, NumRxPorts)
% Use a unique NCellIDLoc, NSlotLoc for each test.
NCellIDLoc = randi([0, 1007]);
% Use a random slot number from the allowed range.
NSlotLoc = randi([0, 10 * pow2(numerology) - 1]);
% Fixed parameter values.
NStartBWP = 1;
NSizeBWP = 51;
NSizeGrid = NStartBWP + NSizeBWP;
NStartGrid = 0;
CyclicPrefix = 'normal';
GroupHopping = 'neither';
FrequencyHopping = 'disabled';
FrequencyHopping2 = 'neither';
PRBSet = randi([0, NSizeBWP - 1]);
SecondHopStartPRB = PRBSet;
SymbolAllocation = [randi([0, 14 - allocation.numSymbols]), ...
allocation.numSymbols];
InitialCyclicShift = randi([0, 11]);
% Random frame number.
NFrame = randi([0, 1023]);
% Randomly select SecondHopStartPRB if intra-slot frequency
% hopping is enabled.
if allocation.freqHopping
SecondHopStartPRB = randi([0, NSizeBWP - 1]);
% Set respective MATLAB parameter.
FrequencyHopping = 'enabled';
FrequencyHopping2 = 'intraSlot';
end
% Configure the carrier according to the test parameters.
SubcarrierSpacing = 15 * (2 .^ numerology);
carrier = nrCarrierConfig(...
'NCellID', NCellIDLoc, ...
'SubcarrierSpacing', SubcarrierSpacing, ...
'CyclicPrefix', CyclicPrefix, ...
'NSizeGrid', NSizeGrid, ...
'NStartGrid', NStartGrid, ...
'NSlot', NSlotLoc, ...
'NFrame', NFrame);
% Configure the PUCCH according to the test parameters.
pucch = nrPUCCH0Config( ...
'NSizeBWP', NSizeBWP, ...
'NStartBWP', NStartBWP, ...
'SymbolAllocation', SymbolAllocation, ...
'PRBSet', PRBSet, ...
'FrequencyHopping', FrequencyHopping2, ...
'SecondHopStartPRB', SecondHopStartPRB, ...
'GroupHopping', GroupHopping, ...
'HoppingID', NCellIDLoc, ...
'InitialCyclicShift', InitialCyclicShift);
% Generate HARQ ACK payload.
ack = randi([0, 1], payload.nofHarqAck, 1);
% Generate SR payload.
sr = [];
if payload.sr
if payload.nofHarqAck > 0
sr = randi([0, 1]);
else
sr = 1;
end
end
% Get the PUCCH control data indices.
pucchDataIndices = nrPUCCHIndices(carrier, pucch);
% Generate data symbols.
pucchData = nrPUCCH0(ack, sr, pucch.SymbolAllocation, ...
carrier.CyclicPrefix, carrier.NSlot, carrier.NCellID, ...
pucch.GroupHopping, pucch.InitialCyclicShift, ...
FrequencyHopping, "OutputDataType", "single");
% Create resource grid.
txGrid = nrResourceGrid(carrier, "OutputDataType", "single");
gridDims = size(txGrid);
% Write PUCCH data in the resource grid.
txGrid(pucchDataIndices) = pucchData;
% Init received signals.
rxGrid = nrResourceGrid(carrier, NumRxPorts, "OutputDataType", "single");
rxSymbols = zeros(length(pucchDataIndices), NumRxPorts);
% Generate random channel coefficients with unitary power and
% uniform random phase.
H = exp(2i * pi * rand(NumRxPorts, 1));
% Noise variance.
snrdB = 30;
noiseStdDev = 10 ^ (-snrdB / 20);
% Carrier Frequency offset.
cfoHz = 400;
% Modulate baseband signal.
[baseband, OfdmInfo] = nrOFDMModulate(txGrid, carrier.SubcarrierSpacing, carrier.NSlot);
% Apply carrier frequency offset in time domain.
timeSeconds = (0:(length(baseband) - 1)) / OfdmInfo.SampleRate;
basebandWithCfo = baseband .* exp(2i * pi * timeSeconds.' * cfoHz);
% Demodulate baseband signal.
gridWithCfo = nrOFDMDemodulate(carrier, basebandWithCfo);
% Iterate each receive port.
for iRxPort = 1:NumRxPorts
% Create some noise samples.
normNoise = (randn(gridDims) + 1i * randn(gridDims)) / sqrt(2);
% Generate channel estimates as a phase rotation in the
% frequency domain.
estimates = H(iRxPort) * exp(1i * linspace(0, 2 * pi, gridDims(1))') * ones(1, gridDims(2));
% Create noisy modulated symbols.
rxGrid(:, :, iRxPort) = estimates .* gridWithCfo + (noiseStdDev * normNoise);
% Extract PUCCH symbols from the received grid.
rxSymbols(:, iRxPort) = rxGrid(pucchDataIndices);
end
payloadData = struct('ACK', ack, 'SR', sr);
end