-
Notifications
You must be signed in to change notification settings - Fork 0
/
singlePedestrianPathIntersectionv1.1.py
565 lines (442 loc) · 27.7 KB
/
singlePedestrianPathIntersectionv1.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
"""
singlePedestrianPathIntersectionv1.1.py
- This script extrapolates the predicted path in completion assuming no sudden changes in fuzzy state for each frame based on data from the last defined one.
- This extrapolation is done over a frame containing a pre defined path overlay for the robot that the camera is assumed to be mounted on.
- While it is mentioned in the code that the prediction is made 100 seconds into the future, this is merely an elegant hack to generate a full path from the location prediction source codes in the other two scripts given in the directory.
- This script doesn't highlight the likelihood of collision. Refer to singlePedestrianCollisionPredictionv1.0.py for the same.
"""
# importing the necessary libraries
import os
import cv2
import time
import numpy as np
import mediapipe as mp
# rotation matrix helper functions
# function to return the magnitude of a vector
def vec_length(v: np.array):
return np.sqrt(sum(i ** 2 for i in v))
# function to process a vector parameter and return a normalized vector
def normalize(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
# function to calculate and return a rotation matrix for quaternion generation
def look_at(eye: np.array, target: np.array):
axis_z = normalize((eye - target))
if vec_length(axis_z) == 0:
axis_z = np.array((0, -1, 0))
axis_x = np.cross(np.array((0, 0, 1)), axis_z)
if vec_length(axis_x) == 0:
axis_x = np.array((1, 0, 0))
axis_y = np.cross(axis_z, axis_x)
rot_matrix = np.matrix([axis_x, axis_y, axis_z]).transpose()
return rot_matrix
# filter(s)
# Kalman filter in one dimension implemented as a class
class Kalman:
def __init__(self, windowSize=10, n=5):
# x: predicted angle
# p: predicted angle uncertainty
# n: number of iterations to run the filter for
# dt: time interval for updates
# q: process noise variance (uncertainty in the system's dynamic model)
# r: measurement uncertainty
# Z: list of position estimates derived from sensor measurements
# initializing with static values due to very low variance in testing
self.x = 0
self.p = 0.5
self.windowSize = windowSize
self.n = n # must be smaller than windowSize
self.Z = []
self.q = 0 # assuming dynamic model uncertainty to be 0 (perfect system)
self.dt = 0.05 # average latency is 50ms
self.r = 0.5 # angle measurement uncertainty (determine experimentally based on test case)
# prediction stage
def predict(self):
# prediction assuming a dynamic model
self.x = self.x # state transition equation
self.p = self.p + self.q # predicted covariance equation
# measurement stage
def measure(self, z):
if len(self.Z) < self.windowSize:
self.Z.append(z)
else:
self.Z.pop(0)
self.Z.append(z)
return np.mean(self.Z)
# updation stage
def update(self, z):
k = self.p / (self.p + self.r) # Kalman gain
self.x = self.x + k * (z - self.x) # state update
self.p = (1 - k) * self.p # covariance update
# iterative processing stage
def process(self, i):
for j in range(1, self.n):
self.predict()
z = self.measure(i)
self.update(z)
return self.x
# streaming moving average filter in one dimension implemented as a class
class StreamingMovingAverage:
def __init__(self, window_size):
self.window_size = window_size # size of the window of values
self.values = [] # list to hold said window
self.sum = 0 # initializing the sum for the moving average
# processing the average
def process(self, value):
self.values.append(value)
self.sum += value
if len(self.values) > self.window_size:
self.sum -= self.values.pop(0)
return float(self.sum) / len(self.values)
# empty filter class implemented for comparative testing
class noFilter:
def __init__(self):
pass
def process(self, value):
return value
# pose detector class for mediapipe
class PoseDetector:
"""
Estimates Pose points of a human body using the mediapipe library.
"""
def __init__(self, mode=False, smooth=True, detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.smooth = smooth
self.detectionCon = detectionCon
self.trackCon = trackCon
self.mpDraw = mp.solutions.drawing_utils
self.mpPose = mp.solutions.pose
self.pose = self.mpPose.Pose(static_image_mode=self.mode,
smooth_landmarks=self.smooth,
min_detection_confidence=self.detectionCon,
min_tracking_confidence=self.trackCon)
# a method to initialize the filters used in objects of this class (i.e.; single human obstacles detected by the mediapipe model)
def filterSettings(self, xFilter, yFilter, angleFilter):
self.xFilter = xFilter
self.yFilter = yFilter
self.angleFilter = angleFilter
# a method to detect and draw the landmarks detected by the model on the input frame
def findPose(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.pose.process(imgRGB)
if self.results.pose_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, self.results.pose_landmarks,
self.mpPose.POSE_CONNECTIONS)
return img
def findPosition(self, img, draw=True, bboxWithHands=False):
self.lmList = []
self.bboxInfo = {}
if self.results.pose_landmarks:
for id, lm in enumerate(self.results.pose_landmarks.landmark):
h, w, c = img.shape
cx, cy, cz = int(lm.x * w), int(lm.y * h), int(lm.z * w)
self.lmList.append([id, cx, cy, cz])
# bounding box generation
ad = abs(self.lmList[12][1] - self.lmList[11][1]) // 2
if bboxWithHands:
x1 = self.lmList[16][1] - ad
x2 = self.lmList[15][1] + ad
else:
x1 = self.lmList[12][1] - ad
x2 = self.lmList[11][1] + ad
y2 = self.lmList[29][2] + ad
y1 = self.lmList[1][2] - ad
bbox = (x1, y1, x2 - x1, y2 - y1)
cx, cy = bbox[0] + (bbox[2] // 2), \
(bbox[1] + bbox[3] // 2) - 40
self.bboxInfo = {"bbox": bbox, "center": (cx, cy)}
if draw:
cv2.rectangle(img, bbox, (255, 0, 255), 3)
cv2.circle(img, (cx, cy), 5, (255, 0, 0), cv2.FILLED)
return self.lmList, self.bboxInfo
# a method to extract the angle of orientation of the detected human obstacle by quaternion generation from the projection of two landmarks
def angleOfOrientation(self, p1, p2):
if self.results.pose_landmarks != None:
# calculating the rotation matrix
orient = look_at(np.array([p1[1], p1[2], p1[3]]), np.array([p2[1], p2[2], p2[3]]))
vec1 = np.array(orient[0], dtype=float)
vec3 = np.array(orient[1], dtype=float)
vec4 = np.array(orient[2], dtype=float)
# normalize to unit length
vec1 = vec1 / np.linalg.norm(vec1)
vec3 = vec3 / np.linalg.norm(vec3)
vec4 = vec4 / np.linalg.norm(vec4)
M1 = np.zeros((3, 3), dtype=float) # rotation matrix
# rotation matrix setup
M1[:, 0] = vec1
M1[:, 1] = vec3
M1[:, 2] = vec4
# obtaining the quaternion in cartesian form
a = np.math.sqrt(np.math.sqrt((float(1) + M1[0, 0] + M1[1, 1] + M1[2, 2]) ** 2)) * 0.5
b1 = (M1[2, 1] - M1[1, 2]) / (4 * a)
b2 = (M1[0, 2] - M1[2, 0]) / (4 * a)
b3 = (M1[1, 0] - M1[0, 1]) / (4 * a)
# converting quaternion to polar form
A = np.math.sqrt((a ** 2) + (b1 ** 2) + (b2 ** 2) + (b3 ** 2))
theta = np.math.acos(a / A)
# B = np.math.sqrt((A ** 2) - (a ** 2))
# cosphi1 = b1 / B
# cosphi2 = b2 / B
# cosphi3 = b3 / B
realAngle = ((np.rad2deg(theta) / 45) - 1) * 180
# filtering the reading
realAngle = self.angleFilter.process(realAngle)
return realAngle
# fuzzy classification of the predicted direction of movement into 9 different cases
def futureXY(self, img, lmls, lmrs, init, angleOfApproach, centerXApproachSpeed, centerYApproachSpeed, timeToFuture, err, draw=True):
# the case covering movements toward the top right of the frame (i.e.; away and to the right of the single camera's perspective)
if (angleOfApproach > 0) and (angleOfApproach < 90) and (centerXApproachSpeed > 0) and (centerYApproachSpeed < 0):
futureX = self.xFilter.process(init[0] + np.math.sqrt(
((centerXApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
futureY = self.yFilter.process(init[1] - np.math.sqrt(
((centerYApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS,thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 1', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# the case covering movements toward the bottom left of the frame (i.e.; toward and to the left of the single camera's perspective)
elif (angleOfApproach > 0) and (angleOfApproach < 90) and (centerXApproachSpeed < 0) and (centerYApproachSpeed > 0):
futureX = self.xFilter.process(init[0] - np.math.sqrt(
((centerXApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
futureY = self.yFilter.process(init[1] + np.math.sqrt(
((centerYApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS, thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 2', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# the case covering movements toward the bottom right of the frame (i.e.; toward and to the right of the single camera's perspective)
elif (angleOfApproach > 90) and (angleOfApproach < 180) and (centerXApproachSpeed > 0) and (centerYApproachSpeed > 0):
futureX = self.xFilter.process(init[0] + np.math.sqrt(
((centerXApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
futureY = self.yFilter.process(init[1] + np.math.sqrt(
((centerYApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS, thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 3', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# the case covering movements toward the top left of the frame (i.e.; away and to the left of the single camera's perspective)
elif (angleOfApproach > 90) and (angleOfApproach < 180) and (centerXApproachSpeed < 0) and (centerYApproachSpeed < 0):
futureX = self.xFilter.process(init[0] - np.math.sqrt(
((centerXApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
futureY = self.yFilter.process(init[1] - np.math.sqrt(
((centerYApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS, thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 4', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# the case covering movements toward the right of the frame (i.e.; to the right of the single camera's perspective)
elif (((angleOfApproach > 0 - err) and (angleOfApproach < 0 + err)) or ((angleOfApproach > 180 - err) and (angleOfApproach < 180 + err))) and (centerXApproachSpeed > 0) and ((centerYApproachSpeed > 0 - err) and (centerYApproachSpeed < 0 + err)):
futureX = self.xFilter.process(init[0] + np.math.sqrt(
((centerXApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
futureY = self.yFilter.process(init[1])
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS, thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 5', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# the case covering movements toward the left of the frame (i.e.; to the left of the single camera's perspective)
elif (((angleOfApproach > 0 - err) and (angleOfApproach < 0 + err)) or ((angleOfApproach > 180 - err) and (angleOfApproach < 190 - err))) and (centerXApproachSpeed < 0) and ((centerYApproachSpeed > 0 - err) and (centerYApproachSpeed < 0 + err)):
futureX = self.xFilter.process(init[0] - np.math.sqrt(
((centerXApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
futureY = self.yFilter.process(init[1])
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS, thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 6', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# the case covering movements toward the top of the frame (i.e.; away from the single camera's perspective)
elif ((angleOfApproach > 90 - err) and (angleOfApproach < 90 + err)) and ((centerXApproachSpeed > 0 - err) and (centerXApproachSpeed < 0 + err)) and (centerYApproachSpeed > 0):
futureX = self.xFilter.process(init[0])
futureY = self.yFilter.process(init[1] - np.math.sqrt(
((centerYApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS, thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 7', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# the case covering movements toward the bottom of the frame (i.e.; towards the single camera's perspective)
elif ((angleOfApproach > 90 - err) and (angleOfApproach < 90 + err)) and ((centerXApproachSpeed > 0 - err) and (centerXApproachSpeed < 0 + err)) and (centerYApproachSpeed < 0):
futureX = self.xFilter.process(init[0])
futureY = self.yFilter.process(init[1] + np.math.sqrt(
((centerYApproachSpeed * timeToFuture) * np.math.cos(angleOfApproach)) ** 2))
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS, thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 8', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# the edge case for a lack of significant movement requiring prediction of a location seperate from the future reality
else:
futureX = self.xFilter.process(init[0])
futureY = self.yFilter.process(init[1])
# visualizing the direction of movement
if draw == True:
cv2.drawMarker(img, (int(futureX), int(futureY)), color=(0, 255, 0), markerType=cv2.MARKER_CROSS, thickness=2)
cv2.line(img, (lmls[1], lmls[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(futureX), int(futureY)), (255, 255, 255), 2)
cv2.putText(img, 'CASE 9', (200, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
return futureX, futureY
def main(path):
# initializing the frame and overlay settings
pathOverlay = cv2.imread('resources/overlays/pathOverlayBlack.png') # getting the overlay image
cap = cv2.VideoCapture(path) # initializing the test video path
cap.set(3, 768) # setting the width of the frame
cap.set(4, 432) # setting the height of the frame
# FPS initializations
curTime = time.time() # initializing the starting time
lastTime = curTime # initializing the time in the last frame to the current time itself
fps = 0 # initializing the frame rate variable
frameNumber = 0 # initializing the frame number to zero
# general initializations
lastXCenter = 0 # location of the center's X coordinate in the last frame
lastYCenter = 0 # location of the center's Y coordinate in the last frame
occupiedHeight = 0 # a ratio of the height of the target on the frame to the frame width itself as a measure of nearness of the obstacle to the camera
centerXApproachSpeed = 0 # the X component of the velocity of the detected obstacle
centerYApproachSpeed = 0 # the Y component of the velocity of the detected obstacle
angleOfApproach = 0 # the recorded angle of orientation of the obstacle
lastDeltaY = 0 # the height difference between the highest and lowest points of the obstacle on the last frame
# future definitions
futureX = 0 # the predicted X coordinate of the location of the obstacle
futureY = 0 # the predicted Y coordinate of the location of the obstacle
# past frame definitions
currentFrame = 0 # the number of the current frame
frameWindow = 4 # the window size of frames past the present for initializations as the last state of the system
# pose detector settings and variables that visibly impact output
detector = PoseDetector()
# setting the filter options for the pose detector class
# filter options : StreamingMovingAverage(10), Kalman(windowSize=20, n=10), noFilter()
detector.filterSettings(xFilter=StreamingMovingAverage(10),
yFilter=StreamingMovingAverage(10),
angleFilter=Kalman(windowSize=25, n=10))
timeToFuture = 100 # all collision predictions are made for these many seconds into the future
futureErrorThresholds = 20 # the error thresholds for the fuzzy states for both linear and angular measurements as a lower proportional error margin is to be tolerated for angular variations than linear ones
drawState = True # the boolean determining whether or not landmarks and their associated line segments are to be drawn on the frame image
while True:
# reading the image
success, img = cap.read()
# adding the video break conditions
if (cv2.waitKey(1) == ord('q')) or (not success):
break
# resizing the image to fit the frame
img = cv2.resize(img, (768, 432))
# flipping the image to get a real depiction of the scene
img = cv2.flip(img, 1)
# finding the landmarks and visualizing them
img = detector.findPose(img, draw=drawState)
# resizing & adding a standard path overlay
pathOverlay = cv2.resize(pathOverlay, (768, 432))
img = cv2.addWeighted(img,0.7,pathOverlay,0.3,0)
# adding a path overlay depicting the path to be taken by the robot assumed to contain our camera on it's configuration (an extrapolation of a straight path)
cv2.line(img, (150, 432), (360, 200), (255, 255, 255), 2)
cv2.line(img, (618, 432), (400, 200), (255, 255, 255), 2)
cv2.line(img, (360, 200), (400, 200), (255, 255, 255), 2)
# getting a list of landmarks and bounding box information
lmList, bboxInfo = detector.findPosition(img, draw=False, bboxWithHands=False)
# code to be executed if a human obstacle is detected (i.e.; if ia bounding box is generatable)
if bboxInfo:
# finding the center of the target pose
center = bboxInfo["center"]
yLocations = []
for lm in lmList:
yLocations.append(lm[2])
# getting the landmarks corresponding to the shoulders
if (lm[0] == 12):
lmrs = lm
elif (lm[0] == 11):
lmls = lm
# finding the difference between highest landmark and lowest landmark in pixels
deltaY = max(yLocations) - min(yLocations)
occupiedHeight = deltaY / 432 # an indicator of pedestrian's apparent height (in terms of percentage of the Y axis occupied)
# calculating the velocity vector components of the obstacle with respect to the frame
centerXApproachSpeed = (center[0] - lastXCenter) / (time.time() - lastTime)
centerYApproachSpeed = (center[1] - lastYCenter) / (time.time() - lastTime)
# angle of approach reporting currently accurate only between the range of 30 and 160 degrees
angleOfApproach = detector.angleOfOrientation(lmls, lmrs)
# filtering, predicting & drawing the future location of the target pedestrian
futureX, futureY = detector.futureXY(img, lmls, lmrs, center, angleOfApproach, centerXApproachSpeed, centerYApproachSpeed, timeToFuture, futureErrorThresholds, draw=drawState)
# generating a representation of the path taken by the obstacle
# this visualization was accomplished by constructing extrapolated parallel straight lines along the line connecting the centroid of the shoulder points and the predicted location coordinates on the frame by origin shifting
oShiftX = futureX - ((lmls[1] + lmrs[1]) / 2)
oShiftY = futureY - ((lmls[2] + lmrs[2]) / 2)
x1 = lmls[1] + oShiftX
y1 = lmls[2] + oShiftY
x2 = lmrs[1] + oShiftX
y2 = lmrs[2] + oShiftY
# printing the conditions for collision prediction
cv2.putText(img, '{0:.2f}'.format(occupiedHeight), (10, 115), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0),1, cv2.LINE_AA)
cv2.putText(img, '{0:.2f}'.format(angleOfApproach), (10, 85), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# green zone - indicating a lack of any risk of collision due to a target percieved to be too far away
if occupiedHeight < 0.5 :
cv2.line(img, (lmls[1], lmls[2]), (lmrs[1], lmrs[2]), (255, 255, 255), 2)
cv2.line(img, (lmls[1], lmls[2]), (int(x1), int(y1)), (0,128,0), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(x2), int(y2)), (0,128,0), 2)
# yellow zone - indicating a minor risk of collision due to a nearby target which may be on a course that collides with the assumed robot
elif occupiedHeight > 0.5 and occupiedHeight < 1 :
cv2.line(img, (lmls[1], lmls[2]), (lmrs[1], lmrs[2]), (255, 255, 255), 2)
cv2.line(img, (lmls[1], lmls[2]), (int(x1), int(y1)), (0,255,255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(x2), int(y2)), (0,255,255), 2)
# red zone - indicating a guaranteed collision when the predicted future coordinates fall within a projection of the future location of the robot on the given frame
if occupiedHeight > 1 :
cv2.line(img, (lmls[1], lmls[2]), (lmrs[1], lmrs[2]), (255, 255, 255), 2)
cv2.line(img, (lmls[1], lmls[2]), (int(x1), int(y1)), (0,0,255), 2)
cv2.line(img, (lmrs[1], lmrs[2]), (int(x2), int(y2)), (0,0,255), 2)
# highlighting shoulder points
cv2.circle(img, (lmls[1], lmls[2]), 5, (255, 255, 255), cv2.FILLED)
cv2.circle(img, (lmrs[1], lmrs[2]), 5, (255, 255, 255), cv2.FILLED)
# a series of conditional definitions to define the state of the last frame taken ('last' here being a relative term)
currentFrame += 1
frameNumber += 1
if (currentFrame == frameWindow) and (frameNumber > frameWindow):
lastXCenter = center[0]
lastYCenter = center[1]
lastDeltaY = deltaY
lastTime = time.time()
currentFrame = 0
elif (frameNumber < frameWindow):
lastXCenter = center[0]
lastYCenter = center[1]
lastDeltaY = deltaY
currentFrame = 0
else:
pass
# FPS calculation
fps = 1 / (time.time() - curTime)
curTime = time.time()
cv2.putText(img, '{0:.2f}'.format(fps), (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img, '{0:.2f}'.format((1 / fps) * 1000), (10, 55), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# scale
cv2.putText(img, '50px: ', (675, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.35, (100, 255, 0), 1, cv2.LINE_AA)
cv2.line(img, (710, 17), (760, 17), (100, 255, 0), 1)
cv2.line(img, (710, 17), (710, 22), (100, 255, 0), 1)
cv2.line(img, (760, 17), (760, 22), (100, 255, 0), 1)
# printing the path of the test video
cv2.putText(img, str(path), (300, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
# showing the processed frame
cv2.imshow('Frame', img)
# releasing & destroying windows
cap.release()
cv2.destroyAllWindows()
# a definition of the main parameters
if __name__ == "__main__":
# defining the directory to obtain the test videos from
directory = 'resources\\testFootage\\demoFootageIntersection'
# listing all the test videos within the directory
for filename in os.listdir(directory):
f = os.path.join(directory, filename)
# checking for the validity of a file path
if os.path.isfile(f):
main(f)