diff --git a/notebooks/0.2.1-MODIS-download.ipynb b/notebooks/0.2.1-MODIS-download.ipynb
index 588f49e..ddf57a0 100644
--- a/notebooks/0.2.1-MODIS-download.ipynb
+++ b/notebooks/0.2.1-MODIS-download.ipynb
@@ -92,7 +92,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 21,
"id": "5ae23a72",
"metadata": {},
"outputs": [],
@@ -102,7 +102,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 22,
"id": "d1c63a79",
"metadata": {},
"outputs": [],
@@ -118,16 +118,25 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 23,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/lillifreischem/miniconda3/envs/iti/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+ " from .autonotebook import tqdm as notebook_tqdm\n"
+ ]
+ }
+ ],
"source": [
"import earthaccess"
]
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 26,
"id": "5201d291",
"metadata": {},
"outputs": [
@@ -135,7 +144,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Granules found: 5\n"
+ "Granules found: 3\n"
]
}
],
@@ -147,47 +156,37 @@
" short_name='MOD021KM',\n",
" cloud_hosted=True,\n",
" bounding_box=(-10, 20, 10, 50),\n",
- " temporal=(\"2019-03-01 10:00\", \"2019-03-01 13:00\"),\n",
+ " temporal=(\"2018-10-01 08:00\", \"2018-10-01 11:00\"),\n",
" count=-1\n",
")"
]
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Collection: {'ShortName': 'MOD021KM', 'Version': '6.1'}\n",
- " Spatial coverage: {'HorizontalSpatialDomain': {'Geometry': {'GPolygons': [{'Boundary': {'Points': [{'Longitude': -9.072011, 'Latitude': 49.152121}, {'Longitude': 21.956898, 'Latitude': 44.9505}, {'Longitude': 37.925717, 'Latitude': 60.628441}, {'Longitude': -9.837857, 'Latitude': 67.432882}, {'Longitude': -9.072011, 'Latitude': 49.152121}]}}]}}}\n",
- " Temporal coverage: {'RangeDateTime': {'BeginningDateTime': '2019-03-01T10:35:00.000Z', 'EndingDateTime': '2019-03-01T10:40:00.000Z'}}\n",
- " Size(MB): 155.911573410034\n",
- " Data: ['https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD021KM/2019/060/MOD021KM.A2019060.1035.061.2019060192534.hdf'],\n",
- " Collection: {'ShortName': 'MOD021KM', 'Version': '6.1'}\n",
- " Spatial coverage: {'HorizontalSpatialDomain': {'Geometry': {'GPolygons': [{'Boundary': {'Points': [{'Longitude': -10.988818, 'Latitude': 31.324475}, {'Longitude': 13.217814, 'Latitude': 28.048083}, {'Longitude': 21.45928, 'Latitude': 45.174304}, {'Longitude': -9.415287, 'Latitude': 49.608425}, {'Longitude': -10.988818, 'Latitude': 31.324475}]}}]}}}\n",
- " Temporal coverage: {'RangeDateTime': {'BeginningDateTime': '2019-03-01T10:40:00.000Z', 'EndingDateTime': '2019-03-01T10:45:00.000Z'}}\n",
- " Size(MB): 154.762685775757\n",
- " Data: ['https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD021KM/2019/060/MOD021KM.A2019060.1040.061.2019060192541.hdf'],\n",
+ " Spatial coverage: {'HorizontalSpatialDomain': {'Geometry': {'GPolygons': [{'Boundary': {'Points': [{'Longitude': -7.820944, 'Latitude': 48.615273}, {'Longitude': 22.900313, 'Latitude': 44.459754}, {'Longitude': 38.493195, 'Latitude': 60.213084}, {'Longitude': -8.461157, 'Latitude': 66.899476}, {'Longitude': -7.820944, 'Latitude': 48.615273}]}}]}}}\n",
+ " Temporal coverage: {'RangeDateTime': {'BeginningDateTime': '2018-10-01T10:30:00.000Z', 'EndingDateTime': '2018-10-01T10:35:00.000Z'}}\n",
+ " Size(MB): 167.403575897217\n",
+ " Data: ['https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD021KM/2018/274/MOD021KM.A2018274.1030.061.2018274200208.hdf'],\n",
" Collection: {'ShortName': 'MOD021KM', 'Version': '6.1'}\n",
- " Spatial coverage: {'HorizontalSpatialDomain': {'Geometry': {'GPolygons': [{'Boundary': {'Points': [{'Longitude': -13.763574, 'Latitude': 13.511943}, {'Longitude': 7.574463, 'Latitude': 10.543217}, {'Longitude': 12.859466, 'Latitude': 28.206499}, {'Longitude': -11.152315, 'Latitude': 31.694474}, {'Longitude': -13.763574, 'Latitude': 13.511943}]}}]}}}\n",
- " Temporal coverage: {'RangeDateTime': {'BeginningDateTime': '2019-03-01T10:45:00.000Z', 'EndingDateTime': '2019-03-01T10:50:00.000Z'}}\n",
- " Size(MB): 144.453195571899\n",
- " Data: ['https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD021KM/2019/060/MOD021KM.A2019060.1045.061.2019060192444.hdf'],\n",
+ " Spatial coverage: {'HorizontalSpatialDomain': {'Geometry': {'GPolygons': [{'Boundary': {'Points': [{'Longitude': -9.762663, 'Latitude': 30.785606}, {'Longitude': 14.294732, 'Latitude': 27.52965}, {'Longitude': 22.400958, 'Latitude': 44.682586}, {'Longitude': -8.148924, 'Latitude': 49.069527}, {'Longitude': -9.762663, 'Latitude': 30.785606}]}}]}}}\n",
+ " Temporal coverage: {'RangeDateTime': {'BeginningDateTime': '2018-10-01T10:35:00.000Z', 'EndingDateTime': '2018-10-01T10:40:00.000Z'}}\n",
+ " Size(MB): 161.66379070282\n",
+ " Data: ['https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD021KM/2018/274/MOD021KM.A2018274.1035.061.2018274200111.hdf'],\n",
" Collection: {'ShortName': 'MOD021KM', 'Version': '6.1'}\n",
- " Spatial coverage: {'HorizontalSpatialDomain': {'Geometry': {'GPolygons': [{'Boundary': {'Points': [{'Longitude': -34.12477, 'Latitude': 45.164849}, {'Longitude': -5.140327, 'Latitude': 41.250024}, {'Longitude': 8.325962, 'Latitude': 57.408571}, {'Longitude': -34.079421, 'Latitude': 63.458085}, {'Longitude': -34.12477, 'Latitude': 45.164849}]}}]}}}\n",
- " Temporal coverage: {'RangeDateTime': {'BeginningDateTime': '2019-03-01T12:15:00.000Z', 'EndingDateTime': '2019-03-01T12:20:00.000Z'}}\n",
- " Size(MB): 162.147795677185\n",
- " Data: ['https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD021KM/2019/060/MOD021KM.A2019060.1215.061.2019061011820.hdf'],\n",
- " Collection: {'ShortName': 'MOD021KM', 'Version': '6.1'}\n",
- " Spatial coverage: {'HorizontalSpatialDomain': {'Geometry': {'GPolygons': [{'Boundary': {'Points': [{'Longitude': -36.263121, 'Latitude': 27.334255}, {'Longitude': -12.968573, 'Latitude': 24.170761}, {'Longitude': -5.627833, 'Latitude': 41.463069}, {'Longitude': -34.414253, 'Latitude': 45.606625}, {'Longitude': -36.263121, 'Latitude': 27.334255}]}}]}}}\n",
- " Temporal coverage: {'RangeDateTime': {'BeginningDateTime': '2019-03-01T12:20:00.000Z', 'EndingDateTime': '2019-03-01T12:25:00.000Z'}}\n",
- " Size(MB): 165.607719421387\n",
- " Data: ['https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD021KM/2019/060/MOD021KM.A2019060.1220.061.2019061011749.hdf']]"
+ " Spatial coverage: {'HorizontalSpatialDomain': {'Geometry': {'GPolygons': [{'Boundary': {'Points': [{'Longitude': -12.580666, 'Latitude': 12.885638}, {'Longitude': 8.697335, 'Latitude': 9.922978}, {'Longitude': 13.946976, 'Latitude': 27.684994}, {'Longitude': -9.932858, 'Latitude': 31.152089}, {'Longitude': -12.580666, 'Latitude': 12.885638}]}}]}}}\n",
+ " Temporal coverage: {'RangeDateTime': {'BeginningDateTime': '2018-10-01T10:40:00.000Z', 'EndingDateTime': '2018-10-01T10:45:00.000Z'}}\n",
+ " Size(MB): 153.157649040222\n",
+ " Data: ['https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD021KM/2018/274/MOD021KM.A2018274.1040.061.2018274200246.hdf']]"
]
},
- "execution_count": 14,
+ "execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
@@ -198,250 +197,2241 @@
},
{
"cell_type": "code",
- "execution_count": 17,
- "id": "67e0a7eb",
+ "execution_count": 29,
+ "id": "5d10708d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
- "Opening 5 granules, approx size: 0.76 GB\n"
+ " Getting 3 granules, approx download size: 0.47 GB\n"
]
},
{
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "13c6ebb901264d85a8252c17cf0bf8f0",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "QUEUEING TASKS | : 0%| | 0/5 [00:00, ?it/s]"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "QUEUEING TASKS | : 100%|██████████| 3/3 [00:00<00:00, 365.05it/s]\n",
+ "PROCESSING TASKS | : 0%| | 0/3 [00:00, ?it/s]"
+ ]
},
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "PROCESSING TASKS | : 100%|██████████| 3/3 [04:11<00:00, 83.91s/it] \n",
+ "COLLECTING RESULTS | : 100%|██████████| 3/3 [00:00<00:00, 7938.75it/s]\n"
+ ]
+ }
+ ],
+ "source": [
+ "files = earthaccess.download(results, \"./modisdata/earthaccess2/\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "391d17b1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import xarray as xr\n",
+ "\n",
+ "ds = xr.open_dataset('./modisdata/earthaccess2/MOD021KM.A2018274.1030.061.2018274200208.hdf', engine='netcdf4')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "id": "ba3b84dc",
+ "metadata": {},
+ "outputs": [
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ddf3baaf6b6f4d28b6255db32426c101",
- "version_major": 2,
- "version_minor": 0
- },
"text/plain": [
- "PROCESSING TASKS | : 0%| | 0/5 [00:00, ?it/s]"
+ "['modisdata/earthaccess2/MOD021KM.A2018274.1030.061.2018274200208.hdf',\n",
+ " 'modisdata/earthaccess2/MOD021KM.A2018274.1035.061.2018274200111.hdf',\n",
+ " 'modisdata/earthaccess2/MOD021KM.A2018274.1040.061.2018274200246.hdf']"
]
},
+ "execution_count": 39,
"metadata": {},
- "output_type": "display_data"
- },
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "files"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "b5dd61a310b643939f2d2407207f9dbb",
- "version_major": 2,
- "version_minor": 0
- },
+ "text/html": [
+ "
\n",
+ "
<xarray.Dataset>\n",
+ "Dimensions: (\n",
+ " 2*nscans:MODIS_SWATH_Type_L1B: 406,\n",
+ " 1KM_geo_dim:MODIS_SWATH_Type_L1B: 271,\n",
+ " Band_1KM_RefSB:MODIS_SWATH_Type_L1B: 15,\n",
+ " 10*nscans:MODIS_SWATH_Type_L1B: 2030,\n",
+ " Max_EV_frames:MODIS_SWATH_Type_L1B: 1354,\n",
+ " ...\n",
+ " number of scans: 203,\n",
+ " number of 250m bands: 2,\n",
+ " detectors per 250m band: 40,\n",
+ " number of 500m bands: 5,\n",
+ " detectors per 500m band: 20,\n",
+ " number of 1km reflective bands: 15)\n",
+ "Coordinates:\n",
+ " * Band_250M (Band_250M) float32 1....\n",
+ " * Band_500M (Band_500M) float32 3....\n",
+ " * Band_1KM_RefSB (Band_1KM_RefSB) float32 ...\n",
+ " * Band_1KM_Emissive (Band_1KM_Emissive) float32 ...\n",
+ "Dimensions without coordinates: 2*nscans:MODIS_SWATH_Type_L1B,\n",
+ " 1KM_geo_dim:MODIS_SWATH_Type_L1B,\n",
+ " Band_1KM_RefSB:MODIS_SWATH_Type_L1B,\n",
+ " 10*nscans:MODIS_SWATH_Type_L1B,\n",
+ " Max_EV_frames:MODIS_SWATH_Type_L1B,\n",
+ " Band_1KM_Emissive:MODIS_SWATH_Type_L1B,\n",
+ " ...\n",
+ " Band_500M:MODIS_SWATH_Type_L1B,\n",
+ " number of emissive bands,\n",
+ " detectors per 1km band, number of scans,\n",
+ " number of 250m bands, detectors per 250m band,\n",
+ " number of 500m bands, detectors per 500m band,\n",
+ " number of 1km reflective bands\n",
+ "Data variables: (12/27)\n",
+ " Latitude (2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " Longitude (2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " EV_1KM_RefSB (Band_1KM_RefSB:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " EV_1KM_RefSB_Uncert_Indexes (Band_1KM_RefSB:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " EV_1KM_Emissive (Band_1KM_Emissive:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " EV_1KM_Emissive_Uncert_Indexes (Band_1KM_Emissive:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " ... ...\n",
+ " Noise in Thermal Detectors (number of emissive bands, detectors per 1km band) uint8 ...\n",
+ " Change in relative responses of thermal detectors (number of emissive bands, detectors per 1km band) uint8 ...\n",
+ " DC Restore Change for Thermal Bands (number of scans, number of emissive bands, detectors per 1km band) int8 ...\n",
+ " DC Restore Change for Reflective 250m Bands (number of scans, number of 250m bands, detectors per 250m band) int8 ...\n",
+ " DC Restore Change for Reflective 500m Bands (number of scans, number of 500m bands, detectors per 500m band) int8 ...\n",
+ " DC Restore Change for Reflective 1km Bands (number of scans, number of 1km reflective bands, detectors per 1km band) int8 ...\n",
+ "Attributes: (12/58)\n",
+ " HDFEOSVersion: HDFEOS_V2.19\n",
+ " StructMetadata.0: GROUP=SwathS...\n",
+ " HDFEOS_FractionalOffset_10*nscans_MODIS_SWATH_Type_L1B: 0.0\n",
+ " HDFEOS_FractionalOffset_Max_EV_frames_MODIS_SWATH_Type_L1B: 0.0\n",
+ " CoreMetadata.0: \\nGROUP ...\n",
+ " ArchiveMetadata.0: \\nGROUP ...\n",
+ " ... ...\n",
+ " Detector Quality Flag: [ 0 0 0 0...\n",
+ " Detector Quality Flag2: [0 0 0 0 0 0...\n",
+ " Earth-Sun Distance: 1.0011935\n",
+ " Solar Irradiance on RSB Detectors over pi: [511.46 51...\n",
+ " identifier_product_doi: 10.5067/MODI...\n",
+ " identifier_product_doi_authority: http://dx.do...
- 2*nscans:MODIS_SWATH_Type_L1B: 406
- 1KM_geo_dim:MODIS_SWATH_Type_L1B: 271
- Band_1KM_RefSB:MODIS_SWATH_Type_L1B: 15
- 10*nscans:MODIS_SWATH_Type_L1B: 2030
- Max_EV_frames:MODIS_SWATH_Type_L1B: 1354
- Band_1KM_Emissive:MODIS_SWATH_Type_L1B: 16
- Band_250M:MODIS_SWATH_Type_L1B: 2
- Band_500M:MODIS_SWATH_Type_L1B: 5
- Band_250M: 2
- Band_500M: 5
- Band_1KM_RefSB: 15
- Band_1KM_Emissive: 16
- number of emissive bands: 16
- detectors per 1km band: 10
- number of scans: 203
- number of 250m bands: 2
- detectors per 250m band: 40
- number of 500m bands: 5
- detectors per 500m band: 20
- number of 1km reflective bands: 15
Latitude
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- units :
- degrees
- valid_range :
- [-90. 90.]
- line_numbers :
- 3,8
- frame_numbers :
- 3,8,13,...
[110026 values with dtype=float32]
Longitude
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- units :
- degrees
- valid_range :
- [-180. 180.]
- line_numbers :
- 3,8
- frame_numbers :
- 3,8,13,...
[110026 values with dtype=float32]
EV_1KM_RefSB
(Band_1KM_RefSB:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 1KM Reflective Solar Bands Scaled Integers
- units :
- none
- valid_range :
- [ 0 32767]
- band_names :
- 8,9,10,11,12,13lo,13hi,14lo,14hi,15,16,17,18,19,26
- radiance_scales :
- [0.01487274 0.00995487 0.00658661 0.0040879 0.00407722 0.00114868\n",
+ " 0.00084735 0.00152917 0.00084248 0.00105768 0.00093799 0.00811724\n",
+ " 0.00905797 0.00753956 0.00327654]
- radiance_offsets :
- [316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722\n",
+ " 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722]
- radiance_units :
- Watts/m^2/micrometer/steradian
- reflectance_scales :
- [2.6828411e-05 1.6466722e-05 1.0470717e-05 6.8322238e-06 6.7853684e-06\n",
+ " 2.3364810e-06 1.7235611e-06 3.1930131e-06 1.7591535e-06 2.5723873e-06\n",
+ " 3.0357983e-06 2.7344862e-05 3.2647880e-05 2.7190577e-05 2.8272805e-05]
- reflectance_offsets :
- [316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722\n",
+ " 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722]
- reflectance_units :
- none
- corrected_counts_scales :
- [0.12619403 0.12619403 0.12619403 0.12619403 0.12619403 0.12619403\n",
+ " 0.12619403 0.12619403 0.12619403 0.12619403 0.12619403 0.12619403\n",
+ " 0.12619403 0.12619403 0.12619403]
- corrected_counts_offsets :
- [316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722\n",
+ " 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722 316.9722]
- corrected_counts_units :
- counts
[41229300 values with dtype=float32]
EV_1KM_RefSB_Uncert_Indexes
(Band_1KM_RefSB:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 1KM Reflective Solar Bands Uncertainty Indexes
- units :
- none
- valid_range :
- [ 0 15]
- specified_uncertainty :
- [1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5]
- scaling_factor :
- [7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 5.]
- uncertainty_units :
- percent
[41229300 values with dtype=float32]
EV_1KM_Emissive
(Band_1KM_Emissive:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 1KM Emissive Bands Scaled Integers
- units :
- none
- valid_range :
- [ 0 32767]
- band_names :
- 20,21,22,23,24,25,27,28,29,30,31,32,33,34,35,36
- radiance_scales :
- [6.2623985e-05 3.1495101e-03 6.9215974e-05 7.9103978e-05 3.1556141e-05\n",
+ " 5.6398207e-05 1.1755730e-04 1.9244973e-04 5.3248694e-04 4.0632344e-04\n",
+ " 8.4002200e-04 7.2969758e-04 2.6226387e-04 2.0069582e-04 1.7670827e-04\n",
+ " 1.1833857e-04]
- radiance_offsets :
- [2730.5835 2730.5835 2730.5835 2730.5835 1077.4448 1560.3334 2730.5833\n",
+ " 2317.4883 2730.5835 1560.3333 1577.3397 1658.2213 2501.2976 2501.2976\n",
+ " 2501.2979 2501.2979]
- radiance_units :
- Watts/m^2/micrometer/steradian
[43977920 values with dtype=float32]
EV_1KM_Emissive_Uncert_Indexes
(Band_1KM_Emissive:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 1KM Emissive Bands Uncertainty Indexes
- units :
- none
- valid_range :
- [ 0 15]
- specified_uncertainty :
- [0.5625 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5\n",
+ " 0.375 0.375 0.5 0.5 0.5 0.5 ]
- scaling_factor :
- [5. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.]
- uncertainty_units :
- percent
[43977920 values with dtype=float32]
EV_250_Aggr1km_RefSB
(Band_250M:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 250M Aggregated 1km Reflective Solar Bands Scaled Integers
- units :
- none
- valid_range :
- [ 0 32767]
- band_names :
- 1,2
- radiance_scales :
- [0.02907379 0.01079062]
- radiance_offsets :
- [-0. -0.]
- radiance_units :
- Watts/m^2/micrometer/steradian
- reflectance_scales :
- [5.7002773e-05 3.4247674e-05]
- reflectance_offsets :
- [-0. -0.]
- reflectance_units :
- none
- corrected_counts_scales :
- [0.1249733 0.1249733]
- corrected_counts_offsets :
- [-0. -0.]
- corrected_counts_units :
- counts
[5497240 values with dtype=float32]
EV_250_Aggr1km_RefSB_Uncert_Indexes
(Band_250M:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 250M Aggregated 1km Reflective Solar Bands Uncertainty Indexes
- units :
- none
- valid_range :
- [ 0 15]
- specified_uncertainty :
- [1.5 1.5]
- scaling_factor :
- [7. 7.]
- uncertainty_units :
- percent
[5497240 values with dtype=float32]
EV_250_Aggr1km_RefSB_Samples_Used
(Band_250M:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 250M Aggregated 1km Reflective Solar Bands Number of Samples Used in Aggregation
- units :
- none
- valid_range :
- [ 0 28]
[5497240 values with dtype=float32]
EV_500_Aggr1km_RefSB
(Band_500M:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 500M Aggregated 1km Reflective Solar Bands Scaled Integers
- units :
- none
- valid_range :
- [ 0 32767]
- band_names :
- 3,4,5,6,7
- radiance_scales :
- [0.03958831 0.03012581 0.00673914 0.00286493 0.00092178]
- radiance_offsets :
- [-0. -0. -0. -0. -0.]
- radiance_units :
- Watts/m^2/micrometer/steradian
- reflectance_scales :
- [5.9708342e-05 5.0842536e-05 4.4740111e-05 3.7555455e-05 3.2137144e-05]
- reflectance_offsets :
- [-0. -0. -0. -0. -0.]
- reflectance_units :
- none
- corrected_counts_scales :
- [0.1249733 0.1249733 0.1249733 0.1249733 0.1249733]
- corrected_counts_offsets :
- [-0. -0. -0. -0. -0.]
- corrected_counts_units :
- counts
[13743100 values with dtype=float32]
EV_500_Aggr1km_RefSB_Uncert_Indexes
(Band_500M:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 500M Aggregated 1km Reflective Solar Bands Uncertainty Indexes
- units :
- none
- valid_range :
- [ 0 15]
- specified_uncertainty :
- [1.5 1.5 1.5 1.5 1.5]
- scaling_factor :
- [7. 7. 5. 5. 5.]
- uncertainty_units :
- percent
[13743100 values with dtype=float32]
EV_500_Aggr1km_RefSB_Samples_Used
(Band_500M:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View 500M Aggregated 1km Reflective Solar Bands Number of Samples Used in Aggregation
- units :
- none
- valid_range :
- [0 6]
[13743100 values with dtype=float32]
Height
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- units :
- meters
- valid_range :
- [ -400 10000]
- line_numbers :
- 3,8
- frame_numbers :
- 3,8,13,...
[110026 values with dtype=float32]
SensorZenith
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- units :
- degrees
- valid_range :
- [ 0 18000]
- line_numbers :
- 3,8
- frame_numbers :
- 3,8,13,...
[110026 values with dtype=float32]
SensorAzimuth
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- units :
- degrees
- valid_range :
- [-18000 18000]
- line_numbers :
- 3,8
- frame_numbers :
- 3,8,13,...
[110026 values with dtype=float32]
Range
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- units :
- meters
- valid_range :
- [27000 65535]
- line_numbers :
- 3,8
- frame_numbers :
- 3,8,13,...
[110026 values with dtype=float32]
SolarZenith
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- units :
- degrees
- valid_range :
- [ 0 18000]
- line_numbers :
- 3,8
- frame_numbers :
- 3,8,13,...
[110026 values with dtype=float32]
SolarAzimuth
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- units :
- degrees
- valid_range :
- [-18000 18000]
- line_numbers :
- 3,8
- frame_numbers :
- 3,8,13,...
[110026 values with dtype=float32]
gflags
(2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B)
float32
...
- Bit 7(MSB) :
- 1 = invalid input data
- Bit 6 :
- 1 = no ellipsoid intersection
- Bit 5 :
- 1 = no valid terrain data
- Bit 4 :
- 1 = DEM missing or of inferior quality
- Bit 3 :
- 1 = invalid sensor range
[110026 values with dtype=float32]
EV_Band26
(10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View Band 26 Scaled Integers
- units :
- none
- valid_range :
- [ 0 32767]
- radiance_scales :
- 0.0032765407
- radiance_offsets :
- 316.9722
- radiance_units :
- Watts/m^2/micrometer/steradian
- reflectance_scales :
- 2.8272805e-05
- reflectance_offsets :
- 316.9722
- reflectance_units :
- none
- corrected_counts_scales :
- 0.12619403
- corrected_counts_offsets :
- 316.9722
- corrected_counts_units :
- counts
[2748620 values with dtype=float32]
EV_Band26_Uncert_Indexes
(10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B)
float32
...
- long_name :
- Earth View Band 26 Uncertainty Indexes
- units :
- none
- valid_range :
- [ 0 15]
- specified_uncertainty :
- 1.5
- scaling_factor :
- 5.0
- uncertainty_units :
- percent
[2748620 values with dtype=float32]
Noise in Thermal Detectors
(number of emissive bands, detectors per 1km band)
uint8
...
array([[ 34, 29, 28, 29, 28, 26, 28, 29, 29, 26],\n",
+ " [ 29, 29, 30, 21, 26, 28, 28, 31, 37, 37],\n",
+ " [ 30, 29, 30, 29, 29, 29, 31, 28, 32, 26],\n",
+ " [ 30, 31, 30, 29, 29, 30, 30, 29, 30, 30],\n",
+ " [ 29, 27, 28, 31, 31, 28, 31, 30, 27, 29],\n",
+ " [ 30, 29, 30, 28, 29, 28, 28, 28, 28, 30],\n",
+ " [ 87, 47, 38, 42, 37, 34, 44, 55, 89, 90],\n",
+ " [ 63, 46, 59, 46, 46, 40, 63, 57, 55, 57],\n",
+ " [ 43, 39, 47, 45, 45, 51, 37, 50, 44, 41],\n",
+ " [ 45, 44, 51, 61, 59, 51, 59, 68, 55, 56],\n",
+ " [ 29, 25, 30, 31, 28, 26, 28, 19, 26, 33],\n",
+ " [ 27, 30, 36, 30, 27, 23, 21, 23, 27, 26],\n",
+ " [ 57, 27, 27, 28, 28, 28, 26, 27, 27, 28],\n",
+ " [ 30, 30, 29, 29, 36, 46, 51, 53, 32, 28],\n",
+ " [ 30, 29, 20, 29, 28, 29, 28, 28, 28, 29],\n",
+ " [ 29, 28, 29, 28, 28, 27, 255, 27, 28, 27]], dtype=uint8)
Change in relative responses of thermal detectors
(number of emissive bands, detectors per 1km band)
uint8
...
array([[ 30, 30, 30, 30, 30, 30, 30, 30, 30, 30],\n",
+ " [ 29, 29, 29, 29, 29, 29, 29, 29, 29, 30],\n",
+ " [ 30, 30, 30, 30, 30, 30, 30, 28, 29, 29],\n",
+ " [ 29, 30, 30, 30, 29, 30, 30, 30, 29, 27],\n",
+ " [ 29, 29, 29, 29, 29, 29, 29, 29, 29, 28],\n",
+ " [ 29, 29, 28, 28, 29, 29, 28, 28, 28, 28],\n",
+ " [ 28, 28, 28, 28, 27, 28, 29, 29, 29, 29],\n",
+ " [ 31, 30, 30, 30, 30, 29, 30, 30, 29, 29],\n",
+ " [ 30, 30, 30, 30, 30, 30, 29, 30, 30, 29],\n",
+ " [ 27, 27, 27, 28, 28, 27, 27, 27, 26, 26],\n",
+ " [ 29, 29, 29, 29, 29, 29, 29, 28, 28, 28],\n",
+ " [ 29, 29, 29, 29, 29, 29, 29, 29, 29, 29],\n",
+ " [ 29, 28, 29, 29, 29, 29, 29, 29, 28, 28],\n",
+ " [ 29, 29, 29, 29, 29, 29, 29, 29, 29, 28],\n",
+ " [ 30, 29, 29, 29, 29, 29, 29, 29, 29, 29],\n",
+ " [ 29, 29, 29, 29, 28, 28, 255, 28, 28, 28]], dtype=uint8)
DC Restore Change for Thermal Bands
(number of scans, number of emissive bands, detectors per 1km band)
int8
...
array([[[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " ...,\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]]], dtype=int8)
DC Restore Change for Reflective 250m Bands
(number of scans, number of 250m bands, detectors per 250m band)
int8
...
array([[[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " ...,\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]]], dtype=int8)
DC Restore Change for Reflective 500m Bands
(number of scans, number of 500m bands, detectors per 500m band)
int8
...
array([[[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " ...,\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]]], dtype=int8)
DC Restore Change for Reflective 1km Bands
(number of scans, number of 1km reflective bands, detectors per 1km band)
int8
...
array([[[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " ...,\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]],\n",
+ "\n",
+ " [[0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0],\n",
+ " ...,\n",
+ " [0, 0, ..., 0, 0],\n",
+ " [0, 0, ..., 0, 0]]], dtype=int8)
- HDFEOSVersion :
- HDFEOS_V2.19
- StructMetadata.0 :
- GROUP=SwathStructure\n",
+ "\tGROUP=SWATH_1\n",
+ "\t\tSwathName="MODIS_SWATH_Type_L1B"\n",
+ "\t\tGROUP=Dimension\n",
+ "\t\t\tOBJECT=Dimension_1\n",
+ "\t\t\t\tDimensionName="Band_250M"\n",
+ "\t\t\t\tSize=2\n",
+ "\t\t\tEND_OBJECT=Dimension_1\n",
+ "\t\t\tOBJECT=Dimension_2\n",
+ "\t\t\t\tDimensionName="Band_500M"\n",
+ "\t\t\t\tSize=5\n",
+ "\t\t\tEND_OBJECT=Dimension_2\n",
+ "\t\t\tOBJECT=Dimension_3\n",
+ "\t\t\t\tDimensionName="Band_1KM_RefSB"\n",
+ "\t\t\t\tSize=15\n",
+ "\t\t\tEND_OBJECT=Dimension_3\n",
+ "\t\t\tOBJECT=Dimension_4\n",
+ "\t\t\t\tDimensionName="Band_1KM_Emissive"\n",
+ "\t\t\t\tSize=16\n",
+ "\t\t\tEND_OBJECT=Dimension_4\n",
+ "\t\t\tOBJECT=Dimension_5\n",
+ "\t\t\t\tDimensionName="10*nscans"\n",
+ "\t\t\t\tSize=2030\n",
+ "\t\t\tEND_OBJECT=Dimension_5\n",
+ "\t\t\tOBJECT=Dimension_6\n",
+ "\t\t\t\tDimensionName="Max_EV_frames"\n",
+ "\t\t\t\tSize=1354\n",
+ "\t\t\tEND_OBJECT=Dimension_6\n",
+ "\t\t\tOBJECT=Dimension_7\n",
+ "\t\t\t\tDimensionName="2*nscans"\n",
+ "\t\t\t\tSize=406\n",
+ "\t\t\tEND_OBJECT=Dimension_7\n",
+ "\t\t\tOBJECT=Dimension_8\n",
+ "\t\t\t\tDimensionName="1KM_geo_dim"\n",
+ "\t\t\t\tSize=271\n",
+ "\t\t\tEND_OBJECT=Dimension_8\n",
+ "\t\tEND_GROUP=Dimension\n",
+ "\t\tGROUP=DimensionMap\n",
+ "\t\t\tOBJECT=DimensionMap_1\n",
+ "\t\t\t\tGeoDimension="2*nscans"\n",
+ "\t\t\t\tDataDimension="10*nscans"\n",
+ "\t\t\t\tOffset=2\n",
+ "\t\t\t\tIncrement=5\n",
+ "\t\t\tEND_OBJECT=DimensionMap_1\n",
+ "\t\t\tOBJECT=DimensionMap_2\n",
+ "\t\t\t\tGeoDimension="1KM_geo_dim"\n",
+ "\t\t\t\tDataDimension="Max_EV_frames"\n",
+ "\t\t\t\tOffset=2\n",
+ "\t\t\t\tIncrement=5\n",
+ "\t\t\tEND_OBJECT=DimensionMap_2\n",
+ "\t\tEND_GROUP=DimensionMap\n",
+ "\t\tGROUP=IndexDimensionMap\n",
+ "\t\tEND_GROUP=IndexDimensionMap\n",
+ "\t\tGROUP=GeoField\n",
+ "\t\t\tOBJECT=GeoField_1\n",
+ "\t\t\t\tGeoFieldName="Latitude"\n",
+ "\t\t\t\tDataType=DFNT_FLOAT32\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=GeoField_1\n",
+ "\t\t\tOBJECT=GeoField_2\n",
+ "\t\t\t\tGeoFieldName="Longitude"\n",
+ "\t\t\t\tDataType=DFNT_FLOAT32\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=GeoField_2\n",
+ "\t\tEND_GROUP=GeoField\n",
+ "\t\tGROUP=DataField\n",
+ "\t\t\tOBJECT=DataField_1\n",
+ "\t\t\t\tDataFieldName="EV_1KM_RefSB"\n",
+ "\t\t\t\tDataType=DFNT_UINT16\n",
+ "\t\t\t\tDimList=("Band_1KM_RefSB","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_1\n",
+ "\t\t\tOBJECT=DataField_2\n",
+ "\t\t\t\tDataFieldName="EV_1KM_RefSB_Uncert_Indexes"\n",
+ "\t\t\t\tDataType=DFNT_UINT8\n",
+ "\t\t\t\tDimList=("Band_1KM_RefSB","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_2\n",
+ "\t\t\tOBJECT=DataField_3\n",
+ "\t\t\t\tDataFieldName="EV_1KM_Emissive"\n",
+ "\t\t\t\tDataType=DFNT_UINT16\n",
+ "\t\t\t\tDimList=("Band_1KM_Emissive","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_3\n",
+ "\t\t\tOBJECT=DataField_4\n",
+ "\t\t\t\tDataFieldName="EV_1KM_Emissive_Uncert_Indexes"\n",
+ "\t\t\t\tDataType=DFNT_UINT8\n",
+ "\t\t\t\tDimList=("Band_1KM_Emissive","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_4\n",
+ "\t\t\tOBJECT=DataField_5\n",
+ "\t\t\t\tDataFieldName="EV_250_Aggr1km_RefSB"\n",
+ "\t\t\t\tDataType=DFNT_UINT16\n",
+ "\t\t\t\tDimList=("Band_250M","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_5\n",
+ "\t\t\tOBJECT=DataField_6\n",
+ "\t\t\t\tDataFieldName="EV_250_Aggr1km_RefSB_Uncert_Indexes"\n",
+ "\t\t\t\tDataType=DFNT_UINT8\n",
+ "\t\t\t\tDimList=("Band_250M","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_6\n",
+ "\t\t\tOBJECT=DataField_7\n",
+ "\t\t\t\tDataFieldName="EV_250_Aggr1km_RefSB_Samples_Used"\n",
+ "\t\t\t\tDataType=DFNT_INT8\n",
+ "\t\t\t\tDimList=("Band_250M","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_7\n",
+ "\t\t\tOBJECT=DataField_8\n",
+ "\t\t\t\tDataFieldName="EV_500_Aggr1km_RefSB"\n",
+ "\t\t\t\tDataType=DFNT_UINT16\n",
+ "\t\t\t\tDimList=("Band_500M","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_8\n",
+ "\t\t\tOBJECT=DataField_9\n",
+ "\t\t\t\tDataFieldName="EV_500_Aggr1km_RefSB_Uncert_Indexes"\n",
+ "\t\t\t\tDataType=DFNT_UINT8\n",
+ "\t\t\t\tDimList=("Band_500M","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_9\n",
+ "\t\t\tOBJECT=DataField_10\n",
+ "\t\t\t\tDataFieldName="EV_500_Aggr1km_RefSB_Samples_Used"\n",
+ "\t\t\t\tDataType=DFNT_INT8\n",
+ "\t\t\t\tDimList=("Band_500M","10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_10\n",
+ "\t\t\tOBJECT=DataField_11\n",
+ "\t\t\t\tDataFieldName="Height"\n",
+ "\t\t\t\tDataType=DFNT_INT16\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=DataField_11\n",
+ "\t\t\tOBJECT=DataField_12\n",
+ "\t\t\t\tDataFieldName="SensorZenith"\n",
+ "\t\t\t\tDataType=DFNT_INT16\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=DataField_12\n",
+ "\t\t\tOBJECT=DataField_13\n",
+ "\t\t\t\tDataFieldName="SensorAzimuth"\n",
+ "\t\t\t\tDataType=DFNT_INT16\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=DataField_13\n",
+ "\t\t\tOBJECT=DataField_14\n",
+ "\t\t\t\tDataFieldName="Range"\n",
+ "\t\t\t\tDataType=DFNT_UINT16\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=DataField_14\n",
+ "\t\t\tOBJECT=DataField_15\n",
+ "\t\t\t\tDataFieldName="SolarZenith"\n",
+ "\t\t\t\tDataType=DFNT_INT16\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=DataField_15\n",
+ "\t\t\tOBJECT=DataField_16\n",
+ "\t\t\t\tDataFieldName="SolarAzimuth"\n",
+ "\t\t\t\tDataType=DFNT_INT16\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=DataField_16\n",
+ "\t\t\tOBJECT=DataField_17\n",
+ "\t\t\t\tDataFieldName="gflags"\n",
+ "\t\t\t\tDataType=DFNT_UINT8\n",
+ "\t\t\t\tDimList=("2*nscans","1KM_geo_dim")\n",
+ "\t\t\tEND_OBJECT=DataField_17\n",
+ "\t\t\tOBJECT=DataField_18\n",
+ "\t\t\t\tDataFieldName="Band_250M"\n",
+ "\t\t\t\tDataType=DFNT_FLOAT32\n",
+ "\t\t\t\tDimList=("Band_250M")\n",
+ "\t\t\tEND_OBJECT=DataField_18\n",
+ "\t\t\tOBJECT=DataField_19\n",
+ "\t\t\t\tDataFieldName="Band_500M"\n",
+ "\t\t\t\tDataType=DFNT_FLOAT32\n",
+ "\t\t\t\tDimList=("Band_500M")\n",
+ "\t\t\tEND_OBJECT=DataField_19\n",
+ "\t\t\tOBJECT=DataField_20\n",
+ "\t\t\t\tDataFieldName="Band_1KM_RefSB"\n",
+ "\t\t\t\tDataType=DFNT_FLOAT32\n",
+ "\t\t\t\tDimList=("Band_1KM_RefSB")\n",
+ "\t\t\tEND_OBJECT=DataField_20\n",
+ "\t\t\tOBJECT=DataField_21\n",
+ "\t\t\t\tDataFieldName="Band_1KM_Emissive"\n",
+ "\t\t\t\tDataType=DFNT_FLOAT32\n",
+ "\t\t\t\tDimList=("Band_1KM_Emissive")\n",
+ "\t\t\tEND_OBJECT=DataField_21\n",
+ "\t\t\tOBJECT=DataField_22\n",
+ "\t\t\t\tDataFieldName="EV_Band26"\n",
+ "\t\t\t\tDataType=DFNT_UINT16\n",
+ "\t\t\t\tDimList=("10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_22\n",
+ "\t\t\tOBJECT=DataField_23\n",
+ "\t\t\t\tDataFieldName="EV_Band26_Uncert_Indexes"\n",
+ "\t\t\t\tDataType=DFNT_UINT8\n",
+ "\t\t\t\tDimList=("10*nscans","Max_EV_frames")\n",
+ "\t\t\tEND_OBJECT=DataField_23\n",
+ "\t\tEND_GROUP=DataField\n",
+ "\t\tGROUP=MergedFields\n",
+ "\t\tEND_GROUP=MergedFields\n",
+ "\tEND_GROUP=SWATH_1\n",
+ "END_GROUP=SwathStructure\n",
+ "GROUP=GridStructure\n",
+ "END_GROUP=GridStructure\n",
+ "GROUP=PointStructure\n",
+ "END_GROUP=PointStructure\n",
+ "END\n",
+ "
- HDFEOS_FractionalOffset_10*nscans_MODIS_SWATH_Type_L1B :
- 0.0
- HDFEOS_FractionalOffset_Max_EV_frames_MODIS_SWATH_Type_L1B :
- 0.0
- CoreMetadata.0 :
- \n",
+ "GROUP = INVENTORYMETADATA\n",
+ " GROUPTYPE = MASTERGROUP\n",
+ "\n",
+ " GROUP = ECSDATAGRANULE\n",
+ "\n",
+ " OBJECT = REPROCESSINGPLANNED\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "further update is anticipated"\n",
+ " END_OBJECT = REPROCESSINGPLANNED\n",
+ "\n",
+ " OBJECT = REPROCESSINGACTUAL\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "processed once"\n",
+ " END_OBJECT = REPROCESSINGACTUAL\n",
+ "\n",
+ " OBJECT = LOCALGRANULEID\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MOD021KM.A2018274.1030.061.2018274200208.hdf"\n",
+ " END_OBJECT = LOCALGRANULEID\n",
+ "\n",
+ " OBJECT = DAYNIGHTFLAG\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "Day"\n",
+ " END_OBJECT = DAYNIGHTFLAG\n",
+ "\n",
+ " OBJECT = PRODUCTIONDATETIME\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "2018-10-01T20:02:08.000Z"\n",
+ " END_OBJECT = PRODUCTIONDATETIME\n",
+ "\n",
+ " END_GROUP = ECSDATAGRANULE\n",
+ "\n",
+ " GROUP = MEASUREDPARAMETER\n",
+ "\n",
+ " OBJECT = MEASUREDPARAMETERCONTAINER\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = PARAMETERNAME\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "EV_1KM_RefSB"\n",
+ " END_OBJECT = PARAMETERNAME\n",
+ "\n",
+ " GROUP = QAFLAGS\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = AUTOMATICQUALITYFLAG\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "1"\n",
+ " VALUE = "Suspect"\n",
+ " END_OBJECT = AUTOMATICQUALITYFLAG\n",
+ "\n",
+ " OBJECT = AUTOMATICQUALITYFLAGEXPLANATION\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "1"\n",
+ " VALUE = "not being investigated"\n",
+ " END_OBJECT = AUTOMATICQUALITYFLAGEXPLANATION\n",
+ "\n",
+ " OBJECT = SCIENCEQUALITYFLAG\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "Not Investigated"\n",
+ " CLASS = "1"\n",
+ " END_OBJECT = SCIENCEQUALITYFLAG\n",
+ "\n",
+ " END_GROUP = QAFLAGS\n",
+ "\n",
+ " GROUP = QASTATS\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = QAPERCENTINTERPOLATEDDATA\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "1"\n",
+ " VALUE = 0\n",
+ " END_OBJECT = QAPERCENTINTERPOLATEDDATA\n",
+ "\n",
+ " OBJECT = QAPERCENTMISSINGDATA\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "1"\n",
+ " VALUE = 0\n",
+ " END_OBJECT = QAPERCENTMISSINGDATA\n",
+ "\n",
+ " OBJECT = QAPERCENTOUTOFBOUNDSDATA\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "1"\n",
+ " VALUE = 29\n",
+ " END_OBJECT = QAPERCENTOUTOFBOUNDSDATA\n",
+ "\n",
+ " END_GROUP = QASTATS\n",
+ "\n",
+ " END_OBJECT = MEASUREDPARAMETERCONTAINER\n",
+ "\n",
+ " OBJECT = MEASUREDPARAMETERCONTAINER\n",
+ " CLASS = "2"\n",
+ "\n",
+ " OBJECT = PARAMETERNAME\n",
+ " CLASS = "2"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "EV_1KM_Emissive"\n",
+ " END_OBJECT = PARAMETERNAME\n",
+ "\n",
+ " GROUP = QAFLAGS\n",
+ " CLASS = "2"\n",
+ "\n",
+ " OBJECT = AUTOMATICQUALITYFLAG\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "2"\n",
+ " VALUE = "Suspect"\n",
+ " END_OBJECT = AUTOMATICQUALITYFLAG\n",
+ "\n",
+ " OBJECT = AUTOMATICQUALITYFLAGEXPLANATION\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "2"\n",
+ " VALUE = "not being investigated"\n",
+ " END_OBJECT = AUTOMATICQUALITYFLAGEXPLANATION\n",
+ "\n",
+ " OBJECT = SCIENCEQUALITYFLAG\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "Not Investigated"\n",
+ " CLASS = "2"\n",
+ " END_OBJECT = SCIENCEQUALITYFLAG\n",
+ "\n",
+ " END_GROUP = QAFLAGS\n",
+ "\n",
+ " GROUP = QASTATS\n",
+ " CLASS = "2"\n",
+ "\n",
+ " OBJECT = QAPERCENTINTERPOLATEDDATA\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "2"\n",
+ " VALUE = 0\n",
+ " END_OBJECT = QAPERCENTINTERPOLATEDDATA\n",
+ "\n",
+ " OBJECT = QAPERCENTMISSINGDATA\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "2"\n",
+ " VALUE = 0\n",
+ " END_OBJECT = QAPERCENTMISSINGDATA\n",
+ "\n",
+ " OBJECT = QAPERCENTOUTOFBOUNDSDATA\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "2"\n",
+ " VALUE = 0\n",
+ " END_OBJECT = QAPERCENTOUTOFBOUNDSDATA\n",
+ "\n",
+ " END_GROUP = QASTATS\n",
+ "\n",
+ " END_OBJECT = MEASUREDPARAMETERCONTAINER\n",
+ "\n",
+ " END_GROUP = MEASUREDPARAMETER\n",
+ "\n",
+ " GROUP = ORBITCALCULATEDSPATIALDOMAIN\n",
+ "\n",
+ " OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = ORBITNUMBER\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = 99929\n",
+ " END_OBJECT = ORBITNUMBER\n",
+ "\n",
+ " OBJECT = EQUATORCROSSINGLONGITUDE\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = -4.45005348860473\n",
+ " END_OBJECT = EQUATORCROSSINGLONGITUDE\n",
+ "\n",
+ " OBJECT = EQUATORCROSSINGTIME\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "10:48:15.003605"\n",
+ " END_OBJECT = EQUATORCROSSINGTIME\n",
+ "\n",
+ " OBJECT = EQUATORCROSSINGDATE\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "2018-10-01"\n",
+ " END_OBJECT = EQUATORCROSSINGDATE\n",
+ "\n",
+ " END_OBJECT = ORBITCALCULATEDSPATIALDOMAINCONTAINER\n",
+ "\n",
+ " END_GROUP = ORBITCALCULATEDSPATIALDOMAIN\n",
+ "\n",
+ " GROUP = COLLECTIONDESCRIPTIONCLASS\n",
+ "\n",
+ " OBJECT = SHORTNAME\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MOD021KM"\n",
+ " END_OBJECT = SHORTNAME\n",
+ "\n",
+ " OBJECT = VERSIONID\n",
+ " NUM_VAL = 1\n",
+ " VALUE = 61\n",
+ " END_OBJECT = VERSIONID\n",
+ "\n",
+ " END_GROUP = COLLECTIONDESCRIPTIONCLASS\n",
+ "\n",
+ " GROUP = INPUTGRANULE\n",
+ "\n",
+ " OBJECT = INPUTPOINTER\n",
+ " NUM_VAL = 10\n",
+ " VALUE = ("MOD01.A2018274.1025.061.2018274172640.hdf", "MOD01.A2018274.1030.061.2018274172649.hdf", "MOD01.A2018274.1035.061.2018274172704.hdf", "MOD02_Reflective_LUTs.hdf.V6.2.2.18", "MOD02_Emissive_LUTs.hdf.V6.2.2.18", "MOD02_QA_LUTs.hdf.V6.2.2.18")\n",
+ " END_OBJECT = INPUTPOINTER\n",
+ "\n",
+ " END_GROUP = INPUTGRANULE\n",
+ "\n",
+ " GROUP = SPATIALDOMAINCONTAINER\n",
+ "\n",
+ " GROUP = HORIZONTALSPATIALDOMAINCONTAINER\n",
+ "\n",
+ " GROUP = GPOLYGON\n",
+ "\n",
+ " OBJECT = GPOLYGONCONTAINER\n",
+ " CLASS = "1"\n",
+ "\n",
+ " GROUP = GRING\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = EXCLUSIONGRINGFLAG\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "1"\n",
+ " VALUE = "N"\n",
+ " END_OBJECT = EXCLUSIONGRINGFLAG\n",
+ "\n",
+ " END_GROUP = GRING\n",
+ "\n",
+ " GROUP = GRINGPOINT\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = GRINGPOINTLONGITUDE\n",
+ " NUM_VAL = 4\n",
+ " CLASS = "1"\n",
+ " VALUE = (-8.46115725533511, 38.4931951951173, 22.9003126357209, -7.8209442132295)\n",
+ " END_OBJECT = GRINGPOINTLONGITUDE\n",
+ "\n",
+ " OBJECT = GRINGPOINTLATITUDE\n",
+ " NUM_VAL = 4\n",
+ " CLASS = "1"\n",
+ " VALUE = (66.8994755093898, 60.2130835359491, 44.459753662308, 48.6152727467855)\n",
+ " END_OBJECT = GRINGPOINTLATITUDE\n",
+ "\n",
+ " OBJECT = GRINGPOINTSEQUENCENO\n",
+ " NUM_VAL = 4\n",
+ " CLASS = "1"\n",
+ " VALUE = (1, 2, 3, 4)\n",
+ " END_OBJECT = GRINGPOINTSEQUENCENO\n",
+ "\n",
+ " END_GROUP = GRINGPOINT\n",
+ "\n",
+ " END_OBJECT = GPOLYGONCONTAINER\n",
+ "\n",
+ " END_GROUP = GPOLYGON\n",
+ "\n",
+ " END_GROUP = HORIZONTALSPATIALDOMAINCONTAINER\n",
+ "\n",
+ " END_GROUP = SPATIALDOMAINCONTAINER\n",
+ "\n",
+ " GROUP = RANGEDATETIME\n",
+ "\n",
+ " OBJECT = RANGEBEGINNINGTIME\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "10:30:00.000000"\n",
+ " END_OBJECT = RANGEBEGINNINGTIME\n",
+ "\n",
+ " OBJECT = RANGEENDINGTIME\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "10:35:00.000000"\n",
+ " END_OBJECT = RANGEENDINGTIME\n",
+ "\n",
+ " OBJECT = RANGEBEGINNINGDATE\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "2018-10-01"\n",
+ " END_OBJECT = RANGEBEGINNINGDATE\n",
+ "\n",
+ " OBJECT = RANGEENDINGDATE\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "2018-10-01"\n",
+ " END_OBJECT = RANGEENDINGDATE\n",
+ "\n",
+ " END_GROUP = RANGEDATETIME\n",
+ "\n",
+ " GROUP = PGEVERSIONCLASS\n",
+ "\n",
+ " OBJECT = PGEVERSION\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "6.2.2"\n",
+ " END_OBJECT = PGEVERSION\n",
+ "\n",
+ " END_GROUP = PGEVERSIONCLASS\n",
+ "\n",
+ " GROUP = ANCILLARYINPUTGRANULE\n",
+ "\n",
+ " OBJECT = ANCILLARYINPUTGRANULECONTAINER\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = ANCILLARYINPUTTYPE\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "Geolocation"\n",
+ " END_OBJECT = ANCILLARYINPUTTYPE\n",
+ "\n",
+ " OBJECT = ANCILLARYINPUTPOINTER\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MOD03.A2018274.1030.061.2018274172739.hdf"\n",
+ " END_OBJECT = ANCILLARYINPUTPOINTER\n",
+ "\n",
+ " END_OBJECT = ANCILLARYINPUTGRANULECONTAINER\n",
+ "\n",
+ " END_GROUP = ANCILLARYINPUTGRANULE\n",
+ "\n",
+ " GROUP = ASSOCIATEDPLATFORMINSTRUMENTSENSOR\n",
+ "\n",
+ " OBJECT = ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = ASSOCIATEDSENSORSHORTNAME\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MODIS"\n",
+ " END_OBJECT = ASSOCIATEDSENSORSHORTNAME\n",
+ "\n",
+ " OBJECT = ASSOCIATEDPLATFORMSHORTNAME\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "Terra"\n",
+ " END_OBJECT = ASSOCIATEDPLATFORMSHORTNAME\n",
+ "\n",
+ " OBJECT = ASSOCIATEDINSTRUMENTSHORTNAME\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MODIS"\n",
+ " END_OBJECT = ASSOCIATEDINSTRUMENTSHORTNAME\n",
+ "\n",
+ " END_OBJECT = ASSOCIATEDPLATFORMINSTRUMENTSENSORCONTAINER\n",
+ "\n",
+ " END_GROUP = ASSOCIATEDPLATFORMINSTRUMENTSENSOR\n",
+ "\n",
+ " GROUP = ADDITIONALATTRIBUTES\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "1"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "AveragedBlackBodyTemperature"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "1"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "1"\n",
+ " VALUE = " 290.02"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "2"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "2"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "AveragedMirrorTemperature"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "2"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "2"\n",
+ " VALUE = " 278.31"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "3"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "3"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "AveragedFocalPlane1Temperature"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "3"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "3"\n",
+ " VALUE = " 270.42"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "4"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "4"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "AveragedFocalPlane2Temperature"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "4"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "4"\n",
+ " VALUE = " 270.61"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "5"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "5"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "AveragedFocalPlane3Temperature"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "5"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "5"\n",
+ " VALUE = " 83.33"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "6"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "6"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "AveragedFocalPlane4Temperature"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "6"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "6"\n",
+ " VALUE = " 83.02"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "7"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "7"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "CalibrationQuality"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "7"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "7"\n",
+ " VALUE = "marginal"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "8"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "8"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MissionPhase"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "8"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "8"\n",
+ " VALUE = "EXECUTION"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "9"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "9"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "NadirPointing"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "9"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "9"\n",
+ " VALUE = "Y"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "10"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "10"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "identifier_product_doi"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "10"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "10"\n",
+ " VALUE = "10.5067/MODIS/MOD021KM.061"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ " CLASS = "11"\n",
+ "\n",
+ " OBJECT = ADDITIONALATTRIBUTENAME\n",
+ " CLASS = "11"\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "identifier_product_doi_authority"\n",
+ " END_OBJECT = ADDITIONALATTRIBUTENAME\n",
+ "\n",
+ " GROUP = INFORMATIONCONTENT\n",
+ " CLASS = "11"\n",
+ "\n",
+ " OBJECT = PARAMETERVALUE\n",
+ " NUM_VAL = 1\n",
+ " CLASS = "11"\n",
+ " VALUE = "http://dx.doi.org"\n",
+ " END_OBJECT = PARAMETERVALUE\n",
+ "\n",
+ " END_GROUP = INFORMATIONCONTENT\n",
+ "\n",
+ " END_OBJECT = ADDITIONALATTRIBUTESCONTAINER\n",
+ "\n",
+ " END_GROUP = ADDITIONALATTRIBUTES\n",
+ "\n",
+ "END_GROUP = INVENTORYMETADATA\n",
+ "\n",
+ "END\n",
+ "
- ArchiveMetadata.0 :
- \n",
+ "GROUP = ARCHIVEDMETADATA\n",
+ " GROUPTYPE = MASTERGROUP\n",
+ "\n",
+ " GROUP = BOUNDINGRECTANGLE\n",
+ "\n",
+ " OBJECT = NORTHBOUNDINGCOORDINATE\n",
+ " NUM_VAL = 1\n",
+ " VALUE = 66.9542345783737\n",
+ " END_OBJECT = NORTHBOUNDINGCOORDINATE\n",
+ "\n",
+ " OBJECT = SOUTHBOUNDINGCOORDINATE\n",
+ " NUM_VAL = 1\n",
+ " VALUE = 44.6156977480298\n",
+ " END_OBJECT = SOUTHBOUNDINGCOORDINATE\n",
+ "\n",
+ " OBJECT = EASTBOUNDINGCOORDINATE\n",
+ " NUM_VAL = 1\n",
+ " VALUE = 38.4914035946138\n",
+ " END_OBJECT = EASTBOUNDINGCOORDINATE\n",
+ "\n",
+ " OBJECT = WESTBOUNDINGCOORDINATE\n",
+ " NUM_VAL = 1\n",
+ " VALUE = -7.8287560027392\n",
+ " END_OBJECT = WESTBOUNDINGCOORDINATE\n",
+ "\n",
+ " END_GROUP = BOUNDINGRECTANGLE\n",
+ "\n",
+ " GROUP = ALGORITHMPACKAGE\n",
+ "\n",
+ " OBJECT = ALGORITHMPACKAGEACCEPTANCEDATE\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "1999-12-14"\n",
+ " END_OBJECT = ALGORITHMPACKAGEACCEPTANCEDATE\n",
+ "\n",
+ " OBJECT = ALGORITHMPACKAGEMATURITYCODE\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "OPERATIONAL"\n",
+ " END_OBJECT = ALGORITHMPACKAGEMATURITYCODE\n",
+ "\n",
+ " OBJECT = ALGORITHMPACKAGENAME\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MODIS Level 1B Algorithm Package"\n",
+ " END_OBJECT = ALGORITHMPACKAGENAME\n",
+ "\n",
+ " OBJECT = ALGORITHMPACKAGEVERSION\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "6.2.2.18_Terra"\n",
+ " END_OBJECT = ALGORITHMPACKAGEVERSION\n",
+ "\n",
+ " END_GROUP = ALGORITHMPACKAGE\n",
+ "\n",
+ " GROUP = PROJECT\n",
+ "\n",
+ " OBJECT = INSTRUMENTNAME\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "Moderate Resolution Imaging SpectroRadiometer"\n",
+ " END_OBJECT = INSTRUMENTNAME\n",
+ "\n",
+ " OBJECT = PROCESSINGCENTER\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MODAPS"\n",
+ " END_OBJECT = PROCESSINGCENTER\n",
+ "\n",
+ " END_GROUP = PROJECT\n",
+ "\n",
+ " OBJECT = DESCRREVISION\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "6.1"\n",
+ " END_OBJECT = DESCRREVISION\n",
+ "\n",
+ " OBJECT = PRODUCTIONHISTORY\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "PGE02:6.2.2.18;PGE01:6.1.4"\n",
+ " END_OBJECT = PRODUCTIONHISTORY\n",
+ "\n",
+ " OBJECT = LONGNAME\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "MODIS/Terra Calibrated Radiances 5-Min L1B Swath 1km"\n",
+ " END_OBJECT = LONGNAME\n",
+ "\n",
+ " OBJECT = PROCESSINGENVIRONMENT\n",
+ " NUM_VAL = 1\n",
+ " VALUE = "Linux minion7152 3.10.0-862.3.3.el7.x86_64 "\n",
+ " END_OBJECT = PROCESSINGENVIRONMENT\n",
+ "\n",
+ "END_GROUP = ARCHIVEDMETADATA\n",
+ "\n",
+ "END\n",
+ "
- Number of Scans :
- 203
- Number of Day mode scans :
- 203
- Number of Night mode scans :
- 0
- Incomplete Scans :
- 0
- Max Earth View Frames :
- 1354
- %Valid EV Observations :
- [100.00001 99.99495 100.00001 100.00001 93.86191 98.632416\n",
+ " 97.3279 99.9964 97.41114 86.93374 75.25158 75.67583\n",
+ " 43.518276 33.599586 52.466732 35.26479 27.57751 28.886095\n",
+ " 99.998436 100.00001 100.00001 100.00001 99.98552 99.99924\n",
+ " 99.99804 100.00001 100.00001 100.00001 99.891396 100.00001\n",
+ " 100.00001 100.00001 100.00001 100.00001 100.00001 100.00001\n",
+ " 100.00001 90. ]
- %Saturated EV Observations :
- [0.0000000e+00 5.0502615e-03 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 1.8190947e-05 2.7286420e-05 3.6018074e-03 2.4565055e+00 1.3066266e+01\n",
+ " 2.3608574e+01 2.3482367e+01 5.6481724e+01 6.6400414e+01 4.7529415e+01\n",
+ " 6.4735138e+01 7.2422493e+01 7.1113907e+01 1.5644215e-03 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00]
- % L1A EV All Scan Data are Missing :
- 0.0
- % L1A EV RSB DN Not in Day Mode :
- [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- % L1A EV DN Missing Within Scan :
- [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- % Dead Detector EV Data :
- [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 0. 0. 0.]
- % Dead Subframe EV Data :
- [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- % Sector Rotation EV Data :
- [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- % Saturated EV Data :
- [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 5.4572843e-04 2.7286420e-03 3.3653250e-03 3.0924610e-03 4.6386914e-03\n",
+ " 5.9120576e-03 7.1854237e-03 5.5482388e-03 3.0015062e-03 4.4567818e-03\n",
+ " 6.2758764e-03 8.0040162e-03 3.6381893e-03 2.1829137e-03 3.9110538e-03\n",
+ " 6.0030124e-03 6.4577861e-03 9.9140657e-03 6.0030124e-03 7.3673334e-03\n",
+ " 7.5492430e-03 9.3683377e-03 8.0949711e-03 8.4587904e-03 7.7311522e-03\n",
+ " 8.6407000e-03 7.0944694e-03 6.2758764e-03 7.5492430e-03 2.9105514e-03\n",
+ " 3.2743705e-03 2.9105514e-03 3.0015062e-03 2.4557777e-03 2.2738683e-03\n",
+ " 1.6371852e-03 2.8195968e-03 4.0020081e-03 3.2743705e-03 2.4557777e-03\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 1.8190946e-04 0.0000000e+00 1.8190946e-04 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 1.8190946e-04 0.0000000e+00 3.6381892e-04 0.0000000e+00 0.0000000e+00\n",
+ " 2.9105514e-03 5.4572839e-03 3.2743705e-03 3.6381892e-04 3.6381893e-03\n",
+ " 4.7296463e-03 4.7296463e-03 4.0020081e-03 3.6381893e-03 3.2743705e-03\n",
+ " 2.3015187e+00 2.3302603e+00 2.4237618e+00 2.4947064e+00 2.5802038e+00\n",
+ " 2.5918460e+00 2.4797900e+00 2.4441357e+00 2.4088452e+00 2.5099869e+00\n",
+ " 1.2851904e+01 1.2709287e+01 1.2743850e+01 1.2861363e+01 1.2998159e+01\n",
+ " 1.3126587e+01 1.3181160e+01 1.3311407e+01 1.3483857e+01 1.3395085e+01\n",
+ " 2.3614759e+01 2.3819954e+01 2.3464502e+01 2.3486694e+01 2.3583107e+01\n",
+ " 2.3577286e+01 2.3536539e+01 2.3695528e+01 2.3715174e+01 2.3592203e+01\n",
+ " 2.3719175e+01 2.3586018e+01 2.3468504e+01 2.3503431e+01 2.3488878e+01\n",
+ " 2.3408838e+01 2.3498701e+01 2.3463774e+01 2.3418661e+01 2.3267675e+01\n",
+ " 5.6633873e+01 5.6552380e+01 5.6666256e+01 5.6738289e+01 5.6666981e+01\n",
+ " 5.6542919e+01 5.6140171e+01 5.6264961e+01 5.6243134e+01 5.6368286e+01\n",
+ " 6.5396454e+01 6.5754814e+01 6.6216141e+01 6.6616341e+01 6.6679642e+01\n",
+ " 6.6533386e+01 6.6413689e+01 6.6537392e+01 6.6802979e+01 6.7053284e+01\n",
+ " 4.7994629e+01 4.7689022e+01 4.7756329e+01 4.7807991e+01 4.7344120e+01\n",
+ " 4.7540947e+01 4.7386688e+01 4.7379414e+01 4.7129105e+01 4.7265900e+01\n",
+ " 6.4906387e+01 6.4834351e+01 6.4992981e+01 6.4712112e+01 6.4668091e+01\n",
+ " 6.5139236e+01 6.4719749e+01 6.4595322e+01 6.4369026e+01 6.4414139e+01\n",
+ " 7.1916451e+01 7.2211876e+01 7.2289734e+01 7.2393417e+01 7.2417068e+01\n",
+ " 7.2486191e+01 7.2560776e+01 7.2325752e+01 7.2798714e+01 7.2824905e+01\n",
+ " 7.0561592e+01 7.0716576e+01 7.0959976e+01 7.0883209e+01 7.1141884e+01\n",
+ " 7.1330338e+01 7.1168808e+01 7.1486420e+01 7.1474052e+01 7.1416199e+01\n",
+ " 2.5467325e-03 4.3658274e-03 7.2763785e-04 3.6381892e-04 1.0914569e-03\n",
+ " 3.6381892e-04 3.6381892e-04 1.4552757e-03 7.2763785e-04 3.6381893e-03\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
- % TEB EV Data With Moon in SVP :
- [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- % EV Data Where Cannot Compute BG DN :
- [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- % RSB EV Data With dn** Below Scale :
- [0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 1.8669369 1.758155 0. 0. 0. 1.5133048\n",
+ " 1.1949633 1.137298 1.0501634 1.2346195 0.99267995 0.87571216\n",
+ " 1.6244515 1.2449884 1.5298586 1.5413189 1.2897382 1.5047551\n",
+ " 0.80640465 1.5964375 1.7350525 1.7934455 0.9663031 0.94247293\n",
+ " 1.3730527 1.3841492 1.2766407 1.0163282 1.1913251 1.2080607\n",
+ " 1.1032809 2.5745647 1.6344565 1.5103943 1.4940225 1.5720617\n",
+ " 1.4394497 1.3852406 0.91100264 0.839876 2.8807182 3.6785731\n",
+ " 2.5987587 2.46742 3.2785544 3.2556338 3.1232038 2.923831\n",
+ " 3.164679 3.050258 2.9927745 2.3335347 2.72082 2.61222\n",
+ " 2.5852973 2.4739687 1.9253298 2.0828633 1.7310505 1.5618746\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. ]
- % EV Data Where Nadir Door Closed :
- [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
- % EV Data Not Calibrated :
- [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 5.4572843e-04 2.7286420e-03 3.3653250e-03 3.0924610e-03 4.6386914e-03\n",
+ " 5.9120576e-03 7.1854237e-03 5.5482388e-03 3.0015062e-03 4.4567818e-03\n",
+ " 6.2758764e-03 8.0040162e-03 3.6381893e-03 2.1829137e-03 3.9110538e-03\n",
+ " 6.0030124e-03 6.4577861e-03 9.9140657e-03 6.0030124e-03 7.3673334e-03\n",
+ " 7.5492430e-03 9.3683377e-03 8.0949711e-03 8.4587904e-03 7.7311522e-03\n",
+ " 8.6407000e-03 7.0944694e-03 6.2758764e-03 7.5492430e-03 2.9105514e-03\n",
+ " 3.2743705e-03 2.9105514e-03 3.0015062e-03 2.4557777e-03 2.2738683e-03\n",
+ " 1.6371852e-03 2.8195968e-03 4.0020081e-03 3.2743705e-03 2.4557777e-03\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 1.8669369e+00 1.7581550e+00 0.0000000e+00 1.0000000e+02 0.0000000e+00\n",
+ " 1.5133048e+00 1.1949633e+00 1.1372980e+00 1.0501634e+00 1.2346195e+00\n",
+ " 9.9267995e-01 8.7571216e-01 1.6244515e+00 1.2449884e+00 1.5298586e+00\n",
+ " 1.5413189e+00 1.2897382e+00 1.5047551e+00 8.0640465e-01 1.5964375e+00\n",
+ " 1.7350525e+00 1.7934455e+00 9.6630311e-01 9.4247293e-01 1.3730527e+00\n",
+ " 1.3841492e+00 1.2766407e+00 1.0163282e+00 1.1913251e+00 1.2080607e+00\n",
+ " 1.1032809e+00 2.5745647e+00 1.6344565e+00 1.5103943e+00 1.4940225e+00\n",
+ " 1.5722436e+00 1.4394497e+00 1.3854225e+00 9.1100264e-01 8.3987600e-01\n",
+ " 2.8807182e+00 3.6785731e+00 2.5987587e+00 2.4674201e+00 3.2785544e+00\n",
+ " 3.2556338e+00 3.1232038e+00 2.9238310e+00 3.1646791e+00 3.0502579e+00\n",
+ " 2.9927745e+00 2.3335347e+00 2.7208200e+00 2.6122200e+00 2.5852973e+00\n",
+ " 2.4741507e+00 1.9253298e+00 2.0832272e+00 1.7310505e+00 1.5618746e+00\n",
+ " 2.9105514e-03 5.4572839e-03 3.2743705e-03 3.6381892e-04 3.6381893e-03\n",
+ " 4.7296463e-03 4.7296463e-03 4.0020081e-03 3.6381893e-03 3.2743705e-03\n",
+ " 2.4652371e+00 2.4888854e+00 2.5729277e+00 2.6205878e+00 2.6958983e+00\n",
+ " 2.7082682e+00 2.6104009e+00 2.5718360e+00 2.5361819e+00 2.6184049e+00\n",
+ " 1.2851904e+01 1.2709287e+01 1.2743850e+01 1.2861363e+01 1.2998159e+01\n",
+ " 1.3126587e+01 1.3181160e+01 1.3311407e+01 1.3483857e+01 1.3395085e+01\n",
+ " 2.4769520e+01 2.4879395e+01 2.4656374e+01 2.4658192e+01 2.4666924e+01\n",
+ " 2.4728773e+01 2.4716768e+01 2.4800810e+01 2.4860111e+01 2.4747328e+01\n",
+ " 2.4455908e+01 2.4418436e+01 2.4301649e+01 2.4293282e+01 2.4282003e+01\n",
+ " 2.4294374e+01 2.4355131e+01 2.4344580e+01 2.4326025e+01 2.4170311e+01\n",
+ " 5.6633873e+01 5.6552380e+01 5.6666256e+01 5.6738289e+01 5.6666981e+01\n",
+ " 5.6542919e+01 5.6140171e+01 5.6264961e+01 5.6243134e+01 5.6368286e+01\n",
+ " 6.5396454e+01 6.5754814e+01 6.6216141e+01 6.6616341e+01 6.6679642e+01\n",
+ " 6.6533386e+01 6.6413689e+01 6.6537392e+01 6.6802979e+01 6.7053284e+01\n",
+ " 4.7994629e+01 4.7689022e+01 4.7756329e+01 4.7807991e+01 4.7344120e+01\n",
+ " 4.7540947e+01 4.7388870e+01 4.7383778e+01 4.7160755e+01 4.7266262e+01\n",
+ " 6.4906387e+01 6.4834351e+01 6.4992981e+01 6.4712112e+01 6.4668091e+01\n",
+ " 6.5139236e+01 6.4719749e+01 6.4595322e+01 6.4369751e+01 6.4414139e+01\n",
+ " 7.1916451e+01 7.2211876e+01 7.2289734e+01 7.2393417e+01 7.2417068e+01\n",
+ " 7.2486191e+01 7.2560776e+01 7.2325752e+01 7.2798714e+01 7.2824905e+01\n",
+ " 7.0561592e+01 7.0716576e+01 7.0959976e+01 7.0883209e+01 7.1141884e+01\n",
+ " 7.1330338e+01 7.1168808e+01 7.1486420e+01 7.1474052e+01 7.1416199e+01\n",
+ " 2.5467325e-03 4.3658274e-03 7.2763785e-04 3.6381892e-04 1.0914569e-03\n",
+ " 3.6381892e-04 3.6381892e-04 1.4552757e-03 7.2763785e-04 3.6381893e-03\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n",
+ " 0.0000000e+00 1.0000000e+02 0.0000000e+00 0.0000000e+00 0.0000000e+00]
- Bit QA Flags Last Value :
- 827592
- Bit QA Flags Change :
- 8
- Granule Average QA Values :
- [290.0246 290.0113 290.04468 290.02982 290.01608 289.9758\n",
+ " 290.04715 290.02512 290.024 290.00238 289.99057 290.0013\n",
+ " 270.4201 270.61353 83.32663 83.0199 278.3056 278.31595\n",
+ " 278.4609 276.3617 277.41763 276.3409 275.41498 269.73215\n",
+ " 266.58603 268.04044 268.10645 82.62998 82.759865 125.82615\n",
+ " 125.8335 186.49095 6.5530667 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. 0. 0. 0. 0.\n",
+ " 0. 0. ]
- Electronics Redundancy Vector :
- [22405973 1048]
- Electronics Configuration Change :
- [0 0]
- Reflective LUT Serial Number and Date of Last Change :
- R529 2018:09:05:16:00
- Emissive LUT Serial Number and Date of Last Change :
- E521 2018:09:05:16:00
- QA LUT Serial Number and Date of Last Change :
- Q517 2018:09:05:16:00
- Focal Plane Set Point State :
- 1
- Doors and Screens Configuration :
- -32
- Reflective Bands With Bad Data :
- [0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0]
- Emissive Bands With Bad Data :
- [0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1]
- Noise in Black Body Thermistors :
- [1 1 1 2 1 2 4 2 2 2 2 4]
- Noise in Average BB Temperature :
- 2
- Noise in LWIR FPA Temperature :
- 124
- Noise in MWIR FPA Temperature :
- 8
- Noise in Scan Mirror Thermistor #1 :
- 8
- Noise in Scan Mirror Thermistor #2 :
- 2
- Noise in Scan Mirror Thermistor Average :
- 1
- Noise in Instrument Temperature :
- 0
- Noise in Cavity Temperature :
- 0
- Noise in Temperature of NIR FPA :
- 0
- Noise in Temperature of Vis FPA :
- 0
- Dead Detector List :
- [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 1 0 0 0]
- Noisy Detector List :
- [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1\n",
+ " 1 1 1 1 1 0 1 1 1]
- Dead Subframe List :
- [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0]
- Noisy Subframe List :
- [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0]
- Detector Quality Flag :
- [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 64 64 64 70 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64\n",
+ " 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64\n",
+ " 64 64 64 64 64 64 64 64 64 64 64 64 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 8 8 8 8 8\n",
+ " 8 8 8 8 0 0 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 4\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 64 64 64\n",
+ " 64 64 64 64 64 64 1 0 0 0 0 0 0 0 1 1 0 4 4 0 0 0 0 4\n",
+ " 0 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 64 64 64 64 64 64 64 64 64 64 69 64 64 64 64 64\n",
+ " 64 64 64 64 64 64 64 64 64 65 65 65 64 64 64 64 64 64 64 64 64 64 64 64\n",
+ " 65 65 65 65 65 65 66 65 65 65]
- Detector Quality Flag2 :
- [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
+ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
- Earth-Sun Distance :
- 1.0011935
- Solar Irradiance on RSB Detectors over pi :
- [511.46 511.46 511.46 511.46 511.46 511.46 511.46 511.588\n",
+ " 511.62 511.588 511.588 511.588 511.556 511.556 511.556 511.492\n",
+ " 511.492 511.556 511.588 511.588 511.588 511.62 511.62 511.62\n",
+ " 511.62 511.62 511.556 511.492 511.46 511.365 511.301 511.206\n",
+ " 511.11 510.983 510.824 510.378 509.614 509.614 509.614 509.614\n",
+ " 315.763 315.763 315.763 315.763 315.763 315.763 315.763 315.795\n",
+ " 315.795 315.795 315.795 315.795 315.795 315.763 315.795 315.795\n",
+ " 315.795 315.795 315.795 315.795 315.795 315.795 315.795 315.795\n",
+ " 315.795 315.795 315.763 315.763 315.763 315.732 315.732 315.7\n",
+ " 315.763 315.795 315.859 315.954 316.082 316.273 316.273 316.273\n",
+ " 664.599 664.599 664.599 664.599 664.631 664.631 664.631 664.631\n",
+ " 664.663 664.663 664.631 664.631 664.599 664.663 664.599 664.599\n",
+ " 664.567 664.567 664.567 664.567 593.934 593.934 593.934 593.934\n",
+ " 593.966 593.934 593.934 593.934 593.934 593.934 593.934 593.934\n",
+ " 593.934 593.934 593.934 593.934 593.966 593.998 593.998 593.998\n",
+ " 150.974 150.974 150.974 150.974 150.974 150.974 151.006 151.006\n",
+ " 151.006 151.006 151.006 151.006 151.006 150.974 151.006 151.006\n",
+ " 150.974 150.974 150.974 150.974 76.458 76.458 76.458 76.458\n",
+ " 76.458 76.458 76.458 76.458 76.4899 76.4899 76.4899 76.4899\n",
+ " 76.4899 76.4899 76.458 76.458 76.458 76.458 76.458 76.458\n",
+ " 28.7752 28.7752 28.7752 28.7752 28.7434 28.7434 28.7434 28.7434\n",
+ " 28.7434 28.7752 28.7434 28.7434 28.7434 28.7434 28.7434 28.7434\n",
+ " 28.7434 28.7434 28.7434 28.7434 555.228 555.228 555.164 555.101\n",
+ " 555.164 555.323 555.642 556.151 556.756 557.138 606.094 606.094\n",
+ " 606.094 606.03 605.935 605.903 605.935 606.03 605.903 605.871\n",
+ " 630.572 630.572 630.572 630.572 630.572 630.572 630.604 630.54\n",
+ " 630.54 630.413 599.728 599.728 599.728 599.759 599.759 599.759\n",
+ " 599.759 599.759 599.791 599.791 602.242 602.242 602.306 602.306\n",
+ " 602.306 602.306 602.306 602.338 602.401 602.433 492.807 492.807\n",
+ " 492.712 492.68 492.648 492.648 492.712 492.839 493.094 493.062\n",
+ " 492.807 492.807 492.712 492.68 492.648 492.648 492.712 492.839\n",
+ " 493.094 493.062 480.075 480.075 480.075 480.043 480.043 480.043\n",
+ " 480.043 480.043 480.043 480.075 480.075 480.075 480.075 480.043\n",
+ " 480.043 480.043 480.043 480.043 480.043 480.075 412.084 412.084\n",
+ " 412.116 412.179 412.179 412.179 412.211 412.148 412.148 412.148\n",
+ " 309.684 309.684 309.684 309.716 309.684 309.716 309.716 309.716\n",
+ " 309.747 309.811 297.556 297.556 297.556 297.556 297.556 297.556\n",
+ " 297.556 297.556 297.556 297.556 278.107 278.107 278.107 278.107\n",
+ " 278.107 278.107 278.107 278.107 278.107 278.107 277.948 277.948\n",
+ " 277.948 277.948 277.948 277.948 277.948 277.948 277.948 277.948\n",
+ " 116.151 116.151 116.151 116.151 116.151 116.183 116.183 116.183\n",
+ " 116.183 116.183 ]
- identifier_product_doi :
- 10.5067/MODIS/MOD021KM.061
- identifier_product_doi_authority :
- http://dx.doi.org
"
+ ],
"text/plain": [
- "COLLECTING RESULTS | : 0%| | 0/5 [00:00, ?it/s]"
+ "\n",
+ "Dimensions: (\n",
+ " 2*nscans:MODIS_SWATH_Type_L1B: 406,\n",
+ " 1KM_geo_dim:MODIS_SWATH_Type_L1B: 271,\n",
+ " Band_1KM_RefSB:MODIS_SWATH_Type_L1B: 15,\n",
+ " 10*nscans:MODIS_SWATH_Type_L1B: 2030,\n",
+ " Max_EV_frames:MODIS_SWATH_Type_L1B: 1354,\n",
+ " ...\n",
+ " number of scans: 203,\n",
+ " number of 250m bands: 2,\n",
+ " detectors per 250m band: 40,\n",
+ " number of 500m bands: 5,\n",
+ " detectors per 500m band: 20,\n",
+ " number of 1km reflective bands: 15)\n",
+ "Coordinates:\n",
+ " * Band_250M (Band_250M) float32 1....\n",
+ " * Band_500M (Band_500M) float32 3....\n",
+ " * Band_1KM_RefSB (Band_1KM_RefSB) float32 ...\n",
+ " * Band_1KM_Emissive (Band_1KM_Emissive) float32 ...\n",
+ "Dimensions without coordinates: 2*nscans:MODIS_SWATH_Type_L1B,\n",
+ " 1KM_geo_dim:MODIS_SWATH_Type_L1B,\n",
+ " Band_1KM_RefSB:MODIS_SWATH_Type_L1B,\n",
+ " 10*nscans:MODIS_SWATH_Type_L1B,\n",
+ " Max_EV_frames:MODIS_SWATH_Type_L1B,\n",
+ " Band_1KM_Emissive:MODIS_SWATH_Type_L1B,\n",
+ " ...\n",
+ " Band_500M:MODIS_SWATH_Type_L1B,\n",
+ " number of emissive bands,\n",
+ " detectors per 1km band, number of scans,\n",
+ " number of 250m bands, detectors per 250m band,\n",
+ " number of 500m bands, detectors per 500m band,\n",
+ " number of 1km reflective bands\n",
+ "Data variables: (12/27)\n",
+ " Latitude (2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " Longitude (2*nscans:MODIS_SWATH_Type_L1B, 1KM_geo_dim:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " EV_1KM_RefSB (Band_1KM_RefSB:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " EV_1KM_RefSB_Uncert_Indexes (Band_1KM_RefSB:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " EV_1KM_Emissive (Band_1KM_Emissive:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " EV_1KM_Emissive_Uncert_Indexes (Band_1KM_Emissive:MODIS_SWATH_Type_L1B, 10*nscans:MODIS_SWATH_Type_L1B, Max_EV_frames:MODIS_SWATH_Type_L1B) float32 ...\n",
+ " ... ...\n",
+ " Noise in Thermal Detectors (number of emissive bands, detectors per 1km band) uint8 ...\n",
+ " Change in relative responses of thermal detectors (number of emissive bands, detectors per 1km band) uint8 ...\n",
+ " DC Restore Change for Thermal Bands (number of scans, number of emissive bands, detectors per 1km band) int8 ...\n",
+ " DC Restore Change for Reflective 250m Bands (number of scans, number of 250m bands, detectors per 250m band) int8 ...\n",
+ " DC Restore Change for Reflective 500m Bands (number of scans, number of 500m bands, detectors per 500m band) int8 ...\n",
+ " DC Restore Change for Reflective 1km Bands (number of scans, number of 1km reflective bands, detectors per 1km band) int8 ...\n",
+ "Attributes: (12/58)\n",
+ " HDFEOSVersion: HDFEOS_V2.19\n",
+ " StructMetadata.0: GROUP=SwathS...\n",
+ " HDFEOS_FractionalOffset_10*nscans_MODIS_SWATH_Type_L1B: 0.0\n",
+ " HDFEOS_FractionalOffset_Max_EV_frames_MODIS_SWATH_Type_L1B: 0.0\n",
+ " CoreMetadata.0: \\nGROUP ...\n",
+ " ArchiveMetadata.0: \\nGROUP ...\n",
+ " ... ...\n",
+ " Detector Quality Flag: [ 0 0 0 0...\n",
+ " Detector Quality Flag2: [0 0 0 0 0 0...\n",
+ " Earth-Sun Distance: 1.0011935\n",
+ " Solar Irradiance on RSB Detectors over pi: [511.46 51...\n",
+ " identifier_product_doi: 10.5067/MODI...\n",
+ " identifier_product_doi_authority: http://dx.do..."
]
},
+ "execution_count": 41,
"metadata": {},
- "output_type": "display_data"
- },
- {
- "ename": "TypeError",
- "evalue": "Error: None is not a valid NetCDF 3 file\n If this is a NetCDF4 file, you may need to install the\n netcdf4 library, e.g.,\n\n $ pip install netcdf4\n ",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/xarray/backends/scipy_.py:109\u001b[0m, in \u001b[0;36m_open_scipy_netcdf\u001b[0;34m(filename, mode, mmap, version)\u001b[0m\n\u001b[1;32m 108\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 109\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m scipy\u001b[38;5;241m.\u001b[39mio\u001b[38;5;241m.\u001b[39mnetcdf_file(filename, mode\u001b[38;5;241m=\u001b[39mmode, mmap\u001b[38;5;241m=\u001b[39mmmap, version\u001b[38;5;241m=\u001b[39mversion)\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e: \u001b[38;5;66;03m# netcdf3 message is obscure in this case\u001b[39;00m\n",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/scipy/io/_netcdf.py:278\u001b[0m, in \u001b[0;36mnetcdf_file.__init__\u001b[0;34m(self, filename, mode, mmap, version, maskandscale)\u001b[0m\n\u001b[1;32m 277\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m mode \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mra\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[0;32m--> 278\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_read()\n",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/scipy/io/_netcdf.py:599\u001b[0m, in \u001b[0;36mnetcdf_file._read\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 598\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m magic \u001b[38;5;241m==\u001b[39m \u001b[38;5;124mb\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mCDF\u001b[39m\u001b[38;5;124m'\u001b[39m:\n\u001b[0;32m--> 599\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mError: \u001b[39m\u001b[38;5;132;01m%s\u001b[39;00m\u001b[38;5;124m is not a valid NetCDF 3 file\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;241m%\u001b[39m\n\u001b[1;32m 600\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfilename)\n\u001b[1;32m 601\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__dict__\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mversion_byte\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m frombuffer(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfp\u001b[38;5;241m.\u001b[39mread(\u001b[38;5;241m1\u001b[39m), \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m>b\u001b[39m\u001b[38;5;124m'\u001b[39m)[\u001b[38;5;241m0\u001b[39m]\n",
- "\u001b[0;31mTypeError\u001b[0m: Error: None is not a valid NetCDF 3 file",
- "\nDuring handling of the above exception, another exception occurred:\n",
- "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
- "Cell \u001b[0;32mIn[17], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mxarray\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mxr\u001b[39;00m\n\u001b[1;32m 3\u001b[0m files \u001b[38;5;241m=\u001b[39m earthaccess\u001b[38;5;241m.\u001b[39mopen(results)\n\u001b[0;32m----> 5\u001b[0m ds \u001b[38;5;241m=\u001b[39m xr\u001b[38;5;241m.\u001b[39mopen_mfdataset(files, engine\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mscipy\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/xarray/backends/api.py:1038\u001b[0m, in \u001b[0;36mopen_mfdataset\u001b[0;34m(paths, chunks, concat_dim, compat, preprocess, engine, data_vars, coords, combine, parallel, join, attrs_file, combine_attrs, **kwargs)\u001b[0m\n\u001b[1;32m 1035\u001b[0m open_ \u001b[38;5;241m=\u001b[39m open_dataset\n\u001b[1;32m 1036\u001b[0m getattr_ \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m\n\u001b[0;32m-> 1038\u001b[0m datasets \u001b[38;5;241m=\u001b[39m [open_(p, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mopen_kwargs) \u001b[38;5;28;01mfor\u001b[39;00m p \u001b[38;5;129;01min\u001b[39;00m paths]\n\u001b[1;32m 1039\u001b[0m closers \u001b[38;5;241m=\u001b[39m [getattr_(ds, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_close\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfor\u001b[39;00m ds \u001b[38;5;129;01min\u001b[39;00m datasets]\n\u001b[1;32m 1040\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m preprocess \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/xarray/backends/api.py:1038\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 1035\u001b[0m open_ \u001b[38;5;241m=\u001b[39m open_dataset\n\u001b[1;32m 1036\u001b[0m getattr_ \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m\n\u001b[0;32m-> 1038\u001b[0m datasets \u001b[38;5;241m=\u001b[39m [open_(p, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mopen_kwargs) \u001b[38;5;28;01mfor\u001b[39;00m p \u001b[38;5;129;01min\u001b[39;00m paths]\n\u001b[1;32m 1039\u001b[0m closers \u001b[38;5;241m=\u001b[39m [getattr_(ds, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_close\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01mfor\u001b[39;00m ds \u001b[38;5;129;01min\u001b[39;00m datasets]\n\u001b[1;32m 1040\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m preprocess \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/xarray/backends/api.py:566\u001b[0m, in \u001b[0;36mopen_dataset\u001b[0;34m(filename_or_obj, engine, chunks, cache, decode_cf, mask_and_scale, decode_times, decode_timedelta, use_cftime, concat_characters, decode_coords, drop_variables, inline_array, chunked_array_type, from_array_kwargs, backend_kwargs, **kwargs)\u001b[0m\n\u001b[1;32m 554\u001b[0m decoders \u001b[38;5;241m=\u001b[39m _resolve_decoders_kwargs(\n\u001b[1;32m 555\u001b[0m decode_cf,\n\u001b[1;32m 556\u001b[0m open_backend_dataset_parameters\u001b[38;5;241m=\u001b[39mbackend\u001b[38;5;241m.\u001b[39mopen_dataset_parameters,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 562\u001b[0m decode_coords\u001b[38;5;241m=\u001b[39mdecode_coords,\n\u001b[1;32m 563\u001b[0m )\n\u001b[1;32m 565\u001b[0m overwrite_encoded_chunks \u001b[38;5;241m=\u001b[39m kwargs\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124moverwrite_encoded_chunks\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m--> 566\u001b[0m backend_ds \u001b[38;5;241m=\u001b[39m backend\u001b[38;5;241m.\u001b[39mopen_dataset(\n\u001b[1;32m 567\u001b[0m filename_or_obj,\n\u001b[1;32m 568\u001b[0m drop_variables\u001b[38;5;241m=\u001b[39mdrop_variables,\n\u001b[1;32m 569\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mdecoders,\n\u001b[1;32m 570\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 571\u001b[0m )\n\u001b[1;32m 572\u001b[0m ds \u001b[38;5;241m=\u001b[39m _dataset_from_backend_dataset(\n\u001b[1;32m 573\u001b[0m backend_ds,\n\u001b[1;32m 574\u001b[0m filename_or_obj,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 584\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 585\u001b[0m )\n\u001b[1;32m 586\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ds\n",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/xarray/backends/scipy_.py:309\u001b[0m, in \u001b[0;36mScipyBackendEntrypoint.open_dataset\u001b[0;34m(self, filename_or_obj, mask_and_scale, decode_times, concat_characters, decode_coords, drop_variables, use_cftime, decode_timedelta, mode, format, group, mmap, lock)\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mopen_dataset\u001b[39m( \u001b[38;5;66;03m# type: ignore[override] # allow LSP violation, not supporting **kwargs\u001b[39;00m\n\u001b[1;32m 292\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 293\u001b[0m filename_or_obj: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m|\u001b[39m os\u001b[38;5;241m.\u001b[39mPathLike[Any] \u001b[38;5;241m|\u001b[39m BufferedIOBase \u001b[38;5;241m|\u001b[39m AbstractDataStore,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 306\u001b[0m lock\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 307\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Dataset:\n\u001b[1;32m 308\u001b[0m filename_or_obj \u001b[38;5;241m=\u001b[39m _normalize_path(filename_or_obj)\n\u001b[0;32m--> 309\u001b[0m store \u001b[38;5;241m=\u001b[39m ScipyDataStore(\n\u001b[1;32m 310\u001b[0m filename_or_obj, mode\u001b[38;5;241m=\u001b[39mmode, \u001b[38;5;28mformat\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mformat\u001b[39m, group\u001b[38;5;241m=\u001b[39mgroup, mmap\u001b[38;5;241m=\u001b[39mmmap, lock\u001b[38;5;241m=\u001b[39mlock\n\u001b[1;32m 311\u001b[0m )\n\u001b[1;32m 313\u001b[0m store_entrypoint \u001b[38;5;241m=\u001b[39m StoreBackendEntrypoint()\n\u001b[1;32m 314\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m close_on_error(store):\n",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/xarray/backends/scipy_.py:161\u001b[0m, in \u001b[0;36mScipyDataStore.__init__\u001b[0;34m(self, filename_or_obj, mode, format, group, mmap, lock)\u001b[0m\n\u001b[1;32m 153\u001b[0m manager \u001b[38;5;241m=\u001b[39m CachingFileManager(\n\u001b[1;32m 154\u001b[0m _open_scipy_netcdf,\n\u001b[1;32m 155\u001b[0m filename_or_obj,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 158\u001b[0m kwargs\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mdict\u001b[39m(mmap\u001b[38;5;241m=\u001b[39mmmap, version\u001b[38;5;241m=\u001b[39mversion),\n\u001b[1;32m 159\u001b[0m )\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 161\u001b[0m scipy_dataset \u001b[38;5;241m=\u001b[39m _open_scipy_netcdf(\n\u001b[1;32m 162\u001b[0m filename_or_obj, mode\u001b[38;5;241m=\u001b[39mmode, mmap\u001b[38;5;241m=\u001b[39mmmap, version\u001b[38;5;241m=\u001b[39mversion\n\u001b[1;32m 163\u001b[0m )\n\u001b[1;32m 164\u001b[0m manager \u001b[38;5;241m=\u001b[39m DummyFileManager(scipy_dataset)\n\u001b[1;32m 166\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_manager \u001b[38;5;241m=\u001b[39m manager\n",
- "File \u001b[0;32m~/anaconda3/lib/python3.11/site-packages/xarray/backends/scipy_.py:120\u001b[0m, in \u001b[0;36m_open_scipy_netcdf\u001b[0;34m(filename, mode, mmap, version)\u001b[0m\n\u001b[1;32m 113\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\"\"\u001b[39m\n\u001b[1;32m 114\u001b[0m \u001b[38;5;124m If this is a NetCDF4 file, you may need to install the\u001b[39m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;124m netcdf4 library, e.g.,\u001b[39m\n\u001b[1;32m 116\u001b[0m \n\u001b[1;32m 117\u001b[0m \u001b[38;5;124m $ pip install netcdf4\u001b[39m\n\u001b[1;32m 118\u001b[0m \u001b[38;5;124m \u001b[39m\u001b[38;5;124m\"\"\"\u001b[39m\n\u001b[1;32m 119\u001b[0m errmsg \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m msg\n\u001b[0;32m--> 120\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(errmsg)\n\u001b[1;32m 121\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 122\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m\n",
- "\u001b[0;31mTypeError\u001b[0m: Error: None is not a valid NetCDF 3 file\n If this is a NetCDF4 file, you may need to install the\n netcdf4 library, e.g.,\n\n $ pip install netcdf4\n "
- ]
+ "output_type": "execute_result"
}
],
"source": [
"import xarray as xr\n",
"\n",
- "files = earthaccess.open(results)\n",
- "\n",
- "ds = xr.open_mfdataset(files, engine='scipy')\n"
+ "ds = xr.open_dataset(files[0], engine='netcdf4')\n",
+ "ds"
]
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 49,
+ "id": "72aa293c",
"metadata": {},
"outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " Getting 5 granules, approx download size: 0.76 GB\n"
- ]
- },
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "f119822ba6bc4c4493f8dfb0e00096d2",
- "version_major": 2,
- "version_minor": 0
- },
"text/plain": [
- "QUEUEING TASKS | : 0%| | 0/5 [00:00, ?it/s]"
+ ""
]
},
+ "execution_count": 49,
"metadata": {},
- "output_type": "display_data"
+ "output_type": "execute_result"
},
{
"data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "ac52a2b8de32494fb065109410d4c3d8",
- "version_major": 2,
- "version_minor": 0
- },
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbEAAAEVCAYAAABuXdtJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gs6VXfi38qV+ewu3dOJ+c04UxOmtEojbIEEhIgXWFAgH/YmIvB5mdsXxusi40NGAwSQQQhJJTjaEaanM7MCXNy3PvsHDrnqq54/3h77zMS0mgkjRDSc9Z56uk+1VXd1bvrfb/vWuu7vksKw5CrdtWu2lW7alfth9HkH/QFXLWrdtWu2lW7at+tXQWxq3bVrtpVu2o/tHYVxK7aVbtqV+2q/dDaVRC7alftql21q/ZDa1dB7Kpdtat21a7aD61dBbGrdtWu2lW7aj+09n0FMUmSxiRJeliSpLOSJJ2WJOmXe/uzkiQ9KEnSxd5j5gXn/IYkSZckSTovSdKrXrD/WkmSTvZe+wNJkqTv57Vftat21a7aVfvnb9L3s05MkqQhYCgMw6OSJCWAI8CbgPcAlTAM/5skSb8OZMIw/LeSJO0EPgocBIaBrwJbwzD0JUl6Fvhl4BngS8AfhGH45Rf7/EgyE6rpATRFxu76OI5L0O2imCZhGBI4jjgwDEGSIPBBM8B1QJZBkiH0iaeTtKp1oqkktu0Q2JY4RzfFOWGApGpIkkzgdlHNCJ5tg6IiSRJhEIDnkunP0O64QIhjO+JcRYUgAFlG0zU811s/Jxo3aTctIjETSZboNDoouoamqXTtLmEQIisKZkSn02xjRCN4ro/veQAomko0quM4PrGIhu14yLJMt+uRiOnYjk8QhHRtB1VXkZB6vxt4ro8kSUiyhOu4RKIGYt0QIkkSrhugajJRQ8VxfVRFRpYluq6PqSm0bBcAWZIIQzB0BVOT8fwQPwiRJDBUGV2R6LgBEhCEIEvgh6ApvWvpXU8Yis0LQrwgJAhCZFlClcVxa/sANFVevyY/CFFkiWbbwTBU1N77qrKMqki4foAkSSgSOH6IqcoggR+EqLKEIkt0HF9cM6AoYt1ndcXvtLaUCoKQMBSfHdUVZFlcryxJhITISLhBSBCK95ElCVWRUCSJIAx725XjXV+8H0AQimvxet9PksT3Xrv2teeKLH7BsPf+fhCiqxKeH2KoMq2uj6mJR8IQ1w9wHZ9M0qTasEnEDfwgJKLJSJJEodLGjOj0J3SaXR/PD9FUef3zbMena3t4riO+bBCIR3rb+tQSirFECLLSO0aC0O/9v/dDr+1fW54GoRiHIMaKJIubYe2NJeXK894YYu0v0Dt2bSxF4iZWy14f65GYiSxLGJoCQPnymVIYhvkXm0++nd37qleH5VLpJR179OiRr4Rh+Orv5fOumjD1+/nmYRguA8u9501Jks4CI8AbgTt7h/0V8Ajwb3v7/z4Mwy5wWZKkS8BBSZJmgGQYhk8DSJL01wgwfFEQi/YNce2v/gVRQ2VuqcHUuUWc+YvIgxsIKssQSUKzAk4H8hNQmIFkTgBZpw6ODfEM2uAIxsxFfEXByA4TuA47r9vKmceeFYNL1dGzA0QTUfbsG+Hk8UWSmTj5fJTZmQqlc2eJjkzQWVlEciwG91/D6twqod0CtwtWE1SNPa+8jZOHzkMYQLfNxPX7mHrqWbbdeRNDA3Eeuv8E6XwG3/OJS9AsljESCbrtDobnsO/WPZw+NsOeazcQj+kceuIi2YEs9XKdjTuGURSZbeNpPvHpo0TyGdIRHdNUWV2soGoq4xtytFpdRoaTHHn2Mp1GG6wGZixNEIbceMcOSqU2tx0YoT+uMVux0RSZuKGwWrfRVJnlqsWZ0yu88sAIsiTR7npcmqoA8OpbJ0kZCgs1G1NTSJgqhYbNWCbC5rzJkYU2XcfHCwI0RUZTZTb1mTS7Pn0xlYypcWKlTaXlMr3aZO9Ehpguc+dklv/9xAx3bMuyUHMIQtBViXOLDQxdIaKr+H7A7GqTnRNZcjENXZWQJYmaJcDIUASomKqMqUm0nYC5ik1/QsfUZBRJYjxtMFfrcqnYwdQVjl4oYhgq3a6HqsoYhoquCuDcMJAgDEGRJYZTOmEIHTfAD0JiuixATJaI6mKSzkZUKpaHJku0HR8vgHREYbnhUrE80qaC44d03ICUoaAqEtmoynS5Sz6uUrN8BuIqbhCy0nDRVZmm7bGx9/eTJQlTE+hQt30MRSZpKqQjChFVodB2cLyQp6eq3Loly0y1y/Z+k7/82mU0TeEd+4b4u69cYOOmPt53yxiffH6V1UqHo189RCQ7gDN7VoyFWIr8zt0UF4uwdEEs0lQDInGwWuC74nmncQWYNBNUFRRtfVEIQNcSC0XfF+fFUvDCRbfdhmhSPO80IJEFz1kHMCObJ5aMUZlfJJrPExSLvYWjhpZMEkvG2L9/hKih8on3Xjv73cxxL7RSqcSTzxx+ScdGdSn3vX7eVRP2T5YTkyRpEjgAHAIGegC3BnT9vcNGgPkXnLbQ2zfSe/6N+1/UvCDE9QI8X3gPTqUIqkbgumIF6Fhi6Q/i/wCNkgCwaAriGWhVUTUVwgBjaIKgOA/VZc6dmCE6PC4GZr2IETFIZeM8/qVnqS2vIkkQi+qUzonBHU1ExQCMZVg5cZywsigGrSShDm8iMrqJk89egG4bPR5n200HKCxVIQw4e/g8hVKH7fs3IslipdoslsF36Tab5EYGSA8PcfzQRSa2DHP8uSke/9ppnGqRdrPN2MYB+vtinDg8xcf+/Ets3ztBs9bEatt0Oi6pviRmzKSw2mL66GlcL2DHnlFSuTRqqo9YMgZWg5nLVSqlFitVC9sL2T0Uo95xeODZeYYzEYZTJluHkpSWinz1gVPU2g7LK03icZ3r9w7y5ccvM1exSEd1giDk0PkCtuvz1IUSj0/VKTdsKq0uVs/zyURUlhrCo6t2fC5XbcbSOrIssXs8w3LNothyKVo2mwcTWG6AF8BMsUXbERPhYqHFg49c5NjZAqmEwWKlzYXVFou1LqW2ALCUqbBrIMpk1qBmexyZbTBdskiYKlFdZqrY4dHzJb58psSFQhvHC6i2HAZzMSzLxfMCXDegUrFoWx6NZhddkTE1hUbHYbZs0/WC9cHW7AZIEqgytB0f2w1YaToUWy4BwnP0w7B3fbCpz8APxWPaVGh2fcIQbDcgqsvULJ++qMpC3SWmK2ztN4lqMoYqU2x7+CHMViwuFjq4PW/T9gKqHY+pcpezhQ7ZiIquSvzSrZPrXnC143PfDWOceOwoEV3mV96+i7ddN0TT8ah3HJaXm4zt240RNdh27929gS5zYO8wo5tGGLn1TjbeeQdEE9Bti0cQ4ATr9z+ufWV/GIgxFfSAy/fF65reAyhJPIYBmDFxjOeAqvUedZAk0mPjvPKVO7nv7q2gR2jVmhAGyLEkWizO5h0jVKanyCdNdOXlmwbDMHxJ21V7+eyfBMQkSYoDnwT+VRiGjRc79JvsC19k/zf7rJ+VJOmwJEmH7UYVEDgVj+tsvWGfCBV6DrTr0K6BHhEnll6Anb4PrZo4xoxhtSyQZLq1CtHJLRBLoSgKiXRCDBojhqIqRCIa2C3wusweO8ljXz5CfsdOkBV0Q0dK9JHfMA6eR2brLvpGh8Bz2LZnnPFNA+JcxyKWiDE5mqJVb7HplhvR43FOPXWCW/cOUV2t0CyUMBIJcCyimTRdq8vgSIY7793D1JFTvPJVe0jn0qCoNFdW+LU3bCMk5H/8yl38p3//dm7dM4TnerQbbTzXo1Ft4jke7Wab/OZNnD+7wsJ8Hd3U6RvsQzM0RnZtZ2V6jngyymqlw2ceu8xzM3XesrefSrHJibkan396lr/79PP0jw2gKAq27aIoInx5+lKJRkX89A3LYa7UIpUw6HQ9Gg2bc7NVNuZj9CUMinWb05crLNZsZkttZisCBBwvpNz2UBWJQt1iKB1BVSSOLbWZK7e5WOiwWrcYz8UpNcTEODGY5J47NpNIGLQ6LlFDZTQbXQeouXKbxXqXr12s8sxME02W6EuYJEyNI1Nlii0P1ws4MJnB0BQaHZfVmsVKtUOl0UVRZFIpk1TSIBrVcBwPRZH5wqPTPHlymXrHJRPTGEhoDKU08jGVfExF6y2eup4II0qSCF0Wmh7Nro8iSfRFVRKGgh/AcFJjutIlZSrk4xpjaZ2N2Qjz5Q4xXSYbVdiSN5gudyk0Peq2T39Cw/VDNFliS3+UjbkoQQiTWYODowm8MCQfU/FDOLrYYbHu8vGTKxyebRCGIRuzJh/8xHEm9u3k0FSVUtvjo08v8NnnVzn5/Dw/87pt1EoNNF3j/Jfv543vfwcbDl7DWw8MYFtdGpUmsiyJ+9r3odO8ErbXTQFEsiI8sa4lgE6Sxb5e6BRZEp4bgOeB76HmR8WC0O2FB8MAzLh47otQeiQeYbnU5vNfPQ+eQyqXJjEwSOD53HLHNs4enwHHYrHc4dGnZ15kSvrOLHyJ21V7+ez7Gk4EkCRJQwDYR8Iw/FRv96okSUNhGC738maF3v4FYOwFp48CS739o99k/z+yMAw/CHwQID66PWy1HJEjcXw0Tb6ywhMHi1UfiIHSFGEvUv1QWxHHeh5usecENit03C6EAX1DfZSWSuurw8GRDEvzZZIbtqBqKpWpS2SGBwnDkNjoJEvTi9xwx06ee/I8owcPsnDoGfH++QlOf+Vhoht3QKsKuTGqZ0/wlfl5ovl+wjBk664x5i6bBEA6n2Hv/lHqDZuzJ0JGJ/vpdFxWl2oszpUg8PnKZ5/lztdeyyNLywxv28T/uv8Sv/raLbznNz4GRgxZ0wk6DXzXxktEGZ3IsTRfoVlt0lyYA0kmMzmJoijUKjUkScJzPLBbLEwt0d+/Bd8PSUZ1nphpYMZM4qZKtdwmlUuxf9cAr9m9l//ff3uQDTvGsToOTddjcvMAn/ncMSa3jmBZHpmMyeRIik3jaTIxg7mKRS5hMJSJcKntcOTMKpIkkclECMMEW/tjtLo+na5HoW6zqT/GoKGxtS/KSEqn3PZYrNkUGzYxQ2Vzfww/BMcLmDNVDF3BUBXKra7IBXoBrhcQ9HJVpYZNo+MwmI7Qsj0yCYPlmsVELspsqUPDckQYNKKJPJUis1hoYeoKzbZLMq6TiuocO1MgDEMcx6NQbpNPmQQhRDWZdEShafnUbR8/DFEkiage4njB+rytyBJh6NPq+uv5wHREIWEoKLKEqcJqy6XZ9XnVjj4OL7RJmQptJ+C60RhRTWW11aXt+GSjClFNZqnh0nF8dg9F+cqZMsmIxq6hGIWmy4GhGGXL5caRLH9+dJFkRGMyq1OxXH7tJ6/hq2dKZBMGS7UuluVy+KGjbL1uF58/vMi737SXD/7tM2DEWK50OLCjn/NFi02b8+zfkOXvv3CK/j37KZx8XgCVZorxF4QizAgQeFe8rFZVhAWtlvC0ghA0TQCbHgHPwSvMif8bMQFkqn4lvxyGYMQYH09TLLaQJIlIKkUsGeO260Z44JFL7BxN80ijDIrG5qEk8wv173BW+9Z21cn6p7fvK4j1GIR/DpwNw/D3XvDS54CfBv5b7/GzL9j/d5Ik/R6C2LEFeLZH7GhKknQjIhz5U8AffrvPD4IA3xdhpVarK3bKCtSLL7jInjOqmVf21Vau7M8Og92EoAWyDq0qyuhWVp575gqxY3AT0+cXiSVjVM+fhkSOrTddw8piBSNiEPgBBD6zs1VGNw5TWCyBorD1rtu4cOQsg9feQLvRhswQsqpx8K338syXnqKzOMtKzw/tLC/wFx9agsDnYjzC6twqgd1m6qyP36ySGB5hYDhDc3kZNIPzF8ug6qRSBqe+9iS/ulwHWSGZzxKGIc1WFRI5qicOU51KgaIhxzOE8SyaoeE5HrIpkx3IsnzmHHbgkxibIAxCDn/qyxDPMDOZpt7osnzkMMXFCSRJQjM05leifHClyda9G6iUWvQPJqlUOpw+dBbCgEbdIhI1iMcNClWL4b4ocUPh0nIDzw/IxA3GBhMkIxqVVpdzl8romkKxYTOUjqKrCgPpCE+cK7JlOMWlosXOoSgjKY3ZioWqCILJUr1LLq4jSRKD2SgzSw3ipsaukSQVy6PS7BI3VQp1m/FcDF1V2DMcxQ+g7ahs7Y9warkNwGg2QqurI0lgOT6FusVSoYXj+HRMlXhUA+D8TJVO28ZzPJIpk3LZ4pJRZyQXI25qgJi4XT/A8wPkXugwDEPqbYeIrqIokghHqmB7IodWbHtENBlfCfECAYh+EPL8UpuEITNd6WKqMkcX2/hByK7BCLm4xkylS7MbENNl3CDkfNFm22CcqCZzfLFFpdllc97ED0M+d36VbEQlHVG4ULCpdRzipsaFS2X8jVmarS6nD18kt2GCW/cP89jRBf7P//qkyE1F4px6fg72j5OOG2wbTfHQkQVuuWkD56bKFCRZgFK3I8Cr2xZj0YyBoohwoNUSi8l2XTyuLTj1rAAwq4GSyhH4AaHVFIBnxkRawIitkzaMWJSzpxYFicnq4jouY2Mpjl8ocfONk/zNp48jJ/vID+d58OlZ4S2+TBZe9bP+ye377YndAvwkcFKSpOd7+/4dArw+LknS+4A54O0AYRieliTp48AZwAN+MQxDv3fe+4EPAxEEoeNFSR0Aco8xp6kyqqqg6728Vxj0mIeBSCj7Gnoqi1NZuvLa2sqwNCcGU3YE6gXIT+AvT4vXAx9SeSRFxSks4qz4EMsg6yYXjpwF18YbHCGWjJHqS2EYKrOnp8TA1EwuHDrOntuv4eQjzzFxzV66dhfH6nJ5usLOW69l/nIR3dTZtXuIWn2YU0en2XvdJp7/yuMouRFQNKLxKM1mlXajTc00yG2cpLSwSmGhwK7rtnDh1Dwk89htm7e/+y4+87nnGRjrR1UnaVQbaBt3YXds8D2CyhLEMjh2i90HDnD04aNkxsf4v//16/n9Dz/Dpq2DXL5U4FXvfTOdrsfjXz2FJMvc+Y5XMTtfx/dDVuYKnHruArnRAUqLIpGeSEWIx3VifVnGNvQTjWo8f+gSqjpCq9nlyFMXeO19+xjPxzh2rsiNewYZzkQxNQnL8blu9yC262M7Pi3bxe4xIGs1m4988XGSk5v4tOsxPJ5j00SGRselUGhhGCqRiMrmkRQS4Lo+5YbNQkxHU2QiukKt7aDIEsWGzdbBOOcKNjFdsCj74xr7RuIs1h1cX3hrbcsjZqqkozoRXWVmsU4QhMRMlWeem8f3fDzXw+7YdFodNmwdJhU3sBwfTZW5uNpCU2UMVcFyPCK6iiyFeL7wxOqWAA5FllhpdElGNFabDpmohuOHtJwAU5W5VLKRJNicMzm51Gb3UIwnL1WZzMeodz0evlBlIBVhIKFSt31KTYdN+QizlS6eH5KIKwLggZlKl8mswUjcJK6rHF5q4AUhUUPlwEiMA2/bST5qcP+FMjftuIOUqXCp2KG/P86lriBF9U8Mc9vBcQp1i9snkzw20+C2AyNcWKwzfeqyCCcGItSH0xGPRkQQmyRZeFRGTACbJAlSlWb0Qou+OM7t4ldXxbmSDH2j0K6K3NpaaFI1CIOQ8Q15yuUOiqqwd+8wF6cqpFIG56bKtOotwnaNyqpCqi/F1u39XPwuJ7h/ZFcx7J/cvq85sTAMnwjDUArDcG8Yhvt725fCMCyHYXh3GIZbeo+VF5zzX8Mw3BSG4bYXUujDMDwchuHu3mu/FL6E7Gjgh8TjBh1bsMcqFYuRG2++AmCyIjbPwSktXWFFeY7wzGJpsfkeWA2xYmyLPNtaLi3SP0wkFhGhDEUlMdBP4LnIkRjYHXzPp3T+LMWlIrNHT6DHE73kdZP8ls2cfPBxUHVcN8BZmQO7yerMImcefJR2s002F8fuepz42tPccNv2dUr3299yLVgNmguzSNEUt9y5g758nM1b8kQScXzPp1az8X2fgYlhWqUyJy4U8T2fhTMXqE5doG+wD8/1iKfiUFkktWkbejzB2991JycOT7Pv9v1UV0r87n/5G97+pgOcODzFtp1DfOXTT/HUo+e48c6dSLLEI597isvHTjN36jyqrhLPpCidPQ2VJWhX2TyZIRLRCPyARqOLriuEYUi13KIwu4QZNXn8yWlOTZXx/YAj5wpcWmkgSxIDKRPLEXkpXRW3a0RXadkeyaTB9tsO0rW6dBptZi8uc+TYIpcvV6jXOiwvVLEsD11VGM9FuXH3IEEQcnGhxnypRafrkY0brFY6NCyX6WIHq+thuyGllsPjF8s8PV1jarXFSt1CV2QyMZ1a2yFmagRByPhQklhE48LlKqlMFCNioOoqbtfB93wKy3XqrS6O57Nas6i2HZqWS7XdxfEDFittplebtGyPMAwxVIWIrhDRFAp1m1KzSxhC0lCoWx4NW4QZMxFRvmG7IQdG49Rtn00DcSazBq/bkePeHX2MpjR0RWYwoXHtWIKlhks6qnKx0OLwfBNTlbl7S4aBuEbb8Xl2scmnzxTZmosylBTf81zBIqYpPHq5xnVjcTRF4okLJZ55fomNAwnU0a3QKOC5Hk8dXWTzUJIPP7OAoUjc/8QMyytNFMMQi8WgR6lfA501hqLTI3q4tshZx9JgRMU+TQdA0k1xbiR5ZYDXV8X7+K5gHKb6MFMpVE0VZSUxjWjcZHa+hmEo7N2cY+HyKqHV5Pp7b8AtzHPPbRtJRfXvdGr7pvZS82FXce7lte97TuwHabIi0W47yLKEoki0Gx3ygykRgrDbIvzQaYjBscaYgl58XRHUdxCA1a5Bqh8lmcVfuACpPLSqBEHAvus28OzjHQFwIeA5BJUlzPEt2HMX6du9H6tl0dEMnIWLSP2ThIpG8dxZSA1Ap0670SaxYQue42GtLkI0SVArcPGk30t4Szz9yBkIQ/TBcc7PVcF3UXMj6IbOc09P8f//2Zv4wvOr+L7PdbdsY2G+TjQeJRbXGdw8wfS5RQLXYcu1O1maKxGJCuLG6tFn6dtzDbWSyH9dmKty7U1bOPzUBSjNc/1bXs3fffxZ/vjX7+EXP/A1ork8nWKBZx4+RSydxFEUZEUmEosgSRLV+XlwHd75C2/l1k0pfvHffRS6FmM33kg0qnHm5CLvedeNxA2FP/yDz5PZMk6j2uTcCcFy9rtdrN0b6Nge2YRBNm6wVO3Q6Hh0ux627ZFKmfh+gKrKDE/0Y3VcBgbj1Go2sxcWiCaiRBNRPC+gULdodBSihsqr9w/y7HQNLwjQNYVqu0s0opGIaGRiOrPFFpVWl9u3ZtGUBBeLIgydjihoioTlBLQMFcvxGMlGuVxoMbdQR9cVUScYBCRSMTzHY2Akg2GoRCMauqpcuS8lCVWR8fyAZFTHD0LqHUfk58KQy8se+UyEVFQjlzDoOD5tx2coqbPactFVCU2R0FWJ5YaDqcn0RVWKLZeLRZuzq5YoUVCkHp0f0hGJa0ZilNsu2kCcsbTOTNXhYtki1otQ3DKWotJ1OLzYpNIWNP2+mMpKy+HASIxS2yVpKIz2xehPRVAVmbe/+RpOTU/Q7foc3DXAYEKnaYkcoNN18FwP3+p5XqohvDBZEXks3xOAtlY7JkkCkOy2eMyOCGDTI8RTcfx4hM7CZUj2IysKgeeKsaGZ6Oksqb4U9VKdeCrO5GiKU+eKDAzEGMrF8IOQU9Nluh2b3MZJPM8nu20nh0+v0Gx0X54JJxQ1fVftn9Z+pGWnAr9XEKvKaJrCjt1DvTBfV3haa6GKtdi7fGWiwXPFIFtbKUoyydExAWCaKWL7joXbdTl7cpHsQBYiSZrzl6HbRu6fwK6WQdUoXzxPZ+a8eJ/0IGG9gBZPivqyaATiWerLK6iqirU0IwZuNAXxPlK5tBjwssKuazZCs4SzMkeh0AbPw6uX6ZQKqJrKv//Nv+bwUxd5/7tv4MCmHAODcd746l2kUiaqKrwf2lUunppl07YhSitV+nIxfv9334djO/jFeTzbZmmxztlTi/jL09z2ztchSfCuHz/I+//dR9FNncAPyIyNQWWJRCbB//o3dxKGITfdMEkyExM5jTDgo3/wUT53vMDo/n0ktuxk/vmTnH/qKI1ihY984ghpUyW/dSt33zhOJpdClmV0Q1Ckl2aLnDgyw5c/d5gvP3IR2/EZ6YuxcTiFJEnMXK7S6bioqoznBdTLdYrFDp4XoKiKWI3bDsvzZcp1ez1Ed6lo0Zcw6E9F6PQKlv0gpD9pMl9us3M0RTZucLFoM1XqoilSjwof4PqC/h7RFWzXp9K6MvklEgaKIrNv9yCZjEk6l0RVFTodF8f1UWSJlu1SbXZZKbcpNWzCEAo1i0LVYrXYptHsMj9fZ2a6xNxSg6blMldqs1TpoCkSza5PVJNp2D6LdQdZkuhPaHTcQIQ8vYAAKNQtDFUiHVGQJWjYPitNl3Lb5VLJxnIDZqoOHUcwPottl/maw98dW6bV9ZnM6CxVOtw4mWJnPk657XGhaDEY18nHVe7cnObe7VkimszW/iivumaEMAy5uNTg/EqLC3M1zi/ViUQNzIiOkUwKDwvEvaxoArQ048p4002QVeGBqZp4bFd7C8w2VttCURSIppF7v69qGOs0fcfq0j+QwIga3HxwnExc596bJziwJc/MYoNay2FluYGsKJSmpllebtKoNJBlGeUFC4zv1daK8r/d9u1MkqS/kCSpIEnSqW/y2q9KkhRK0pVas+9U6UiSJEOSpI/19h/qlUD9UNqPNIjJilBUUFUZXVcoFFqg6siDG8QBiiY2EN7Z2t21lhcDUSuWnwAjQmP6gtjXbQsvTdEIrCbN5UUqK2UR3rDboGikcim0RFocF/TSelZL5NXMOPF0HCWRQVVVaBQxUmmMiMHmm6+HRI7b79kN7Sr1y5fAd5GTfSwv1tDzI+x6xc2UVypExjejpXNgxBgYyWKMbcZtNfj9P3ucP//I0xSLHe5/9BLHHn2ehROnMKMmcnoAVVMpFFps2jZEudTml//bV2hWahDvIz2QY3Aoyf5rxiHRxzOPXyCTMIgZKre+8Q5+8m3XYjcaVJ9/Gm14I1u35PgfnzmHszLHl//yM8yeusi1r78L0oOQHuArf/lpolGN333/Tbzn514n/h5hwLvedi1/9cAlbr5ujKPni/T3x4in41ilVWhVsEurWKVVVNOkcuEszzx6lqeOLqKpMgP5GH25KNftGMCyXJJJAzNmsnR+isXpJQI/wGqJBYasyCwvNzk7V+XEVJkwDKm1HeKGStRQWa10aLcdzi3WkSWJLx+aZ7VuIcsSLdvDVCVmim3KrS4rDQfbC4RYS6+2yOyFRovFNu22Q60llEGCICQa1RgaSjA5kCBqqOSTQilGliWazS7LpTau6yPLEpGIiqrKRCIaiZQIpT399DSnL5So1C3OLbfW2YsNy2Ox3OFzh+Y5Pt+gULdQZAldk4npMmEIpZbDfLW7TghRJDg23yQb07B7Hp/WU0vJRVW8ICCXMDi92uHoQpuIoRDRZRzf55lLZbbkTD5+dIXHLtWwvQDbC9g3HBOF4DK8/qZx3n/HBLbrc+LRIxTLHVRVRlUlzGiPAKUbYmG4VufldkXEQ5J7i8KO8MYk6QrAeaIkJpFO4HQdlEiUdC5Npj9DEIhxKplx4ukE40NJFEVBU0QxuSxLhGHI5IgIQUqSRODYoEdZmZpDlmVedXD0n2vd1oeBf6ToIUnSGPBKBJdgbd9O4B3Art45fyxJ0hoy/x/gZxEkuS0veM/3AdUwDDcD/xP4wPflW/wT2I90ODEMQlRVSOgEQcj89Cr7btzG8S9+DYDs7gNUjj8nBk2ncSUnBkIdoGYL4HG7vdyZJ45ZAyUQeR/NFIzHeAY5N0pQXaV64jDEUkjDWwlLC2KlGc+K3JpjUSvWAOjUGyjZQcyoiWGqXDoxDYHPY596eF29YNv1uzj/7Clamopu6pw+dJY9N+2k0egy+8QTYERYnInguR5mOsNvvO9GFFniA399mMAPkCMJbrh9O5blMjdTprKwzMq5CtVCnm7HZnTLOFbbxrEdJEliebHOHXuHODk2xvBYhk7X48Jygw0DCf7+8yfQY3GUrQewLp/lsU8vc/ub78S48ybOPnMSKkscechHT2dxVuehfwPX7xzgC6eKPP7kNDe+7dVM9Md55tQKVqfLVx8+z/bdI1yeKlEv14kNDDE8nkOSJC6dnsObPw+JLGFlkeVWhU8sFrn9FTvQdQVDV9i2Icv5yxUxUVoN8F3CMCS1aRN2x0ZWZIJAgMzEeJoHH5tibCJLRFcYSJn4/XHOzVQ5fmwOt+uS6kuRSOjMSxK1lkNEz6KrMo2Oix84lBoS6ZjOQEqwWUsth+2b+kS9W8tB7eXtNkxm8PyAfNJkermxfg+KyICCpim02w6djk+361FaqTI6madaEbV7ihKntbxIu9HGtvI0m11mYjqZ3ufmUxEYSLBa6aDrCtm4wXKlw0A6wmAmQl9UMDUBzi51GO2LrZcG6IpMVJOZKVv0xQ3SEZU7MxFWWl1qlk86ojBfU3G8gFPLHXaMpXl6tsl4LsZ923Isti0MWchP5aMapiqx0nQ5sdJm31iKh/ODFAstCvOrvPb1B3i63LqirNE/KRZ7ekR47EH4daSMNQ8tMToumLZdsSiszs6gZ/MMTQzSqDaJJ6PIskzQSxIPjmbpej479wwzX2yRS5kkIxq1jsv56QorC2UhmxaGQMDotg0UFosUmw7Lzx97eeYbXj6KfRiGj30L7+h/Ar/GFUY3fHdKR28E/mPv/E8A/1uSJOmlcA3+udmPNoiF0G67qKpPLhshN9SHbXuQHcGIx+g0Oz3pG+kf331r7ETfFeG9Nc/shQC29n/HWg/5BV1bMKt8F6yWSOI6HaTcqFDpCELQdDRdeGvFuWV826LeqGB3+lEMg0RaRAl838du28xfLoDvEkvEcB0XFJVzJ+ZwWw3SO/dTWy2hmzp2vc7PvOsVHJtvkk+aJDMJupbDPXdt49CxJbZs6aOyVCA3MULp0hSBH3DNzdtYmK+hGRrJdJRoVOP0cxd45nwftVKNeqXOPffuQddknjuzyo/ft4ePfOoY1so87/ylH+NjnzzMtuEUe8fTXDg1x3X3Xs+hzz/CHXfezNce9AiaVT7yR59AG96IW1qiPJRmLB9n03iaer3L3msmOPT4OYJmFT2Tp12tU9BUmtUmP/0TN/C3H1dwFy6KRUC7jqfqPPTZp4n1D7Cy0mJkJMnwYEJQ1XftIZEUmngrixVcx6VVrrD92m3UahbpuM7QSBpdV1muWkiSxFyhRbnURtM1EukEQRAwP1dD3djHxECcUrOL7fp0XfG7S5LExcU6iZiOLEkYmlDmkCSJerOL5wUkYhqqLNiPALmUSbXlEAQ95RjHXw+FBkGApsm0V5c5X60TTSeJxCJMHzklQsqA53o4TkAkEjK/2CCdNpmdr3PD3iH6EgYL5TaHzxYYyMeotsXnFOo2UUNlqdJhKCNCp1v7Ixyda6BrCpcLgmBiOT6GIuEGNktVi1RMZzwdZ2veJKYpXDMSp9Rx6TgBoymdh2eqNGyPzTlTEG/iOqYqs6s/RtlyqHR83vWWAxQaNm967zV87UKV668d57AkUTlxGDoN9LGthGFIctNmyhfOgS+JcWFEQFbYesM+Lp2eE+PPjAsvTVZIZpNIEuQGUqRSJoVFFa+rEEvGyGSiSEgMZaKYmrKem2p3PbZuyNLt+pSWy4IhaTUxzc2kc2malkticgv2yzPjfF8p9pIkvQFYDMPw+Dfon48gNGXXbE3RyOVbKx2tqyOFYehJklQH+oCXJv74z8h+pEFMkkDphRQrNZGDkGUJvC5GJCsUJNbyYi/0wgBcG2lwk/Ci7CbQA68XhhwBEZENBJBVrCt5tbVcW6cBkky4cPZKoafXxVm4SLHZv/5xeiaPburohk4QBDTmZ4kOjOCWlnDDAFIDVAsVFE0FzyEMDQh8mrUm0XSSgeEM/UNpLq40UGWZQ2dXqRZqvOstB/jQB78C1WVWDkHfgRv5qdftoNDcxBe+ep7LU4KxeNstmzhxtsCmsTRnjmnU6zbvf88t/PGfPcIDH/0Kv/yrbwfg0NlV3vaGfbTtndz/yEWClct86ENNUsPD3Pe6fRw5tUp+527aXY+hiUGu33uAz/z1/biLlxi6/kZGh5NMLwk6fi4XZftoCvPuXWRiOudnq5z+wv3UGwVwbOaKu0nn0xTbQ0IODMTfOZHD7bpUVitUVivsu24DK4s1XMelUWkIjzRqrv9eU2cXSPWlePboImEogKRwaZrBbZuxWhbRRJT8QJJm06Hb6RKJR+h2PVZrFsmoTqfrkYkbRHSFUqNLJmGIOVeTOXmuSCYTYSgv8nWJiEa762GoMuVmd11gtj9lslK1qFYtPM/HNDUsyyUW0zn+6FGxaHK7WGovvB1NgdUgbNeptCpo27fTViXmLi0jbxtB0xTqbYfFQouxwQS1uk3X9Wl1XFzXFzng8TSO57NQFrVjtuuzMR/j4ZMrJOI6m4eEdzSaFuw8PwjZnDNZbDhsy8V4YqbOZNYgH9X40+dmecv1w9huwKY+E1WWGE0IIGs5HperFroqM5DQiBsyCUOh5XhszEVYrLRFyK7HCt60Y4SxoSQLK03KFyWxAOxaEPhIiT4uPHuCaP8gnVZVEKkkmZHtmxgbS2HbHu22g217DE/kWZwJGZnIkYzpxE0V2/WJ6Apt20OWJPJJcR/Ym7IsnL1EbnKCrt1F11VGx9LMrzRpLr1wnv/e7DvwY3KSJL1QaPGDPaGGb2qSJEWBfw/c+81e/maX8iL7X+ycHzr7kQYxgE7HRVEkoj0arev6YDVp1RMk0gmaZRMyg7AydQWYNBMcm7AwI0KJcAXsvtHCAHgBZX9NDQR6VH1DhFBWpoRHlxkSRZqBLyZmSYbMII7dxek60K6iZfpJjI6jqiodxya39wCV1QrZ/iyxhMmGiTSPfe0M6dFRapfO0XG7zDoeb33jfuZLbZ58+gLxVJxoMsqHPvQAm67ZyfJ8P2bUpHz5Mh/8eJfrb9hAbWYas3+Yt75+Hw8/O09pqcRJVWZwYpCLTx1mcjQFrTI4Np9/cobpM3NQW2br+Bt47JlZMn1xsnfcRi4X49zpJT77wU9AJIGcGWBgMMl//6kD/MdPncYYGKU7d4FcLkqlZqFpCuVym/tunaTY7GJqCu2ux+RIiuiPvYGFhTrL5y8xu1CjWqiSnxyleKoMiin+Xr6H02iT3zhJrVhjebnJwHCaualVZFlG1VQ0Q0PVVIyIQWO1SKnroGgqfnEeIklGdm5FliWCiEGtWKPT1NdV+9eA0HM9ovEIhqFQNixaLYdsNkI+EyGbMKg0u/T3xwh7qiBdz6e4ajPWF8NyxGTqB+EVYNMVDENZz4EVVhpEImkGtm5h9dQJ0COEpQU6wbAIU0fikOonmsmwevZsL18kszijs3HbEJVmF0WRmFms0+m4RCIasiwxnI+RS5ocv1RiMBdDlgQZRe7VnqmqTF/CxPF8njm+zEo1S6lm8bprhzm53CEbVblctdg5EOHRi1W2DMT4v24boz9qEoQhlhuwORtnriHClVFNYf9gkpl6h+NLHSazOumIwlS5S7srcn7NapMNt9/G2GgKyxb1YqmUyaYbrmHqmSPrXlh2IIvVjgi9Uj2CXytCJEmj2iS5LS+UQwDH8dF1lWg8ul6snIhorNYsvCDEdnyWSu11dvLpZ8+hxZP0DyYpl9psGU/z5HNz7N41SH7LZua/8vLMN98BiJXCMLzuO3jrTcAGYM0LGwWOSpJ0kO9O6WjtnAVJklQgBVT4IbQfaRDz/RDTVHFdX4R5EnqvU0RAUF0lPraX7vAGkMCJpQS4SDLkxq6QNMJArBQ951vfoWvgtwZya3VoivCaWJ0WhZxOB6rLIh/gOr3CThmaPTBzHVJbdxKJRdB0hdJyBWIpStMzpEZGyPTFuHhqlkqhTiwZo3b+NJhRtt52I7lclDMzFa7d1s8TjQbdeq13HSIv+G9+6iBVy+NjX1HI9sV4+Csn6N++ncKZ03zkY3ZP89EhuW8cTVOI3XQtO0dTPOgJhuZP37OJ/75co9mp8cn//Xfc9Z638vBHvgDRJO/9d2/h0Me/QGzrXtqVKkGtwHD/Hn7+D5/glps2MD6c5NjxBCfvf0Qwz8KAG954N+eXG6SjOkvFFqmkSddxOPzkecLqMm9733186jNHuebGLSiKzMDgbfTnojx0/wnxN26UKM4Krcr5Tpv8xAi6qdOoNIgmogR+QKvewq+XevnMLn6tRd+OPVgti9HRFGdOLuDYDrmhPiGt5flUVis47Q66qRNLiJIB01R7XpNGt+thOT60utRbXaQegcDzAxZWW+QzEWodh3zSpNS0kSVRSB3RxVArlTrUy3UURaHdbCMrMoW5ZUavuYaFw89BPC0ATJagWQbdpNOpiXvQsZBzo3iex9JClTAIUTSF/oEkkYhGsdgmmTQohSGFqkW5bOH7IZGIRjZpkI7pFOo2vh/Q6Xqoiqh160uaDGai1G2f4ZROteOhKT4N2+e2zWkcP6TtBJxut2g7PnMVGz+AmC4zVba5b1uOhZZFpeOxc8BkruqQjiicW2oQBCGPfu0M/vI0wYZBmq0uy0tN5MkM8/N1kUPsKX7gdilPT4MkIcfTSJpB6FiMbZsgk4mQjGqUm6LOMJ+JsFRo0W60Se4YpNlxGM5GiZkapiZU/s+eXKBdKiGbMQB0UyeRMEgkDJJRnc1b8jhegCy/fPy271c4MQzDk1wRSqeX77ouDMOSJEnfjdLRmmrS08DbgId+GPNh8CPOTgzDsNcqw19nKV44en7d06oVayiqwr7rNgoChyRDNMm2/ZvE//We8vyLAdg32hqArVngi/Odjngt8AVg9IqsBdj1ij/TA9QvX6K0XMJqd7EWptBSfaDq1KcvUFypQ3mR5uIczdlLSLlRiIl+ovsmMti2x/WjMX7hZ+8WLEwjAq7N+WdPcaHQ5vNPzPB/v2MPOzb2gdWgcPRZAajlRTLjY9CucfyzX+aG3YNcOjGN4wUih6CZ/NZ/+CuaF3ts38wgGwYSTNxyC7Sq/OZv/BnIipgMXJtXvO0uzk+VUTWVL/3DY1zu5dxuf8dr+KlfeBO777mNQw8d59J0lU/98d9z/Itfoz9lMj1V4vd/7W70wXEAxjYNUyy2OXNygVOHL2F1fQYnhtAjhiiIde31v29xfoVaqUbQKH29Wng0LX7vSBIpO0Kz2qSzNMvRZy4xNCoU+nVdwfcDfM8nGo+S6u/D7brri596vdu7n8TCqFK1WFhp0m47eF6AbbvMztUJw5BCpcNSscWl5QYty6Xr+qSjQiGkY7mk0ybRRJRkNoHay/1ht2jWWkL6K5K4wtgDMcFbrXUSRLA6izN7jsrp41hta50wEoZhr4hc9DwLw5C+vgiqKpNJGER0ldPTFbIJg2ZTfJ+FUpu9O/o5cbHEas1iWz6yXkqQjqhIEjx+qYbtBszWRLnBQrXL1v4oQ0mNrheSNlVOF1vMVAQT8ompOrYX8KXjqzQ6LsvFNr4j1G1mz89j2x4bNmbRNRnHdjAMBW10S08I2MDMDYCiiT5gttA1lWWJbNoUbW0yUa7d1CdUW0wVp16h0bBJxXQuLTe4NF9jtWZxeaFOMptkcMsG+sf6kQ2Tu+/aRj5tMpaPcWm5QbUXAu3Lxb6neWbNXiq9/iVS7D+KAJhtkiQt9NSNvsXnhqeBNaWj+/nHSkd/BlwCpriidPTnQF+PBPIrwK9/V1/6n4H9yIOY44jmjrbt0WqJcJ2U6APPwVpdJNOf4cyJeTAiRLfth2iKS2fmxcrXbq69kXh8Kc2kXwhgnvP1z90XpI97fcjWvTfXERJXVhNvZZbSxQuQHqJ/NI+sm6Bo1C6eETTlaBpcR7RlaRQJw5D5SodtG7IcWWhz7HIFzTQJPJfo0Dg4Fh/7uyeYffwxfu0/f5Ku6/P+X3gtaDr/8hdfDak8Bw6MCnaYGeO5M6sijAiM3niz+E7ZETK79ovJtLrCcqVDs95hy913CY/TtWmefg5Ug4f++rPMPnuYa/aPQLuOrqv80pu2M79Q5+/+4TCnHniMwY3jmKbKv/1P7+M3/+NP8dzJFQ7sHeZcwea2O7azUGqjaTKddpdmoYQkyxw9NIXTdRgYzQvlBkkmMjQuQrhlkdfIbtosvLBaSyip+K74+/keYaeO026BEcW1LC4cu0BluUi92hZMVk0lloySzSfJ9qdoVptomoymyT2SkIPvB3S7Ho4jWIWeF6DrCju29KHrKpomuhmIhpQCVCqtLpVWl0RMJxrVSGcEgSaZSdI3mKVv40YBZkZUSH+tSS8pWq8ouFfDGHgC3HotSOyOTXFumUajy8JMiXbbpVQSJQOW5eH7Ie22w+X5Gp2uRzyu0+g47Nqc48SZVXxfyF1tGE2xbTjBUsMhpss0bZfpcpdiy6UvYdIX09jeH6HjBGzOR9iQMYmqCnsH4hwcTRLTZQxVQpbg2NlVWl2fy9NlFhcbnHrmjOjTZ0ShssS54zMUCkJ6a8OmnBAiUBWM3CAAdrOFHImRyWdAM0mMjDJ7bpZs3EBXFXIJnbbjk4kbHHn8DPRAvN52uHBulXbbYW5ZdEvwPTG2Du4fZse+SUoNm1REJxMz2D+ZodHoUq3b9GUj38Gs8m2G/0vcvu37hOE7wzAcCsNQC8NwNAzDP/+G1yfDMCy94P/fkdJRGIZ2GIZvD8NwcxiGB8MwnP5ev/sPyn6kQUzr6euZpko0KkInkZENJDK9Fip2m0hE5dZbN2OObERRFFJDg/jlpa/vJLsGXi9cQknyldWy9A1/xhce962WYmseWbctcmNrOTUAVUVO5aDbZvHkaVEPEwbCo5BkEepMDxA0yiBJXHz4MZ4/XWCx2KJuuTz9lefwfR8zHmN0Q78AGUmCWJrh3bu4cLnC1rxoNviHv/dJ8BwefuAU+vAG8FxKhSa063zoI4fotCx23HM7ZiKOETEglWf0trv48scfJp6McvHULIktu4VQsiRDvUB0826Ipnjww5+GMODMAw/zh586y+VHH2Vs0xCD11zLHTeMEYtp/MXnz/KZZxaYffRhLMfDUCS+9pUTnD6+wE17h1EUhcHNE0RiERKZBJUzJ9m7o59rb9nGwVdeRzwdR88OQKIP3C6teottu0d59zsO0jeQAd/FjJpEU8n1Nh2DWzaJv3OvCaPruMQTOsPDCbLZCM26RRCEZPJpFEUiEtHQdYWRkSTjoynSaZNIRKPb9ZmdLrC01GSp0EKWJfpSguwQNVQiukLcVBnJxhjORhlIR1AUGdcNsG2P3bsHWThxivL8EkGjJPKv3Y4IazdK4t5QNeEth72uyWvtRxJ9ou9dp8bS88fo2l0KC0UiEZXlpTpL8xWqVYuwF05eKrRIRDRihkrDctmyuQ9FkcjGDaKGynShzfH5BpdLFtPLTcpNm/OLwrs8NNvkXMEiqsuUOx5HllrM1GyemqvjBgEXijZDSZ2lqsXgYIJKq8v4REaEw+2myHcB6AbhyhSVYlMIMU9kBJnG6rJr/4Tou5dOsu/6Tai6SqIvTXN+ltvv3UcyqmM5HkEoFP9tx1+Pblw8NUe9bmN3bGxbtMLRdYXr9g9zz00TqLLEwZ0D3LCpj4GkTst2aTs+b7hjIzsns0gvZXH6Uu2q7tQ/uf1Ig5jr+AR+gOf5KIqM0/VQdVU0qASQZNoth3LdRtVUWvUWoxN96y1S1vsYvZh9I4DBNwe9F+7/xtfWJqjM0LpKSOD3cnGdxhUKv6oLDySeBVUnMTIOYYjUP4nfa1V//1fPcfcbbiJwHOxGg1q1w2/+2puIptPg2hQWCrzqhnH+7R88jjm+RXy+qjO5bZQ///V7MMa3Ujp2CDSDt7/5Gt7zhl1sGk9jXz7DyswyP/Mzr+TNd24Ax2LuiceQZZkD100gx9PoG3ZDZogbbtokADomKOJoBitzKxCGvPfezfT3x/nY//kUqYTBlq15Lpye5+CPvZ5qzSZpKvzCe29l684hnnx+kVuvH6VRFv2tSsePQDJH3FQ58uR5+jMRFEXhups3s+/2/Wy7dhsbtg6zbTzNaNrgZ1+7hX/xL+7lXW85gOd63PDaW8gMD9BuCgX1/rEB9Fic5sIcq4tCAcQ0NUbHM2SzEay2TSYTIehVGVuWi9X1cF2hAZlKiTKGdNpEVWVc12d+uUm50iEkxAvEVm13KTdsTk0J78R1A0xT5YlHzonfb623VvcF7NZEH5gJEUp0rJ5QriQAIZ4lOjBEfGhkHZidwiKpXIpyoUFxegZFVWjV29SqHS6enqdc7nDybIGpxTrLqy1K5Q627a33XSvVbfaNJVmudsgkDLpewC1bc2zKmaSjKtW28M4kCQYTQpMxbig8t9jkwEiMgYjJzuE4siTx7NEFGo0unUYTc2BUiP8mcgzu3s3+N7yK175iKxO5KJoiYxgKfUN91Os9AWDg2JNn8RyPZrHM2376Xsb6YsQN0aHbcgIurzTxggA8Bz2R4uBt24hGNXRTR1FEwfjoQAJJkkiYKn0Jk8GETsyQObvURJElUhGVfFwlZqg47jchbH2XFoThS9qu2stnP9IgpqgynVYHXVepVCz6B+KiXflKRaxwA4+Vi1NcnirRmr1E2K5RKrYhkuTe+65FyY9d0XYDERJ5sVXbCwHtm92o37hv7f9rtWar01caAlqNKyvxdrWn4m2Lfd02uqELlQ1JIrSadK0ulUqHdrPN44+eQ49FiabT5PvjPHBilbvu2gaRJF69zLmlOkEQYC/PQjRNNJ1mabbAh56cozt1EgIfZWgjz5xYJh/XOHmuKHTs7CZL1Q4f+uhh7vvp1/H+f/uTBI7NXdtzBCuXcVZmMBNxTp1eYest13PglTeJv1kvxJrddz1fPVPkxAOPcd0b7+GRLxxCliSuu2kzruvTn4vyR588xQPPzjE5mGT61GU+8XeP0imuMDjWU9ipF/jYn3wGirM89sQU4xNpqlWL4195DNNUicd1WrYnwmJdn419BlFd5sfefADLEl7ZwHCGDTvGKUzP4hQXIfBpN9osL1RZWWmyutpidaXF2ESWy1MiYmMYKuWyxeJig1pNKMiXiq31HJTnBXie+J66rtBoOVSaXVYqHWo9JQ+AIAhpVAThwauXwYgR1gvCyzajkMz1WK6+EM2Fr5dHM2Ik8n0AtIpFEpO9hYhm4Hs+rXoLyRSLL0mSUFWVZDZJaalEYaFAq1evlkyaouWLplCsW5TLbc6vtElFdQqVDk1LaDQ2bJ/lmo3t+uRiKsNJHUORGUroqDKkTIVW1+fBqQoXC50eC1IWHpGuY18+02PklkkmTdpth6ih4vkhxYbNxokMhFApNdmwdyvbdo1A4ON7Prtv2EGhbq+zPDtdj+lCk3zaZCAlvLv+0TwRQyUMIZ6MMjSUQFEkXC8gHdWpdVyyUQXb7eX6YjrlZhfbDTm50BSdxK0XMIq/R7vqiP3T23fFTuxpdpX/ubNZRCRQolRoUrp0kX13XY+mKYxtGmSqXhFFyYpYwQmttrqQtomnOPTsDH6jcsVLUnVRcGtERcin2/n6D+IFocUw+OYF1N/M1oRPwwDkXg6kT4j6qrpKp1gQgCYrRAZG8D0fpzCPUysJb0cz2XvbfqJRjUKhRRiEOIuXIZnjmnv2c+70MmbU5KdvHeOLHxN1aw997hno1FH7xwn8ANuy+fWfu43f/v0HxOfnxvBnT3N57iy/U6iLonDNINGf40t/+VlwLL7QaPDe99xBbmyYC4UOr3j3fZw5WySVNims1JmbWqFvMHslR+hYVBZXeOz0cSITW0VPMkWjL2EgSRJfOzZPs1Cgf+MEc1MrDA4k0GNR3K6GoipcfuIp8ff3PEF80HQ6zQ7PPnyCd/7ErZjmHWRSJiuFNl/96hmeeS5OeX4J2Yzw9rdcS7NXk7VhOMn0Yp3h/jiXnxX5sdzkBKWFFay2JQCma6HHE0JBJBmj2WPEgfDuK6uiT5wZM2nVRRhR12WaDRvd0OjvjxGNaD35IzB0hWLNxnV9crkoYU+5Y3TPTgqLRbS+LO2VpR6ZyOx1C49c6TzuOUJwupdHbVYaYp/v0py5CMk8OBadZqeX14tRPnmU6IYdNGtNEukEbtdBNw1Kq3XSfQmWlhroukJfKoIsSySTJn4QEjc1JgYThEC57ZGNquQTQgKq6wWcXe0ykTF5arrG9qE4l0sWluPjeD7VlkOx2GJ4JMn5U4v4pUUxXsoLEEuxulTl5hs3EIYhmahGraNQqFvops7SpTmqC0vIZozR7Rvx/YAbdw70hpfoep2J6Xh+QCqmCw8ykmRyIk02buD5Aa7rk0kYmLpCy3bRVFm0z3FEP7XFWhdTV4i4CpVWl6btIiEx0PcyETt4+RQ7rtpLt2/riUmSdKMkSY9IkvQpSZIO9AQpTyG6M/8jba9/ThaG0NefFPmh/BCrKy1c18eyPGL9YoBEUil2b8+THhOMuOr50/jFeTRDY/9d1yGPbIP0gNBQDHwBfC+sF9MjYhW91jrihcSO7yTW3mNG4tpgNXAaVQFgrg3pIQgDrKUZUUsG4HaJjm1m283XIEmwuNigsFQlXL0srldReeZTX6V29jgrzzzGb3/sNL/z799MbON2dtywW4Qj0wn+3399F5t3jvP4+RL/+v33kN65n0giLjwCRWVoNIvnelBbYWwyL8Jc8Qy0qzx3tsCGTTmWqx0aLYd6uc75+x+geuoY9qUTNKrNK90BmhUoLyAPTGAtTEEkQX7fNTzw1bN8+Sun2L57hJ037OI33rmHfddt5MmHz3DbHdsZ3zJCJBZh6LqDQvHftQVjD/CWpmBlio/+xf0cu/9xHvqbz6NpMvFUnD17hth9406CTpONuSieH7K42KDS6jKYi5GNG+titKXZeWRdp9tsYsZM0kMDvXoli9JyicUzF7h8akq0XplIkxvO0SyWKC2VkCSJdrNDu+UIAWNdoV636Vgu1YZNpWGzsNrC9wMMQ0VRZIZHkmiagqbJ7No/gSzLRPKDvQaRqgAyu9c0cq3Eo2sJ8k+vFCKSTgvvXNWhugLNMvbyLEEQUF8tit9JQojmAoqmEolHiKdiqKq8ntdz/QBVlmm1HI6dWV1X92/bHsWGTb3X+qXYYzReNxbH6QFJw/YZSZukYzpdN6BS6VAttwlD2LhtSIhory3o3C71mSnOT5fxghDLCVBkIeG1MruCapqgCTJSIqHTtbqcmqsCENdldEUiE1VRFZlUROXiTJXUQB6tJ/MVNVTyfVEkCbquj6bIIvqqCi/M8UJihoofhFiOz3K1w3AmyqFnpml0XkDA+p7tqi/2T20vJZz4v4HfBj4KPAT8TBiGg8DtwO98H6/tezZJlrBtHyNiYJdWqaxWcLsurXqL9vQ5iCZF1f9qi3q5Dokse++9netf/womJrM8/8WHCKrLYmJZa9gXTQqQMKJXREpf6HWl+gUgrYUg14ghL9y+cT+Iwd4sC+p4bVWQD3o5grVQkpwZQpIk8jt3Q+DTqVY5/+hTXLutn/mTZ+kfzjB08CaiqSS33rOXTbfdBGHIhlfczeLxE/zGf/hb/vPP3shAPoY5MEqj2uDLp4psGk8z2hej2HL46TftYXLLoMi1mDGGBuKi03W7xi17hth4YAexsY0Q+GTSJktLDaYuV4lHNazp05Ae4N6ffiN3v/dteE6vCWKnsf49gtVZpOwIJPMUFwrsvXYSWZZ57oFDLM1XhNp6uc2//plbiRgKv/j6rYxO5lg+dZqteya55s2vWS+RkPonuebtb4RIksG9+9HHt3LiuSnKyyWabYfpC8v0b9rA7/yPz6HIEju29NHuuCQiGvc/cnG9t9Xwtk3kh/OMbttAGIS4jkulUBGA0akLbz0WZ2lqnrMnF3Fsh/TQAGbURDM0IrEIjUoDTVcFI7Dl9BiCLouLDcrlzvpjp6eosRb6nJupkM4lBdM0khRb2FOAiSSudFhwrHV192g2g+/3FlK+K8KQmSGk9CBOtQRhSG7DJJ3lBZxWk3q5jizL4lojQpy41XKIRjVaHRdTV1AUia0bsyxXBallKBNB1xRiuswNEwm2D8aYyBjoiky57RHTxWttxycX06jULQxDZcfOQRbmq5RKbaT8OCRyYqx4LsQyZDIRJAkCegEORWZ00zCBH2DGImQGc8xOrTI2kWXDQIJ8XMMLQ6qWh99rPmo5oiO253qUq1av5k1mKBOlPxUhZqgko6J4XVPE+DJ74siNjkvTcimXO3S9gEQmQdR8mcplX0aK/VV76fZSQEwNw/CBMAz/AVgJw/AZgDAMz31/L+17NwkoLBSIRDSRBAcc26F/KC3AyHOYHEtz5tmzhI0i2w/u5sSDT3Ds0CWOfO0w0Q3b6N+1R0zorTJyRnhEAtDUK3Vfqia8k3hGvJ7MiaR8ql/Q4RUNRraL/fHMi3toigqxtJDEckW4k24bUgMEhVnCRpHihQuiINSMQGaYD3/kGfA9+vpiLB9/ns7ls+iaIK0gSVx+5jlo15Fzo4wlIiwuN7Hnp7j+lq0cP7nE3HKDesfh458+xlShxW++cQf77r2VP/3AT/LY186w4cbrwYjxlx89xPQjj9IurELX4vG//iSLZy9imipdN0Cf2A6VJR74s4/x6ENnsGYv9NrKJNe7WaMohAtnhSzU8kVqNUs8j6aonT/NB/7Th+l2fb52fJlay+H+U0W2TGR447vuYctkhucPXUIbmiS9fQ/h0gWOfuFhBjeMsnJxiu17xgkbRbCbtFoOnRnRrzc5OkY6ppOO6WiawqNPz/Cme7cDkBnI0ml2xIKn06Vrd2nXWzhWV5QTmHGoLqMZGrmRAeLpK/kmM2bSrgtJJSNiUCvVkSTI9kXpdFzq9S7xuE4uF6VaqFIt1mi3HVotZ90z27p9gFwuSqovhR6Lgt0iMjwpANZui0VNdkTcO74v7sUQnI719bky1xbanHYL7CalqSlxP4UBYRhiRk1icRNNU3CcK5GEgWyE42cLdDouyaiQbqq1HcIQUhENyw04PN9CV2RcP0SVJHYMRLhuJE7NEl7asdkag30xZqYKnDqxSCRqsHLiuKjzWislCQOwWyTjBmEI5ZYjxIhV4THlR/IcvHkzW7YNsHv/OJGIxlDKoOMGlJoO/XGNmu2TNFWSpkK52MJqWeyYzBDRFfoSBnFTIx1VMTSFVETId8V00VdNksDxQ1w/oGO53Lx3iK8+eokNGzIkTO1lm3N+lP0wSZIykiTtlSTpmrXtB31N8NJA7IWigtY3vPbP+vfwPDGAbdsjmU2ycbvoe2RZHigqcnYYQ5PREwmw21w4NYs+MC4kbxyLZDZJYXZpvQN00KqC3RFU83iaK6ocrhiskYTI2QR+b9JxRf4mkRV5gTXaft/oFcKILHokrVtlCVSdrt0VhI5uGz3Ty4eYMQGOngN2m6BZhfIiE1tH+LPfeScXzi73uueqOG7ADQeG2XznbaItSk+c+PcemmJ1qQqyxDOfuJ/SubOcPjLFl/7qizirc3zhTz7Gnz45x9bxDOeLFsMbhrhu9yAkc/zUOw6CbvLGH78deXgLKBqve9utXLtzgKcfOcN9r9nDwXe+mX/3X3+Ot735Gm5++6tI7L6e6+67i76914rvZ8ZhYCM337YFVJ3zjx+ievIwmf4MmFH2v+FVHNg9wMJclT3jaRKmxlA6wnKlw5e/dJyf/+mb+bE3X0Pt4hnk0W2895ffxsrxo1CYwfd7+ctOk8vnl9jzqtspHH2WxswUf/8Pz1FtObRaXe69fROPHF5g0zU7kWWZsck+8nnh9faP9EOnBsVZ6BtZL0xvl0pUChXRv8z1yA+mqBaqmFGTdNoUyh09gken47IyL+ju9ZqF5wVE4hEGRvp6oBbDdQN8P+jVmamYpiqKxVVdtKPJjYn7RtVRIlERtk5kwbXpTJ8RIV8jJu69ZkVskgypAeR0/5Vi+k5dtOBRZOJxHVWV6bQsrtk5wO7JLHFTY/+OfhIJg5MXS+SSJhFDCOi6QchgQmNjn4mpSQSELDUdapbPYzMNdFUolawUWzx/epXrrp8gN5CkuFSGMBSF27VVsZDRRPhWlkRfNdcX04rt+lQK9fXi9NFcjP5MhH2TWRRZomF7uH6AH4AiSaw2usxVLIyIzsTWEQxNIdbrFafKYDmByHVJEjLg+eE6hb7aFh0OGg2bRsfl1Xdt4cL5Aoul9ss25/yoshMlSfp/gBPAHwD/o7f99x/oRfXspfjR+yRJaiAcm0jvOb3/my92oiRJfwHcBxTCMNzd2/cxYFvvkDRQC8Nwf6/twFngfO+1Z8Iw/PneOdci+utEgC8Bv/xSSCVrhZSFhQLpXJqFSoNWuSJqZ+IpvOXLPH0ohVNaAUkm21uVy7LwsFYuzQpShaqLCaPbBlWlW1gUE8Ya807RIJ4VbT9aNZAV1GgML/B6YaEk0aFxZEWmtbIk6oD6RqA0L7yTNVmhteLoegHfsTBHNmIXl3HsLrF0krbnXKHaJyPQaYKiEIvp/ObfHKd++igYEXbecxtRQ2U8F+XURcCx+O8feB9//dgszzxwWLSNWVvF221BUlE18VwzeOwTX+XAq2/j9JTQvfuHTzyHEo3zF3/8OYgkqXccRjYOEdk1zkA6wmu39PHVJ3J86v98nMEbbuG3HzxMrH+A9vICo3t3s2M8w+GHjjJ6w40sHDkC7TpPP3FJ5H46Df7kD3+Rv31mkcMtEco6cbaIoir87WdO8J637sPxxELk7lfu5o8/+LX1ot9g/hx/+bvnQY8ycscrOf3lr4qC7VgKpzCPpk2S2X2A6qULjG4aZqXUJpEwuLhY57rdg5SbNu22QzxuYGgyK8sNsXhwu6LEotc1mHSkp2W4kU7LZngsSySiIisy/UMplheqpLJxDEOluFonEouQyWeollsYEYNioU0kFiEW03sKIDaDA3Ec16fddkj1lPd9zyeez9NamBHgmRkGS8hotYNQ1JL1FknW9OneoqYXcna7wuPt1AkUsQjDiIIRw4yaZHIJmk3BTNy4OU+xYeMHIQMpk9G0GMaFupDJ2juaxPVDbC/gUslmQ9ZAk2UcP0SRodzxGU5qzFa6nJ+voesK1UKV47ZDKhPFbrWR+4YxTAN/fCtOcQnMBIn+HI22g+P5gowRiGLrSDzC6FiaqKHS9USuLGkqFFtC8SQZ1UmaCm4QkjIjzFctNm7IYHd9giDE1BSatktEM1CE0hot26UvrtNxBanD9UMsx6PWFo1S222Xvr4oGzbmmLlc/nZTyUu3Hz58eqn2Y8CmMAxfzgTiy2Lf1hMLw1AJwzAZhmEiDEO193zt/9/OD/8w39DYLQzDHw/DcH8YhvuBTwKfesHLU2uvrQFYz75VY7cXNVmWGBrvZ2BsgCAI6LRE65V2tY7XqECqn+rikshFuTbl5TKdSpXW1FnxBnZTEDmslgAe14FEDjnVv66qoA1MIKcHoNsmWJ0Vq2XAW74sJpIwhE6dTqtDq1L7en3F9ACJrXuuNOdc01JM5kQuAZCTfST7UuiGTiSTFd5ZNA1GDGVgHCSJatVi5fICr/jpNyHnRmk0uvQlDP7wv/4VU489CbVVHrtUZSgfI94/IJhvL+yLpmrIfaNivySD7/P8oUtcu72f4eEE1Fe591V7iI1MgN3iyOFZAC48f4m/+KPP8it/c4zRsQzZfdejKDLX33Mdm7YNgapjW12Oni+QGBgkmTR4x8++AW14I57r8V9+650QS/N7n7/AEx/7EgOjOU58+vPUK00KJ5/HdVwuF9ucmK2yeTRFo+PyxrfdRG7DBIN794uFQDzDj//8mxgdTTF2y22Cll5bBcfm6Bcepnr+NITBugai54nnbdul1mtL7/e8gvJKWYRxzTiaoYvQnawQy2ZEcXm9RHl6mjPHprlwZpnAtlhdquF7PkszqzTqNqPjWfbsyDO5IUOmLy40GV1PkER6jTMTiSti1LlslEJvv6wIKab1XGhxVnjQvsjdoBnidxvYSHTzbgb37AOnK0LUihDMxXfFPadH2HL9HhRdR1ZkxkZT9PfHSKdNXDfA9QI0Vabc6jJftRhMR7AslzNzVS4WBPM2qsnk4xrNbkDbCeg4AaWWR6XtUun4NDoOpqliGCoHDm5k89Z+pp86BHaLwLawFi/jrMyJe1lWGBnPEenln3RNNK9Mx3SGR1K4rk9EV6m3HWKGymrToWW7oqbLEB2qVxtdSm2Xo2cLQh9RlYkZKhFdxg9CnrtYousFJCMapq6gyRIJQ4BfqyvAsFazGR7PsXzkMNPnlxnqi4rw/MtgLzWU+EOKc6cQTsc/O/ue6sQkSXrRauAwDB/jWygj99pk/xiCMPJinzFEr7Fbz/taa+z2Eq4PlmZWsdoWmq6Ju8d3xQtrFHmr0aO5y4LZV1u5op7RKyQlDMQqV9XEPon1icatlQg6PcpzokcpT+bBdzH6RwTw6RGoLgmh38AXk1Hgg9WiubIsioQjcXEciFV/aQ67XCDoNGlWm1htC6teJ7NhE1gN3vb2G/CbVSauv5blmRWS+SynTq8ysmGIyYk0z5xY5r/8zs+ApoNr87k/+RibBhK86u7trDUeRO8xKoOQYPmSCE2l+iHwiMQjzBSaXL+5DzyPJ56cEueacX7zvddzz43jUF0mt30HhUVRSzUwlGLxxClUVWb/lhzju7dROn5EdNY2dVaX6/z9//44/aN53IWL/OavfxAaJS587RHGb76F2fPz5A7exk++cQ8/96/ejr04TaPjUii0ePTpGS6cWyGfNNm8Jc+1+4a46/U3oueH+djfPMxzT5ynvFKFdp3Ipt29bsFt4bXGMsydvki1ahExVRzH46lnZlhZaeF7PuVyh9Vim+17J/E7LeRoErfrrHvf7aV58BziI+OkxycAaJbKRLMZxjfkhE7hYB83HBhm63iGpuXiOL7o8OwHyIpMLBElGtMwDGU9zB2GUK5a67qNYRAyvnnwSt7VjCGZcXRTF33kALLDJPtSdJodIXY8uYX9d17L+K230zc+Kr63okIYcvH4FMlMkjAMWVltMZKLsXkszeK8qIdzXH+9ZcnZxTqGobJtNC3qqyyfyYyBKkv4gaCpa4pEOqIwmTVJRxTh7efjTPTHMXWF2Zmq+PxOr8YRwPfpH+1HNU0MQyiY9KciqLJEp+vR7npIEqRTQiF/w0CC506voCoyqiKjqTIxQ3hS+YROLqatK5BsGU6SMBRMVUZTZPozEUpNG9cX3bcDRHuZhKHQ9UNUWaLR6HLxyWchnibTn2ZupUl0YK3F1vduP8LEjt8BjkmS9BVJkj63tv2gLwq+92LnM9/DubcBq2EYXnzBvg2SJB2TJOlRSZJu6+0b4Vs3dntRkySJTH+GeqlOaalEUJwXSuCqJga63ewJ/0owsFFMHprRo7une2/Sq/tqVUV4plUm6DSvCPr6LnI0KTypTh1aNeEtRRJ0ywWRO3Pt9dUogJrv5cQUBfQITmH+Sj1QLHVF0krRoFkhXL4kQpztKtXTxwD4xEcfB7fL7LOHMaMmW3cM4Xs+Y2MpjhyaZub8Ah/80kX6tu0EzSS2bT+trsdoNoLWPwaygjG6EfpG2XnPbYJAIKsidxfP8Is/cR3vODjMazbn+KP//h7++Jdv4617ByDw+a0/eYq//PCj9O3eT2luiaHxPJcvFbj3ulGGdu/i6Y98isVyh1fdNAHpQRbmquzYOcitN0yQ238d9XIDeWgjf/5HvwTxDLHNu9ixpQ9aZUpzS8yVO/zD/Wd5xTtexbbhFFMPPUz5+WchhI9+9jgD6QgPP3yeqKGSzqXBdwmWLrL7wDgMbUFWZLHgAOE9hiFaPEmp0ODxB09w9sQctWKVTrPD6FiaRMKgLxslFhPebtAsI8ky0lpvr1gGVJ3Wwgz1cp1oXAhDGxGDSERjy44hFFWmZYsJeTwfZygXIx7XMUxVECtMhWRSECuCIGRpuYmuK7iuj6rK2G2bVC7F1Jl5cLvomTxKZmCdlBFPxcmMjYJrE01E2Xv9ZiY2D3DtwQ2CWGO7VAtVER1IpMGxUE2TeEoo+pumSjZh4Hg+t94wweR4Gtv18fyAcrNL3FTRNZmm5SJLkI4orDRdMlEFXZUYTGjYXkCzG9Dq+thuQBCGrFQ7zBZatDouuqGKBRyIceSJnHCr3iKaiDI3U+biTJX5YqvHKBRFyRuGkiSjOqPZqChjGE0hAycvlRhJ6Wi9ViuaLNFxA0YHE5w9PrPeqHSuYqH2RI8juoqhirYzQr9SYrZs4/Y88HhcNK+VIwny+RjnTs6j9Hq+fe8WvuR/P4T2V8AHgP/GlZzY//iBXlHPvm1OTJKkX/lWLwEvQZfpW9o7+XovbBkYD8Ow3MuBfUaSpF18h83bJEn6WUToET09QLvRRlEV3PLyeggtaIn6EzyHTa+4i6lHH4eVS+uAteXOWzFNlZOHp6BRBCeAZFZMDP3jom6qviro0J268MTMONQLvYJcR3hgqr5O0abb7uWcdKGubjfF/vqqOBZEWMjpCrDrtoWXqCigROgsz63rPaKojGzfxOKzhwDYsnOYw4+dhmaJp+aX2HfLLkqlDnNPPSnAKQxoV6rc/9g0nWaHX33fzfzOBz5Bd06EUc4chv7t23u9uBQKC0VKbZeVhsN/fuIEZkTDcXzuu30jf/+7P8E7/+OX+Mj/8yY+9NQcT9WaokHjSoHf/y8fZtu9d5N/033cuiXL7//982y7dhvnT8yQvWECU1d46yu38ae/+xHQTd73/t+HZI52YZUH77fECt5u87mPPcbNrznIQ3/xDyR+4Se48cfvo1hsM3X0DH2TE9z/wGkO3ryZRsehtFxi640HmD63wNxsjV3XbmLLeIbP/PExEXJVFa67cy8z02Xsjs3bf+xGinWL548tsGlrP0tLTZbPX4LKEtGt+wiCgMyGjcQSUQYGYnQ6LudPzhIEGsQyon6sZYHVwO32sWEwweHTKySTBm3bZbnQWu+YMNIfp9NxGR5Ooqky8wt1YjGder2L7wcUCi1cV5A7NEMjDEPi6ThuxEBRFXRJp384g2kKD67R6BJPbiUIwnWZsdWC8Hgc2yGwhMxT32CWxa6DoiqsLhQZ3zTIjskMqiwzkI4Qhqx3gLZdn5G+GJ2ux2R/gnRUxfFCcjEVLwhZabiMpHS8ICQf02h2fVaaLumIgirLpGMGy90Ovh+wulBkZPMYi0dWRU7PsSAMGB7PcenULIOTQ9RrFrmc+DzL8ZlfqHP9nkEiusLR6TKbh5IkIzqPHlvk1v3DaLKEJEnoCtjtkJSpkIrpZPuzJCM6uiqRjek0bQ9ZFqCYTxgkDJlCy8X1xVSRMFVcPySRMFCzg6LnnKagmzo7do/w6Hc3h30HM9MPvZXCMPyDH/RFfDN7KZ7YbwMZIPENW/wlnv+PrNeE7S3Ax9b2hWHYDcOw3Ht+BNE2YCsv3tjtH1kYhh8Mw/C6MAyvU6MprLaFW+n1BnNtQVNu1wSA+D5Tx85CfoLU7uvAiDC4/xoG+uO02w7X3LQVvX9EhOSsJiRyeO2mYDvpEQEyZlw8VpcEgGmmiBckc8LLAwGenrPORvQrgkiCY4si1p4QrcjB9GrHjBjEMqQ27xDP23VS45Okdh4AYPHYMfEZms7qakuozisqhAHRqI7vB8iDGwQwpPoZ276BVq1Fq97iqydX+aV/9Wbe8YtvF95XcZbySpmDB4a5bs8ge6/bwFMnlvmbv3qYdqPN4GCCdqPNhz70AO/4xT9h7/WbeNf7/5DZ+Tp3372T5YWy8OBUnfMPP8mJz3yB//QfPoyqq2yZzPDud9zASCbCSNrEDULe/gtvByOKPL6Ta191MxRmCAqzvPNfvoMb3/ZqvvB77+IVO/MgKyiyRLfr8VN3b2T3LfuIJSLsv34jAHPzdSa3jnD5/CK33bWDlTNn8LyAz/z558geuJHM9t00q00Of/FRQZpIxSk3bS5cqvDqV2zlyFeeYvvWHP/iX9wLmSE6K4ts2DrMnr0jOF2XIAjpdHphvJ5gc3nqEkEQMLJ/H7Ii8+zJZaJRncW5MnNzdRRFXO9AX4zVSodyuUOr1SUIhBBvp+NQLdVpNzrYtvAkVFV4EbVijWapSjwtcmmKqvSEhj2Wl5q0ml00TRRUz10ucvnCMrOXlrnw7AlR56gaoju4rjA4OYSqqYxtHCSVMomZorBZ6Akq68rv+aQgdhi9Hly2GyJL4Pohcq/OKqoJUsepFYsghIShsNr08MOQpuXS7XocfewkW3aOEovp68XZiZ3XgmawPF8mlUvTrDbJ9sWwe+xE1wvo74+vMwgTPVp9EIYMDSaYKwqALrZd2k6AIkNEE1POLQfHaVgOjido+n4Qko0bPSUOj2Y3wFRlar1CZkORCMMQTZPxHBdZkTlx5DKN1SJzc7XvZhr7JpOPUIx7KdsPoR2RJOl3JEm66Z8bxf6lsBOPAp/pAcvXmSRJP/Ndfu49wLkwDNfDhJIk5YFKr5HbRgSBYzoMw8qLNHZ7UQvDEEWWCWIZAVxwharuWJDM8dq33MQTT02zbecQx5odMpkITzx0moO3bee5J84TlhaENwQCiAKfsFPvUdl7+2MZ4TnJimCJxYXXhqJcOSaSFJ5aGIp2KnZLECk0/UqOyu32QjA9kkdpnvrKlJAckhXqU+fFBNEsi9cdG2VoIyvnL12pF+paHHnmEqqmcuPt23nmMQhWLjN/+oIIMzVLuK7PSt3mE588DE6H1/zM25ldajCQiuAFATuGBvmTT56A6jKtwgyHZi5gjmwkPTLCtp3XcejhkwDMXVpi5vwCH/iVu7hQ2MOf/dmDHLznWjYMJviHTx6hdPoEXzjyNPge43e9UjRjbFlUL5wVJQKKxpEvPsIv/NbP88d/8BlmCgL07/vpDzBw4x2Qn+BTH3kIPZvn9t2DTI4k+dKx4wwNbaPe6PKuezbx23/0CKxc4tGviVzj+a8+AukBKlOXyG3dSmg1mTh4HRsnRd+1p5+4RDqfxnF9osNCpeXopSLRXD/RRBTH8Xj8a6fZfe1GKhVBj9+0Y4zF2SKdak0QPZIxupZD4/JFrNYo975qNxtHUsgSrNQs4j1l+PmO6B/WaHRRFJlYTMdxfBRFQZLFpCrLMooiCfJGOkGrLrogh2GI5EhYlossS+TyMS5fXCGT7WdlsUo2n0JRRDF/RZKwmy0GN4yiqEIA13F8ktkkqiqjKDKdrkehbrFtKElcV+hPmeiagt5TvIgZKn1RDUmCthNQ6XgMJjU0RYTwhuI6piqCIpYbsFTtkI0bZOI6sws1Nu3bguv6XD6/KBZvmk5zTnT3cGyHdrnC4OaJ9ULvs+eKTExmaLW6aIMJFno092LLZXN/jFMLPuW6hRcI2nxUk/ED8dmSJJGJG0Q0UWzt+iGaKrNas2i1HarRLqoiEYYiJxbRZSK6zFRRaEOObBph8fnjvV50LsvTL0+xsyBt/HAi1EuwA73HG1+wLwRe8QO4lq+zl/LrvRf4VhzUF22v3WvsdieQkyRpAfitXl+cd/CPCR23A/9ZkiQP8IGfD8NwjRTyfq5Q7L/MlcZu39bS+TSlY89eYeKFgQjf9YDpqw+eIQxDDj91gcBxGBtKcv6kzOpqC03XcMIANEFVjmUzRBNRrJZFa3FOgM0aLd5uC/KHY4t9Pa8ISe2tTNuC+NGqCY+ra329p6b2wExRBflk7X3XlOADX4BjcZbbf/LNzMzWmDv6PH51dR1QjcFxhif6ufz4EzhhyCGrS7ByWQCk3cJtlBi6/kae//yDmG9/DYqq4Ks6X/7og4xfe4AvPXEZVZWZPT0laP9hCLkx9JQoH6idP834nVtwbtnBsc/MCo8yDPi1X/1TcY16FFWVuX1zmtqr9/CVT1SR+0aJJWPMHTkG7RrK2HZe95OvYe9oks8/u8Cpp0/xx//zE6AZPP0PX+aVP/l6Xvm+H2N2scEv/sqr+A//7+fRdA0ZiJsaG3eMcujRM8iKyCf95E/cxKe+GKe9MMPGG65h+rGS6J4tyZSOPA19o8wePsbsySgDmzeybfcok0NJNvXHGBrLsbTS5PyDD0EY0okmKSVyJLJJ5i6X1mvILp5ZZHgiz6os01pepHyxCnqEwb37KC+X+eJff5HMtl1E4xEymQibx9JML9aRZYmF2TKxZGy9O3StJjomqJqK1bKQElFMUyeeitGqt0nnhccSBiG6qWOaGtGoIDMks0lqVYs9+0aYnavTbjmiV16zhR6L0m62uf7gJCPZGK4f4PU8r4GkQcP2elR0j1xMYzgToeuJ4t+RlEZfTKXc9mh1Rf+9hKEgIxHRZFRZotBxaNoBbcen2HKJmyqrNQtJgo3jGXRN5vJCHbch8nJoprjHjYggyVgNKqsV/L4UiYSBpqssLjZYPPQ02ybfQn/KZLnSoWW7+EHIjpEkj1Y62F6ArsoEIZiqRKnt4bg+A0mDpapFOm4gI3q2JaM6y8U2zx5dZM+uQUJCMjEDTZEptoTihyTBDfuG+MJiCWdxinVt1JfLfmQxjNeEYWi/cIckSX0/qIt5oX1bEAvD8PyLvPx/A7/6Iue+81vsf8832fdJBOX+mx1/GNj9ohf6Tc9DKNa/UOuwp25AfBACn4GxPKOjKWo1i7OPPM0Tj18kaJQJgiGc8ooIEbpdEqPjNCsNUUem9KKoa00tPUcct9YJulkWYTpFETmuMETJDuLXSyJcuMZ2dOwrLK7AFzmxZmWdXbau2mAinhdmRB3Xpx4ms3kranaQSDxCu94mcB2uvXETT33hyfVz/coKB9/yKkqlNtNn5yEMWX7uGYjEeeaLTzJ+YC9zS1Pc+PrbsW2PIAjZtSFLOm1y/KtPi+vxRPPNwBddno+cXuH2a0a5+z+8l7rt81cfe47f/5U7+M8fPcXys0/z1Ec/z1N/LzF48Gauv/cGnvuHz2MM3kTTEcodfq3IFz/8Bb5oRgUrTOq1p2/XiG6/hgc/9iBoJhP7d/HwuRI0SrQrSzx0Yojb9wwyMZqmUmpx7YFRLs/X+IfPPs/Nt22hUBrk1ENPXenCnRkEM0HfUI7y6RMgK5RXylhti+cffIrdd92Iriucfe4cO199D2eeel6c5znEkjGsloURMTjz/Ayvfe1ezk1XaNVb4rcB5GiCTrMjmINGjGwugW17jA8lKDdtul2Pes3GjJpMTKSZ7I8TM1RWBi2KNZt82uTsJbE2VFUZ01QJgijNalO0D3I9FFXBcTwMQ6Fc7tCsNnG6DjO6QrPWRjM0sn0xCrqOqqpoukat0WUiH6fTDdaFYZZrNtV2l4FUhL64jh+GveLgkFxMp9DyaDk+CUMhE9Wx3TVGX0DCULC9gJWGuz6mwjBkrthGVSRMTaHRcTF0hUTCuEJQsprrTEU9N4ivDTI41k+7aTF1foVMPgVIoGp85cEzvPMtB+hPRViqdhhMmeiKxJ6NfRiqENeuWT6GKrxXxwuw3YDhTARFlug4AfmkSbFhE4vpDAwmaFkunuczkY/jhyGFuoXXK6VIRnWGJvqZLS5CNHWFwPMy2I8uhvFJSZLeGIahByBJ0iDwReDaH+xlfe/sxB97Wa7i+2RBEAoSxzf2/JIVlFgSLZlB1xVWVposzJYgmiKaFECUyUQEnR0gkcMwDRRNRVEVwqAHMGsek9ej0XdqYhUaTYoQoNsV4ULNwK+XkOLZXi6sR94wY1e694YhRNP0H7x1nfWIY4ljOo0r1Hy3i5weoHr8WWRFpnn5IvmRPLSrTE9XwO4Iun6P+XjmxALTzx4ThdWrIrwjJfNgt5k7fRGMCM89eQHH8dm5Icujzy1w9vjclZojReWGW7bwJ//mTg68/h5W5st8+AN/wdHZKl3P55d+6gbe/2/+QoBj4GNs2Ik+sZ0337UJTZNRxrZTOnFMsAVTAxx8zc28+xffAp7Drv3jbDmwlbWGn52LJzGHJnjru+/m7hvGecd1Q7zhX7yFoZvvoNHo8qd/+yz9KROrZXHmQomb9g5jl1Z56G+/wKnPffGKUkpmULBJl86jaiqjBw8SGRjhjlfsJJNLgutw6vAlolGNN7ztJs6dmBEiuoYQ4G1UGsiKTLYvSiQW4XN/+wCVUotteydJDQ+z69YDBM0qjZVVoe6iR5i7tEw+H+PI8WWqNZtUyuTW60e57eAYk/1xDE0Rk2nVIhnVcNyARt3C7hESgiBE1xWMiEGyL4mqiRYqAJGIRjYbYde+MbbuGiMeF56boir4fkB+OE92IEN+IIlpqlxcanBupsLl5Qblpk2l1V2/9TVZYmPGJGHI9MXU9RYlcV1hJKWTMlX8nlqHpkgUWu66WC/AmaUGi5UOc3M1/F6/NFmWsGxP5A9bFXE/yyq5vSICpaoqm3aM0ay12bQlT7PWpLRSYfPGDPtffQfW6iLTKw1mCk1mFuu0HR/LDXA8n04vlNiyXVpdn6btkk+ZpCMqZi8UmjBkpF6H50xchGw9zyeXjpA01XUvPp80cf2AR48skEr1dBqqy6IVzstkP8IU+88An5AkSekJUzwA/MYP9Ip69r2C2MvYEvXlN1npeT3faGGAX5wnmogye3GJSrHRC2gHVFYrDO7ciecFVOdmIZLETMRpN9oMjA2st0hBM0VeS5J6LeR7reM9R4CV3RIAJEk9vbtQ6Po5dk9Hri1AIjMoQE+SoFGgcO6cqA8a3SFW/ap+pbNvrzFiMH8GPAfn0nFo11h97imwmqycPc+Ou2+9IiQb+AyP5658liSBESVcmUIemODdP3UnhCH+/DnKpTb1toPdsUWPLUswBWlVmb5c5a8OLfLWG0axLSEh9ND9J7iwWKdqeWR27GXHK+/krb/w43SnT+GUVvg/H/gbnvr0Q/QN9vFz/+YdSJkhaJZ49hNf4m8/8iTm0ATXbOrj0uk50KNkdh3g+re9Dvvi83zyjz/GodMr/Ny//CM+98FP8L7XbeXy1x7kxtu2EjNUrAvHWHzkARodh3f/X/ey4bZbxczg+4zv30NyZJTYpp2Q6GP18NOkUgZWpUSh3MY0Ve57733sPbiFg1vzfO6zR9m2Z4Ldr38NubFBqK/SqdZQFIVu1yOWEgQbgOlzi9TPHufCqXlollFjCerLK/RPjhKJR9g4nGTf7kE2jqbYMJjA1BSR7lRlplYaLJY7QlYpFaHSsOkfSJBIGPi+AIIwRLBpFZF381xRpyjq2wR7MZk0UFWZoaEEmqYQjxt0mh0MQ6HZdCgUWiwuNTBNwb7TFJnNg0kRqZYlun5A2XJpdwNWmx5DKQ1Tk3D9kEtFm0rHw1RlHE+AW9JUCEKwvYAe0Y9SpUM2GxEALEnETZXLUyVOPHlSLB48B8Kg18JHp1OrUSo0UFQFy3JJZBLs2jdOuWqRSZnc9xN3c/jZGfze7P7lxy/T6vqkozoPn1wBoC+uoyky+YTBQELH1CSxqaJNS8JQUBUh8Ou6PqVSh2RUp9MD4NWaUMyL6CqT42mh1DK2QYzRtbz1y2Br8lnfbvthszAMPwQ8iACzzyPSPQ9843GSJP3Ki23fj2t7Ka1Yst9i6+OfOYgFfvj1N+iaRxaGkMhRn5sh1ZcSN5UE2fExXvu6fYyMJjnz4KPieKvBxm3DIh9RrNGplMkNiTYlmHFxjBm/kgdTNMJupwcaAtToWldCmomeN2ZERG6uUxf7FQ1tYAI8hw0HryFcvgRmjMT4BpLb9ojQXiTe89iSoo5NklAnd7P57rtEOLNZ5ppt/dx0z37h4dVWufDIk2y647ZeU83ueiuZoLzExz9zbD3ss3rsMJsG4iJs6DpX8nW+x8KJUzz8d1/iN//jRwjaordZbjhPs9nlqRPLbNs5yJ+8+1oyMR11fAfJ8UlQNN75s2+gcOoEH/qbp7n+1m284d33ctOP38dv/fI93Hb7VrbkTN7zrhsh8KhOX+S5R05A3yi3vesNnH7qBBN33AWxNP/lN/4EhrehKTLXjcUZue0VDN56D8OZCNW2w+Wzc8IDMyLMPfJV8oNpfuwNe4WSiu9x+vNfIpbv5+SXvkYiYTA1V2N1pckTp1bQ/j/u3jtMkrM6+/5Vh+qcJufZCZtzXoVVllAASSCBwORkbAzGAb8Gw2ewX8PrCMZgbCFAGBEESEIBpVVapdXmvDuzk/NMz/RM5+7qit8fT/X0CiSxMisb++zVV293V1dX1Tz1nOecc5/7lt30HOhlNp5l3dpGcc6aQqlYwuGQWLVCaHUlRkbR8jnwh9GSs0gNXZiGSce6Zaxf08Bn37+FVEGlpSbA5FyOM2MpppIFkvnSYr1GdjsWkWlltKLDIS2KaRbyCuGqMIVcAV3TUQoK+bxGfDpNMlWkUNAwDAvTtEiliqQSGaanMnQsrae+PkhTUwiPx4XP5yaf11Bs3sGxRI76qNANU3WL45N5TKCo6ouM9NUBF0GPU6TrDBPdLhVlFZOCZqIbFn3TWYZsJN/0VJp8XkUzTHKKTtuSKjGW3Z5F5pnC8BkIVuOPRXG5XWze2Iyum0JJO55jaWuUg/tHKKkGH7x1A0vqQjTXh4hGfcxlFOZzJYIBmZRikFF0Sroh1owOCdMCCfHsdoqesDILiaIIOqpCSccvO5hOFUlnS0wni6iaIQBfTge5M8fEOC/LBZ0H+9/G2PFLDsgLtAJHgR2v4pTK6PUtCCxDs/34PWDVG3GM5wLsOIS47q/ksH7reLTONqfTgbemnqJWshkyshVqp2wCAjHme09Rv3Y9kiThD7jZs2+U6tqQLXsRACXHbDxDTW1I9O54ZVJzKWS/DzWfFKv0QrrCRWjoFcYP07DThZJwZm6vYAop18pkL77GNoqJOEuvuJT+F0Tf1/DxPkESrGTJ9hwVTkvJC5CHPwLZBZq3bWfy8GGWrWljsHdSMK47nDzyTB+lYgkSY+J7Hj8OOxW0KB0Trae6o4Pa+jC9s0K4sG3Ncr5371HxeZnY2Ha8W67Zgc/r4vn7nhYIS0MncXQ/uraJqy7t5rb1DTw2OMe379zNDW/dTntNgH//jxw//v7Tgn0/Psz+e4cWV+gv2e0Go9ffwAev6uSDf/xOJucL7HpgLxgaz//4YQhE2Ly6ngs2XMvd330MZod56o5TPHWnqEP6V2xmfKHA9o4okzuWcfQhQdHk7ljL4JNPMtSzHEsrsfSaq+k/0sellyxlYWMbB17sw8hnuOHWiwn53Jx44Rg1HUtYvryWp+96iKvfdyNP3PUQTlcbw2cmGRucgUwCqpr4xudvYDxV4o6fn2TLplZ2P9ODppkMjCRRNIP4bJ4jRyaorhUTcdDrRjdMZKeDoM9NSTMYms4SC3lwuwUwRddNikWN9EIW2Stj6EI6yNANTMMkEHDT2BhiciJNVbWfYlGjWNRIxNMU80XUkoplWVRVBwiFPItEwppm0FIfxDAEBF12OagPyYQ8TojIZEsGAY8Lp0PCtNlDXA5QdMFskVL0Rbh9QRUUU/mSTiatMNqfJFITwTQtRsdSRKNeAa0vjzHNTl+aBpGGOkzDFC0ANLK6q5rqqouJz+aYSRa5/uoVtqimqMONTKRZ1hFjcCxFKORhaVOEeKZETVDmoRdG2LmpmaDstLeXCMoONNOiNuCiUOWnbzJNZiHDpZcsxe10UFBNSprB6PA8ZnsVuVyJ2ekUmf6eCvDK1M/LfGPxPzZV+FoW+qXXP3+V9wGwLOuvACRJ2gVssiwra7/+IvCzN+IAzwXY0XEuO5IkabVlWad+80M6fyZJUN1QRVzT0eZsNL9pgGSJaENXwe0hfvI40a7lxKp8WJYlWBPcHkhN46gRLWqJuSw+v4divojT5cTldqF6AqIZelETjIr2mGKDABxO4bjKAodl7TFTx9+0lEKugCtcxczEgtiutp32Fe2MPvuMiC7KRXJDF6tGXSW2bguThw/TsH4Dp3/xiPhttwd0leRR4QhpXIrkcOByu+g/0ifSi8Go+EzJMX/8EPNuwV5AKs5Ynx8me1n55uvpOXPM3qdo3D742IsCjl7uaQOwLFK9JxhaWscdBY2rVlXzj39+Hf98fy8vpHKYk2fANJA716EaOg3bL6K+Psixp/cLh2wa9D3yMJ992AKPn0vefSOeSFSg7QBfXRP3feOHeJduoLp7Kbl0brE5+//74vt57NgMcymFv/z7h7jsLTsEWMclIzkkrv/ddzA2nSWZLArItyTxyF2PEF26SqgNO10c75llSXuUT/7BtaSLOuOJPFJ9B/F5odqdGh2mcfUqGhqCfPr/XMm7P/tTdvcnCXrdZBYy7HrogPg9SURVwyMpJAlWrGqksz4knFqqSKGoMTWZYdvGJtxOB6GAqM2MTKQFn2dBp7bWz/xMEl3VCVeHxSLEngzdbkFT1dVdTTJZRNMMDMPC0A1kj6Cjqq0LUhXzUR/1MZMsIrsd6IaLqqCHQklHN4SSsmqIZmGAvCpIfMX/Kyl3l0OiqAlAh8dpMZMpUdJNCiWdXF4lPjwOhTRFr0x9Q5hstkQ+r+L322NJ9oleTJdA56anZwg31FNKzvP4gwd4z3t2IknQf+AE3bdegk92EfC6SWRLPPPiEJdf1MlcRsHhkNj/XA9r3ncR3/vhXt503To2rqpnYj6Py+mgyu+iYB8nQFoxSOdVqkIedl7cDUDY715MUUoOiUSiIORwBk6JTIn44JVLDv9JO18Q+1chT/8H4C2I4GEQ+KBlWSn7s88CH0Ygu//QsqzH7fdfkTxdkiQPgsJvMwJ9fptlWSO/cj62U/pPWBsvD3JUYMl/cl+vab9pTexsu+s87uu8mGFYLMST1LXUVt4spxQdTgGc0FXQdbx+L8lkkeTwkEAf5tPUr9tI54oWAkEvHq9MPltE13T8Ib9QXTa0Ck1VeQlmGqKedFYtDMMQ7OOWVRHXlL0UFuYhM4eemCQ7NcHq664CQ2f0mSdFFOUNgUvmgtveDI1LCXSuANOgubUKVIWZfS+y/Lpr7YnDXk1WN4NLJlITJRQT0SOGBoZGXVcHvqoa0FRiqzcSW7a60pw9J8iLex5/qiLWqSmiZlAqCqolpxtCVbz9D24T5xCu4ei+AQzTYi6ns3ckzYevW8q+v30Ll7z3rdC8Qog9ur3MT89z7MVTNKxaJa65odnqAH4wdLZ1VrFqfRvKzDgsTHHLW9ZBQzfKSC+P/sVVvOX6tbz992/lXX/wdv7vF77H27Y2se+h3ay5aD1rWqPQtBwsC3W0l0f+/cdC+DGdR58d433vu4Sui3aQGhnisrdfBW4v4/v28/wPH+Trf/djRmZzPPMf9/GHH76Yk4eGcC5ZA4bO9JFDTE9led+XHudt77qUwck0P33wGL6AYLWP1cVQiipb1jQQCLhpaYlQFfIwmy4KVomQhzUdVdTWBZieF/DxJXUhumt91NUGbBoqh50h9hOMBlHyiojCTJNAOIDP5yYa8QpF44iIeLxeF83ttfhDftweN7Px7FkOyySTUykUNdJ5Fd0QSMRkQcO0LHKqwVRGyKkoukXJsNAMC1UX/Ih51SDmd5JRDGZzKsm8Ss/wAlOzOYYH5qhpbaJ+9Rq8AS+plEJLS4SJ4VlUVReLk4zg0aSQESluh5OW9hoxlgppiqpBz+k4qEWOnZ5FN0yKJZ3jfXPUN0bYe3SKoqILpKOucvf9R7nymjXUR320VvuQXU5iPhfxjMp8XqekW6QVcS51YY+gEfKJfjenQyIgCyqt5GwSj8dpc6iaAknstP//y8Cv/6yday7x3Pzc9/hVovMngDWWZa0D+rCBFZIkrUK0La22v/NNSZLKdZRXI0//MJC0LKsb+CqCUup1mSRJ33qNj+8C9kuS9EVJkr6A6PH9/uv9jXOx8+nEfuvqY5ID/CE/Pp9dvyqbZYqbqlQQN54viMPpYO3KOlbv3IxpCnmV2YlZJEliPp5ibiohJphSiWwyK/gSC9nKjWAYwhnYkveLgpnFnFiVllMWdkrNVdOM5PGLiDAQA1+YU7v3iXRdnQh+A7EIeHy89MwpiA/R3F6L1Lyckwf68C5ZwWXvvUn0OJUjPYcTZD9SfQfp4/vI9B5nxdpWWlYL5ZtsMkukJgJVTSRPHiJ58tBZtS9N/N/hFI7F4SS0ctNiDS0x0I+vrZvVF6zlZ//6E3FuC1OYU/309CW4/8VRiqrB3qEk//fJfo4dGWfHpSspJWaILl+NNjtOsKaaklLC17WGC3/nJrxdgsFf7ljDP/7Dz8jlRGS87Xdu4Qf/8TROjweqW7jj4AT3fP8JZKeDDS1BWi64iGd654l1r+D00WHG5wuwMMXn/++HxEKgupnTu54hPbfAthuv4NTIAvOzGXz1zVy3tg5Mg7r1G2m/5FJWXnUJzz20h6VXX8VMWmHjjm7qWurAF8ZZ28q61fU0LWlgYCJNV3OEQibPJTu72fq2a0lOTBGJ+sgpGp2tUUolnZYq/yIbRXuNn5lkkdaGEKlUkeOnZxmOZ3m6Z46OegHMKJV05ucL1NSGcDgclIoltJKGxycAHNlsiVRatOekUkI6BgTzfl1DmM5ljdTZkZ9lCWZ8WRaoRQts9g0T0xQIRN0QqEOv20FBM8koxqJoJIBfdpAsiNpTXtE5MzSP0ykUAADallRRUxugpTVGJOKh9+Qk0ZooU1NZsQOPT9xbgFzbTENnGwsLBTB0nFUNPPvSCLqm07h+A6lEipyi8+Pb76f/4Cm2rqqnY0mMTEZh7/1PQT6JVtI43ZdgNl3k1ESaSEBG0U18shPdFIrPmmkRkB3oJoR8biHmWTIIyE4MEzxuJ7HaGIMnh0kN9Fbq5GUmnbNbcH5DO18+7JXI021x4nLucy8VJqObgLtt1qNhYADY9mvI029C8CEC3ANcKZWF186yX4OJuP41jv9LiB7jJJBCRI1fPodTf912Pp3Yb2U22B/0YpqWiEDKqYPyIHZ5hMPRFNraIoxOZug5NoKZToBlEq2Jks2WqK6PYhqm0Joq5SkVFAHdd8sVFny3XRNQixVJecMQ9S/LqiAV7VqTrggiV6L11LY3g66yYuc2MQmkZyGXFPDtYDWhWJiajdvpe34vVj4F0/0oyXl2f//nYOhc/ZHbBMpRV2F+AmvspACCAMcPDOL1CgdXHDrF/PQ8HauWiHM3dOSmDjovvwxijYvpQ0qC3Dh75hi+jpVc8I7rueJtl1AcG6D3+KhYYds9ZPiCrFxWQ6lk8PhjJ9j16HGaoh6uvKSbpio/X/3irXz63Rv5p795N83tNSTHxin2HmTP3b/g0suWE+hcQTAapHH9BhYSObzVdYyPp9l46QaMecHmf8ff3gm6yg+/eR/9cwpKocShIxNkU1mq6qtY1hDk5g/fyMnJHKee3b94/Ogql66q49BTB0nNCTqn7z09DLKP2RNH+fibl9HSEOJTn7yBwdPjDE5lOPTo81RX+yE1gzE3zq6HDjB++CjHH3yUe+49iEt28/A9LzA/n8dfVY2mmcSCHoI+N7Gwl+OjSaIBD0GPk6IqgAaxgIdrt7fS3h5FUQ0S8wX67GZoSZKIxXwi+HUIYU2XLLTKcpkC2UyJYlEjY1NOlWmwamoCpFIKhiFoxnTDIl8SvX4LC0KXzbQsSnazMEBBM4nnBCUTsCjOqBkWHpcARyiaRckwmc2UONo7Sy4n9M7SaYVQNMDsbJ7pyRRzc3nmZnPkUllmjh0mm8xW6sB2y4SaXkAtqcyMTINT9LGViiUyyQwdHTEKYwPEU0XWXr2TFdvXcv9jpykUNdqbI7jr2+m+aBtafJTJ0330DMxz+NA4AxMp8qqB0yHENSWJRecclB3oprgOmmEyly2h6iYBrwvZKwt1iHLkVZasgfOaTvwvFMX8EBXSh2Zg/KzPyiTpr0Wevvgd2zGmgVdqXp4DDiKwEeXHQftR92uO0Q9kLMv6GjAhSdI5laZer51PJ/ZbZ5YJsuzA7XYK5WC7URXTEOmEUJUYzKbB9HRW1DcUIWK54YYraO+swe12kkxkME0Tr99b6QcrM3+Ue8bKYAiXXPkNp9AcQ9dEuq+cXgTQS+RnpqCQEhNAcpreZ1+iYfUakL2850/fj2maOLw+2jprcckuNrxpp6DPcnthbgwMnWVvugbTgi1XbBKIRUMTDknJE121AXN2lIG9h/G2LQVvAK2kMrx7N+glCNegjvZQXx8SzvjsxmtdBcnBm69bQ13Ei6abgrQY+PifvAP8EWq3XwIOJ089doyxF54T13xujK9+dw8HT8a571v38bl/e4nbH+7j2f4kN2xvJdQgdMbQSjx+58/Jzy9Q1xDhnVd1s2lDM8tWtxCNepmezoprVd0CkVoa128AJcvhgQSXXrCEL7x/I++8ZTPhiI9/+Nw32fVkDw8/cpzPf+YW8feobmHTpes5NJLkr//8Jtwembl9zzE+PIfbH6Bp0xa+/sAZpmZz/PTJAcz0LAefO4W/uYOhvmnqNm6ladOWSp2nth20Eh6fB4cvxMRwHE3V2Ly6npeOTtE/nqIq5KG7MczEXI6eyTRTyQIel6CVmk4pFAoaHreDfF5DdguZEVl2MhvPksmUyKWENEx2PkUulUP2yigFEdVoNmO72+3A7xe1rLq6ALpu4nSKBXShKBSNPR4nmmYyNp0lW9RwOR143U5qAy5CHgGfd8AiLROAolmLyEnDFAKZ87OiuX9iMo3b7UQt6cyMxTFt+rDZ0Sk8fi94g0IqRlcFwMjQQVOoX9pFtCqAPxyAYg5lfJDsXIKlq9tIJosg+xganCeVUnA6JTJDfTgcErLbgZZJMnxmEl9LF+gqwy/tI5VIceTJfXz/n+7i9n/4IXlFx28ziuiWhcspyIAXciViAXlRhkXTTVwux2JqHLVYqYmByDyct0nnHB+CxejgWY/fPdefkCTpc4AO/LD81qscyWuRp58rsfoQcJllWR1nPTptrET8NY7xC8CfU+klcwM/eLXtfxM7P6Rhwn7rkIqir8ZLJqMwNTT5ckFKTalEZIaB3++m/9Q4GBq1S1qYmkyjKiqp4QEc0TpMpUheVUUzp1xJmQAVGiunW6TkZI9AERbSYFgVZ6bkcdY009C2klJRJTmXpL61nvh4nJoNW0icOs7MoX10X7aTh5/uwzRMzPkpTv2il6qNOzj65EviBqxpZf3O9RiGxeiQaNTse2o3NRu2EIn6GTzSg9y2gtTwAJTyBDpXkB/qFYjLYqbC+5hLgtPF/HwBuWEJaiYpVqvlGoGu8ty+Ma65uIMH7rgPPAGMkZM8dagVFqawmuu5/JbL2fviAN76zSTjC+DxoSdnMdvqwRugMHQaXV/Gg7ufBIeT6z76Dp4qlmjuqCc+OY/X76V33wmaG0KMjKeYmZjH0A2+82dXkCiu4bFTCRJphQPPHGPrbTczNDDH2OgCltUOgMvlBH+EwswEay/byr///JRgTClkOPzzIeq2XMDVq2qJ1kaZSzWRm55k7SWb2L6ynlPjKW7e1MCPXxynkO3iLVev4OGn+0geP0hBkhZ7iKq6l2GZFsmhfvID06y4+nIW5vO43C72HZvmiu1tzKaLBL0uCiWdoN8tqI5SCpmMcF61tQGiES+HDowSCAstunRGoaToBEMeEvE0LreLYDRIxuXEG/ASi/kg5kOWBRGwYVj4/TKaZlAoqJRKYtxGbGSgaQr4fbGok8+rBAIyBVlDUQ1CXjcLBQE5d9qTvmCIB49LIlU0yCo6freMZljUhL3k0jlqm2vJZhQ8tUFmzvThr2vAMAyK6SLoJUrTCVDylNJzYly5ZOEgqppYiC+QWXBRnBi07zNRm52eWBA1Vm+I+MAQW6/czMxMlhvffz0DYyn6MkmcwQhGao6i3aOHpuKW3Wi5pPidqiYm4lmqQx6ifjdhr1PA7A2LsE2ALUkS5RirWCiJ+9ajiBICiIVnuOa8QQpfJ3w+YVnWa9L2vZJJkvR+BODjyrPU7ScQ0PeylUnSX4s8vfydCZuQPcIraz/+M4IAfuwVPvv71zjUtyL4Fg8DWJY1JUnSKyIaf1M7Zydm50vfDXRalvXXkiS1AQ2WZe23D3LHa+7gv8EkCYpF0VtDxu7Kd9jpvWi9WDnarBlerwt9YQbUEpGoj4E9B8AXRgrX4vV5KRSy4JIXZdeVgoKVmhGAjbKVHZuNIhSaYIi0opoXjcWK6ElJDI9APo3RWIOhqkJR2CWz6oqLaawLMnBsQDBsWBZIEguDA5BJ4FqyhvVbOxnsmyU1Ow+FNNkT+6GmlcTpkyRrmqFUQB2dWTzXyy5dxsO9R4gsX0O655itECz227h1B327nqiATiQHV77/rZzqmWXm+FHi+1/grp4e4aA9PqpWr+fMI4+Cx08hVyCbV1FLKsXBk4uTws4bL8Ynu7hqx1vYtWeUqWPHuO2P30drzMfSGsGYfv+37wegIDm4+cM3ouoGl25u4d54GsuyePcnb0eqbePWW7aQzJX4/Y9egaKbHNk3gD45wEh7FcWiRt/uF0VEPT9JMOjh+su6eSHiY+jAMWIdXbS1x3iub4HmlihzxzKgKXi9br79nad453su5cRUnqNPvkT75g30jqdIDg/RcdllDPeOc8NbNtJRG+Cnu/pITCX40Mdv5Nhggrm5Aqm5FM0d9TgcEgPTGUzToqs+RDKnEvbLNiu8g2hQxrRgdCJFJqPQvaKBYlFnajpLsagje1zksiXR4hHyoZY0NFWjLlyFYVj4fC4KBQ2nU8Dm0+kS2XQef1Bsm9BFY29dXUBwS8tO0mmFaNRLfW2AweEkfp8bj9uBYbkX60cg0oiWCfmS6AUDgfIr6QaFkk59ax2looo/6GVqfEH0fk2OIkXqBGDIsoRDqG6B2WHxPDcq7i2Xh4a2OubjSdz17WhjvTYy16SYK7JuQyumaTJ75AC6bjA3Nc++kk5NbYC+owOiBcYXgvgQTRfsZGrPs2hTQxVygfQcpZLB5EKB6mCUomqiWxaGZeGTnUR8HoZm8+RLBrGgh03rm+gLeRk+eEwsOsuRmDdErLGW6fM057yREHtJkq5FRDeXWpZVOOujB4EfSZL0FaAJAeDYb5Opvxp5+oPA+4GXgFuBp89yiotmWda/vtrxWJb1WkTsqo2CtOxjD5zreb5eez2R2DcRYqlXAH8NZBFch1vfgOM6L1bu2ygWtZc3OksSpGdxNi/FsFNoZ05Ngi/M9hvWs+/Jw+y48TKGhxYIR7yMDc4geYNYho5ZVCimZsXN6zjr8hkGeP2247BXo5ZZgaTLgkVDDgbJJLPIkSrk+gbiA0OgFlE1RdBEPfk8vbWtXHbdJvY8H0SdHgFg+YWbOPPYLvTZMfy+5aROHHhZT9rybWvQNIOhA8fEe7EGwbUoOXj2uX4Bdz6+D+o6CNZUk+s7DsFqNqyuJxy+mjOPPyGEPk2Dp+68h9DqzUS6lpM+eVA4Z9kDLpmF8UlxPmqRwvgQXdeu5qBqF8dlH7i9SJLE9FyOuWRBaG85XfzkX38moshQFZfcciVf/bsPMJnW+N5DpzlyOs7onpfA5eaTf3ory2t9/NVdAeZGJnhidz+NLTE0w+KBJ87wT398GT/Y083WpTV881tPgVrgE79/G41hN1/69j5eOrVXHIc/TPL0UQ6esiBcg7+2jq03X01rbYCHHj4O+SR3f/NemrdtxxmrZ3pslht3buPgizH8fjfrtnaTzJU43Z9gSUcVmqrx3e88BcUMKy/dQWN7HTU1AWIhD0VVR7MsRhN56iJe5rMl+sdTWJaFx+PC73XR2RZjZCLN7Gye5mYBTa+pCeBwSAwOJDBNk1w6j2mYBCNBUvM5AmE/pZK+2AxdZuqoqvIxMZ7ENEy0kobskUmnFWprgxiGSSAgE4148bicBAIyAY8LhyThdTmIel0UNXMxjeh2SJQMi2JJJ+ARkaRumszM50lMz1PdUI2q6oIQIJ8GvYRlGpjVTWIcOF2iJzFcI8a83bLhrW9hvG9MRPZq0SYF9kMhS7Ctnb3Pn6F7VSuzVaJEo6kaXp+bmak0KzcvxbKW0nvgNLhkpp63EbPlNLdLwPn7Dp8hcvl6ZKfEfEGkFp2SRMDnYl9fguUtUU5PpHA5HcRnczidEs5oLUZ2XtyXVU2QGCOZetWs2Ouecc4jxP5XyNMRqTkP8ISNwdhrWdbvWZZ1SpKknyJEinXgDyzLKqNVXo08/TvAXZIkDSAisHeelwOv2E8lSbodiEqS9FFEDe+O8/wbwOtzYtsty9okSdIRAMuykpIkyW/EQZ0vk5BQVR2n0yHSe0peZIJlLyh5jFyaqmUrWbeuieef6YF8kp6Tk8jhCLmcSnxkkriSJdTcRqmgiMncsux0nEtAv8rgDZdsKzJbYGoVcmCna5HFQHJ7wALTMFm6ugXLgtPpCjNG7dJu5k6dwJyfYPfjGt5ggAvfdhWnjk8KibI1Wyjmijz/2OHKkk/2gWmQzapMHdhH09btpOZSrN7QxoGfjENdB7n4TAXUohbI9YxCuIYP/u613PmDl2CyV4hnKnmEaFOQHds7eOKuh8Rv2I3UDTsuwed3M/z0+GJvnG7Y8HxJAl+QDTvXkcmWSCYV3rJzCS6XkwPDg4s1w2jXcmrDXu7eN0VVyMN3P3ER9/fO8bPZNNlTB/j6F/5dXK+6DpgbxdvdjtPp4MUT00SrAnzqL39KzdJljAzPCwVth5Nv/Wg/skempJRovvxaNq6p5xff/jn4gtQsX0Eo7OPijc30jCW57xs/JLByM1qkHhLjzE0l+MMPXMjPnhni619/GCyTU7uepXHLNlobQqzaGmUscVatEJidyZBNZYlGvYxMKCiKjtfrQnYLxouA1826rmr6pzLk8yoe2YlmmKxbVkO2qFFUDToaQoR9MiGPg+7GMAd74oz0z2AYBk6Xk0KugNPtRPbIFPNFoVRsWKiqQTAoU1UdZH4ui9MliI31mgher5tcTqWrI8Z8UnzHZTc6F0o6DWEPfhv8oOgmJV0AOop2vW0qWUB2OVnIlZicyNDQWovH42IhkSMz3F+JXnRNMLfkkmIcBmNifOXTi6+VlEj7BbtWCmYMQ7NBTib5bJ7WrkYRYXo8VEV8BCNBRntGCFZFicV81Ia99D4+RXjVRjJDfaDkcTR2YuoGTPeDx48nHKb35CRbl9YQ8jhJFkT9byEnAC6SBDu6q7ln9zBNTSGy2RKBcIBMmVy7LKl0Pu08RWKvQp7+ndfY/kvAl17h/VckT7cZ6d/+mxzja5llWf8oSdLVQAZYDvylZVlPvBG/9XqAHZrde1AOD2thMeX822mSaBbVVF1MeG755YPWjsIWUgqBcABndRMen4dV69spFjU2XLgSuaoewzBwOJ3CcSk5CNcJFKHTLW5Mw14hegLC0UkO8Zk/KgAkpQJyJIbX78WyLHwBH7PxLOGwh86VrZCK07Z+NXMTs6y87AKQfbQsbUNZSPDS7h6K+SJ9J0ZY0lWHlkrw5lt2sPFtN0DLSla+6UqWXn0VUy/uBiXH1PAUaknlwP1PQE0rTp8fUnGb3NYW3wxEwDK581/vZ+2WLkJrtrLpukvE+6YBuSRP/Mf9Feh+IALVzaTn0wIUIkm2WnWBe+98WPS0AZgGg30z/M7FrcxNJfjO3QfwyHafmi8kSH5zBYanMxw/NMKjd97PFx46zYnhBbJ9J7jmI7dx4yfft7hC/vQXP0IgIHPmxBg9+0/TvaSKd37oWrqW1jLX10e0ewV/8vn3s2l7F9detYIbbljP5IvP8uJLIzRs3YEzVk9NbYjhl/Yt1osA8oOnxXiI1mMaJnv6EliWxZ//yVtEg3ZzF42NIaYTeQbjWXb9/EUam2PseNNW3vaB63HLbtq7G+lqjrCsI0Z9fZBtq+tpqhIAAU03cTkdVIc9hEMeZJeTJXWixUPVBfw+mVPJKRpT6RK6YbJlZb0ADoFNi+SkVChhGgJQJEkSgYAbWXaSTAqWfK/fg9vjFuwZhrkI/sjaqs3JlHBkimbglZ1kS+UeMdFfFZQdKJqgjdJtUUlVN5iJ55A9LrxeF1NjCWLVgQr/Zhl9mE+LcRFrFOM9FRfvh6rEgtHtBcskNz4s7pVgTPSOOd2oc1MMH+vloo1NXHDJCuoiXtKJFIFYhNzoACMjKWJBDxtvvpbM1BSOqibw+DATEzBli2q4ZEqjZ8j2neDoyALzORVNN0nnVRZsEdLphQLjSYXJ4Wn27jrIQM8kmd7jIEk46tpp3bQBQtUvB3n8Jmb9rxbFfN1mWdYTlmX9mWVZn36jHBi8Pif2LwjKkXpJkr4EvIBQff6tNdMQ0u9Ol1M4HslhR0w21F3JoxQUpiZTmIaJkU4wNzmHYZg0N4WZmkzj9rjBQuzDJUO0oeIIy/yILrfoQ7NMQh3LxfulPHIwJFIt3qDQj5oeo75VoFLn+gcY6J9j6PApfJ2rmRqZobaljp6DZ3CEq5kZi1O/tAtrbgx1rA9mBjm+vx+AX3zzRxz5+SM0tDfQ0hAiHPbwd//4e+K84kPokwMCwDE7guyRcbetoGrVWnHM2YVF8UxCNZx48TjZyQmO7O2vNGI7nLTvvERERGpxUQbmb37/QmLrtlQY/F0eURPMJISzLmS4YEcne4fSXHTJMtZsXMILd91r/55g11enR3jL5ibefN0akCRGhhIMDcyx7MrL2PXdezjWM0vXxpV0XnYp//iXtzO4Zz/BSJAdV2+iPurjeH+CfT+6j1hHJ76gj6986zn2PnGYw6fj1IW94A2QPLaP2toAXStbSS4UaNmylWS+xNKWCB///EcgUicm4VScTTu6aa72M7nnef7u/94Fho6anKMm6mN9VzUuh8SqC9Yx0DNBLqeSKqjU1gXweFyYFvSPJEmnFUbnchRtdoyw3834XI65lEIur5ItqCxkSyQyikgxuh3MLhSYTStICFh2UdWJ1QRRFUHCXMwVkBwSsseFy+XANC0URSeTEZROJUXH53Mhe9w0NUdZvaaRYlEnEHAvRiGplIKqGkzN5kjmVIqqgUsSfIMOqUzqa+FxOShpBopmoBsWE8OzOJ0SM5NJZK9M//7jFX07lyzGRD4pIrFSXji4UJVwCC5ZLPTyScLNLZV7xO0V3J82Y407FOWJ54cwTIvd+8cJlzlMLZOp4SmO9M8xOjwPxQwu2cXySy8UPYuBqBh/xSyOhk7wBVnfHmMqWWA8kSeVV1F1k3Ra4fipOD/79/sIRUOE6hsE44svCN4Amy5YSjRqa56dJ4i9AHac27//KXa2ivMrPV5h+6wkSZlXeGQlScq8Ecd4zk7MsqwfAv8H4bimgJsty3pDuLDOl7lcTpxOB4Zu4JLdAupuGjZ5rjj1xtYaCtmC6MnyR3E4HZw5MU58NodW0ijmha6UlkkKoEVuQdyY3qCIwAyjMtkrObLxGfE7vjDqyCmRXknPYplCU2zizDCJCSH7keg5BVqJYv8x9NHTKHmF627aRqw2hj56muRckvYLL1h0mjfevFn8P9YAbi8z+17kiW//hKGBOe54fICGCy8jtGK9XYNwiN6wwZMsWdbEwuAAno5V+Jau5y8+9y7+7HPvBk1h02UbCTW1YC1M0rKyezFNOPrSPrqvuEwU64s5cHv57DeeJzkxRfX6rdRtvchemdvs/WoBXB52/fxFhqczXLumlqnJjJh0VEU4en8U8mn+6l+eIlfU+ORn3s1n3rORT71jnYgiHE5G97zE4It7GTrai2fpBpAk/vIDmzh+aJQV9T7SaYXl119Hsq+H6X0vct2bNyKHIhTyGj9+4BhrrtqJe8lqaqr89D3yMIZu8Jm3r+LkmQQ/+cZP2NQU4IJrNkO0no9++t3sf/h5OmsDhFZs4JOfeTf/+nfvxRGK8fxzffROiF4uj8eJOjlMMllk/95hpifTNNUFKWkGbrcTj8eJ0yExlxHAnlxREwADjxNF0Tlzenrxs9lEgdlEgUJBo6QZ+Dwu0VCfLdHcFCYUC+EP+fH4vcheGbWkUyyIyMLjcVJT40fXTSSHRLEoHJmqGmSyJUqKSqGg2VIkJh6bksnjcQnWinyJ0fkCmaJGpqiRVw37fRXdECS/kYBMuDrMxNAMkaoQNXVhHKGYXUu2pwunu0J6XVZMl33CoZX7JINVZEZsVKKu2QsdW2tMU9GmRwQgqKixcU09gXCAliV1BNqXCjaPh3axMDICuoY62sv48GxFX88ywdAx58bB0Pm3f/0FiYUi+/f0c+ToBLPzeRobBPKx4+ILySQzogevoQMcTtZctROn08GJJ56v1PHOl507xP5/iv2T/fhXBDjkW4ja1j5EYPMysywrZFlW+BUeIcuywm/EAb5eiL0fgbezEIXC33KzME3TZiR3iHRiIQMLk1DTBoYmiuYW6JpOIBIkP9pP1fpNaJpB65JqHE4HuqYj+UJY+fRiI6fs86AWM4LItxytOF2C/NTjF2nFULVoXPYGKA4ch2g9rnAVempOHIeuijSb7MO/ZDmFXIHRqQzzh18CQ0NNLTA63k9g2Tosy+LBux6HTALP0g2UBo7hX76J9VuW0BjzEQ16OD40j2WFsVbcxOFHdoOucd0HbmIhW4J8ipInALl5vvx344sR1+H7H2PplZeTPZUhOZeqkBYbGgPPvijOo6YNFiZRR3vB5WH+2DToKmtvuoETDz9B55VXMrTrMYH0TE5zZG8Qt9tJZ1cVDucmpk6eEqv2zKwNqonzzDO9fPgzV5PXdd7/8W+Ilbo/zO3/73f48YEpdj9+jNJYH74lK/jnB85QmB7jqz/1s25tI7OJguCTjNbz6HfvY/Nbr2V9Vw1PvDTKyadehOw8zwwcAbeHuoYwn/j8T8Qk6gkwni6xo7uaybUr2H14gi/8xdv5u+/uxS27+fp3XuDPPnYJG7d3i/7AZJGWmgBHjk9DtJ7Jnn7quzvJprIcOiJ6SGvrw/j9bju6kcgUVIbGkkiSYKePRr2sXd+CaVnE5/KLxL+bV9ahGSYlVbCq5woavacmySaSuH0+AXTwezF0A4fDgaqoaKomIrKCgqqoGLpBa2c9yQUh1KrkFTsVKeFwSDgcDjweJ0G/G92wmE7kBcu9x0XEL2NaFvPZErLLQVE1KBSLuN1O8uk83oCX6mqfSMMWsrZCg6tSW/UEQXOKdHoZjesNLKoiRKojpDNzNjLXdmxaCTQVqb4DK58i03cKbUkNbqeD1tYIHtlJ36Eecc/4QjaJgCAU9of8FGx+UHFrmyB76Ni6keFDxzn+5IugKizkm8mlcqxc30bj8m7GBqYwExNkckE2XbGFqak6vF4X++7b9fKWm/M24/zvMsuyLgeQJOlu4Hctyzphv17Dawgil02SpDoE+315f68E1f+N7PVA7P8SUQi8FwGPuFOSpJ9ZlvU35/ugzqeJWoiJN+BFLWTEZOl0Cgn7YIxAQCZumhSSSSTZKyRRZNEsms8LVWNJkrBURdBHOZxileyRUU1D5GXKzPhlgcxyviZUI9BQMyNQ3YIciqAOn7SZiUWqpba7C62koSoq4ViY0w8/JiDKyWnkSBVqPk3+zFFi67dBczuFcC1rNrYTungpEb/MQw8dxSW7iNXGKGQLRKrDTBw8IKIfj59Hb/9xhXR4fkLsO5cUF0dXQS3S/+webvnke/j5A4crNFoOe4IynJBPElm1kfRAT0VWRnJw4v5fQKyBod3PiutaFPpqvoCPiYkM6fk0+VSGTVdt58ShYSFTr+Txt3VTmJnk6eEkhmnx9Pf/D2/+60cpnDnMxz7+NbqueRPEh6jdciFzA4OMzs3QvWMTO9Y28vDTfRSyBa78wC30Dc4zfvgoZ05NLYoNdl+0jYHdz4vJtKqJwd5Jbn7P1fQOL9B7uJ9dJ2cZGpwnvudpqG7hm8kCyuAJPv03HyGe1fmHv/sphGqQA34su46Wnk8TaxBijpqqYdmOpL65Sjgw0+L40Qk2b24DQNNMGhpCLCwUBH9nskgwKDM+PMeKNc3UV/uZSRVxOx2E/SBJEjURL+2ddZxO59FKKi7ZjWmagn7K7RJOrKTh9YYwdEOMl+owlmWhazpqTiWbmIeaamYyBbwBEckBdjTpYnY2TzAo464N4HJKaLqJwxaTLCo62WwJl8uBL+hjdmKWIy8mqW1rtOtglhgvoWqRktNKi/I/BGM2F2lJOB8gPT4m/gblOqzHv/jaMk0o5thy01WkUkUGxlPMxrPU1YeItTSRLKQFDF7JL6J7E8cOLWYXFp9LRWprA/gu3kx8Oo3T5aSxKczEWBKHQ6KtLcr06V5RSkjFyedVWlujHHjkeTH+FynjzlNNjDcWYv/fbCvKDgzAsqyTkiRteLWNJUm6ERHBNQGzQDvQg+B3PK/2epYg7wK2Wpb1RcuyvgDsQPSNvapJkvRdSZJmJUk6edZ7X5QkaVKSpKP24/qzPvusJEkDkiSdkSTpTWe9v1mSpBP2Z//yShxfr2a5bIl8Ok9mNiFSW5YpJuJABEp5MpkSSnwCdyCIpZXA0CgpGpND0xSLuljxGoYASNhy66XpUbJjQ2LiNgy7edpWd5bsiM8GeRjpBPjDdKxbhsfnAX+YziuugOQ0vpp6FuILpAZ6KSSTJI/sgUgt7RtW0375VRiGAWoBV9tKLtjWTqH/BMwMCjbutMKuJ3sw48OoA8eI732W7NiQiKaKOco8jtVbLmbD294CQNvOS8HQ8LR2c+OHbwJ/GFfXBtBL3PtvPxXIL8usTFjl9KtWEvD8XPLlN3xtG5fctFNsb0d2jpbleP1epgbGyM8vgMPJmVOTAtAS9IPLg67pxJZ08tjeUYZnc/zLnhE2bevgXX/8Pv7l65/kn35nA5/964+QTqSpX7YUSnmaGsM8/FQfyZ6TlAoKTofE+Et7kOuacbldrO+q5pbLO+lqj/HVv/8Qb/7Ee0HJUcrlcUjQd2IUgEJBZee2Vn5255+DL8zKlfUQjPE3X3+aO/7fd+wIwKShtY66llo6WiNUN1STHB9HVxQWxifx+DxEayIUiwL+XirpdC+vZ3gsyfRMlkBARlE0GhtCLGuLEol4yedVVq1roaMxTLaoURX0CLBFUURXfcML9J0ax+1x43S7cLldGJpBej4t2hTsET83m0WSJNweN8VckcnROSSHJJqHDQ1dE3B4QzfIJrNk0goLC0XBSwnMTqeZnRMCqOmChsspkc6rlEo6sZiPYlEjHPGKmmo2wdyhveLvHogsXhuUghgbxayA1oOtcOCsLIBMQwB+LFM4sHI92tDoXtOOv30pBx97EVU18Xpd1NQGGe4T+m6hjqXg9SO3LrMXia7KIrHcsuILQrSeg3v6OL33BHUNQpB08MwMmqpx5KEnSaWK4A3i9HjYcuMV5HIqBx56ukJLptkCtbKX82X/W0UxgR5Jkr4tSdJlkiRdKknSHQin9Gr2fxE+os9m97gSePGNOLDXk04cQYSFZaoKD0IO4LXse8A3+FX24q9alvWPZ7/xS0zMTcCTkiQts/sdykzMexFyAtdS6Xd4VbMs0EoaDe0N5NI5MgsyzNiHXCrgrGlm4nQfWBZafJTo0lUUAkFkj5tAOEAhK8QJw7Ew2fisGPD+MFgWjkgNXr+XwpQ90btcOHwhLG8QKzEhop9QDcwMUrV+K8WCRtfyBo6lcwz3TkBNG7G6GE6nxHhmATIJqrdczPzhl2hqCpNI5Lny6jVMxttpbwrTP5KkdvMOsskso/sPMgq20rMDd+c6tFwGktPk49PE1m8XDjGf4rrLunnkmX5o6OKCDY2UFI2qaj+HT8YFbNkh1jEf/NN3s7Lexz/cfUJMXLAYcXVecjHdS6rY9b2f2xdVyJ6QGOe5Hye48WNvZ/+RKWZ6ejALWZJTAwL0oSkQqsIRCy2mxdov2M5Y/yRWUNzIg6NJPB4XX3vnBq7+07s5s3MNR/cPYA4fFzI5c1HwR3juZ0JE9uOfvo0f/+IUu779Ezbe8hbGR5MkzvTwvR+mqWupQ9d0Hv/pM+JvVcyBqnDfD54UE28xw7FfTJC5ZCfP7x/H6Xbx3EN7BCPLzLBY5HgCMD/J2GmLYE01IxMyU739OAJhquqqeN+bV/KVf3uKQjbIlgu78cpOpmZypNMKsZhQOzZNi6baIDlFwOmjAZlYUEZ2OZleKDA2lkZ2OzFNi5Jq4HGLyD9SHWF+RrCYFBaSODw+zFIRh8OB7JWRvbJAKYb9GLpJfDyOZegUsgUcDgeuYIRiKoUnHBbRfUnF6XJiml503aSQLZKcmcPj85COeAn43BRVk0QiTyZVpLk1SjDoYbg/Lib6SD3ImYrqgOSwGWm84AmJbcrsL6YB7mClD1MpiHqpy72ISixnBAYOCWXycHsnoZCIFhVFx+1xk0qkUBUVX12TqAk63YAGOMFpy7yA6JHMLbBs8wXMzqTJ2cCVbTs6GB5N0dx2GamUYOXZvnM5Q4MLzBw7LL4reyvHLTnOK1zwf6R7Ojf7IKLn7FP26+cQ8/KrmWZZ1rwkSQ5JkhyWZT0jSdLrZso/F3s9kVgJOCVJ0vckSboTOAnk7MjoVwp8wCsyMb+G3cTrZ2J+TRO1aAlVUUUkVtb4skzQShiFHGQXcFY1gOQgNTGBmk0jyw5WrWvBJbvAgtnJWeRQRExwLhncHsz5KQrTEyIaA/AEMBemBItHuek5NQPRenLpHOn5NEcffJyaphqs+DAkp0UqSDftCUBmvucESBID/XNEoz6On4pzal8PJ88kCIU8zB3eR7Qmykf/8Bbatm4Ris/+MFomycptq7jhI7fwod+9FofTwc2feA/R1ZuYThbJJrPULWlBdjkpFUv07D9NJpkF00Ad7QFD586v/Jh79k8xN1bhLui6/DJwuhh67GF23bNb1DzsmtmGm6/nR3f8KdS28+C9e7l4awsf/8RbePu7LxMTll4S1yCfJtt7DCszh6Zq5DJFfEEftQ0R/vV9W+hsi+JwSPzBDw5T1dzAycMjtHY1QSAmVKKXdPG1/+8m/G3d4I/wza/egzfghablHPnF0wRCXpAkrNkR4i88wfzxQ+JvfJYyNdkFEVl4/BCMMbzvIPHD+zGmh6BUwEzNguylYd0GrnzTOvxLluLw+qhvriIYlHnTWy9k60XLSUzM8JV/eRhScRHtGBb5oo4kQTZbwud1Y1lQU+0nX9Ip2g7NtCzcTgemZRHwuli/qo7EfAGlpBPwuUjmSoJKKltA9sjoqg5OlyCZliR0TUdTBS+i0+W0nx2EYiG8wQAutwtT19CLBSTZi6ZqFHJiX6ViieRsksT0AskpweKia7qY9Es68dkchbyG7JXJ5QQ0Pzs9KRZIuXkB1jANEXmBWMTpmqhzWaZAp6q2CGbB7h1Lzojr7fYIFGg5iiorLRQzOKO1+AI+eo6OMDyYwOVykFnIYJkiL6yWVLKprPiNMh9p2YG5ZQjVEFu2koHT46xa3cj4kWMMjyTJ5jViMR+Fgkj71jTVsO/5M8wcPyq+b1rimHVtEcR0PkUx/wsJgP9Lze4r+3fgM5ZlvdWyrK/a772apSRJCiKc3Q8lSfoaohH7vNvricR+TkXVE2D3b/C7n5Ak6X0IJuQ/tSwriWBV3nvWNmXGZY1XZ2J+TbMsC4/Pg6qoOL0+jExRpERySXtVmQF/GKNYAG8QT6x6UZZ+ZHiBUNjHQnyBSFWE5MycuAGzC4K9wuEUCK3cgngua3A53RXKKa0EhQyBtlYxMXkDzB09CA4nF7/jWs6cmWWuf0AUsi0LatvAtJg7fpS5Pj+k58DpYqxPpq11DRe/6y04HBIP7R5kZmAYhy8gflvJ0bP7JXq8QZZtXYNpmDgkqG2IsOeFfupb65g4fJiJVfVs3tzGU4NnyAxnKqtrm8B4//2CAYNQNd66JsYGpkXD6roLae2opefhR4Vu13Q/R+97iN95wL3IpHDPP/fjXb6ZxUyvaUAoWknfegJYhTROVy3BSJCPvqmLbx8Yp7k6QGOVn2MDCdata2Jje4yaoIsvTS1QmBwmU6rhU5/6Bt6lG6jpaCc5m+SqC9rJrG/kgZ8pjD73rHCuuiquhcMJiXE2veOtHH7seXFd/RFIz/Km99/IktogrVGZv7njJZTeg1AqcPmH3sEz9z3LTO8ZZk4cExOv08XgxBkhFdO2DF2zew1lH7hltIl+9j1TxOGWidZGae+oJux3E/K5UTSDgNdFyOdmbDojeg5X1JFXdNpqgiTzYtL3+9xIkkQk4CYU8qCpPrCgkC1gWV40QyA/Y3WxCrDDMPFGfASDMh6Pk9H+KYyS2J8vEsEf8pNL5/AH/STnkjicjsVouzxGxedenE6Jhfk8+XReOESv0NQjl7Rru17hmKCSxlPyYpGQT1cooAzdFoB1Vf7vDQjkoi8sxpQk2Wk8CUpgTPQRTyeItC1BkiTiU0ms7Dya04UjGMXpdKLOz4jablmR3OmsNFrNDuNuFb11zdV+undswu+XcbkcuN0OOtqj7Hm+DzVfwBcOUXR7WCTtdstg2a0xuvZy5p3f0P7nuadzM7vG9Q+ADHTY9bC/tizrxlf5yk1AEfhjRNkpgmB6Ou/2eiKxeeAuy7L+45Uer2M//wZ0ARuAaUTxD/5zTMy/YpIk/W6ZGdosZjANk2wyS7QmijtaU4EE23Ws2qXdODw+qtrbKE2PQmaO4TOTmKbJwlwGp1OwMIRrq+yVpO2onC7hwJwusVrNLlTYPEwDb0PronZYcnyCbM9hUWBWRe3ghadPMXdwj/h+8wpxc6tFe/9O8d1wjQBipKZ54e6HeeHhl3jpuTNU1/iRPH4uvXI1Gy5YQfOaleK85ifo23OQ5NgoUwsF+p98GoD0fAZndRMTUxl6+hJ07tjC6ssvEBNQICKOQfbyto/cKIr0wSoAHv+bG6G2ndzYID2PPC6OZ3Z40VlXb9gmJiYbft3W1cCXP34hnlahrEtyujIh5pNULVnC/Mw8kiRxZDzHc/tGmU4WeGLPKOu7a+huCPPVbz/Pw8fiVDfEcNe2QG4BuXMd4aowxVwRo1jg/sdO8cBPnmPblRu58WNvB38EV9tKce29ASIbLmTz0lp2vu0KPI3tbNi5DqpbePzf7uL2r/yUoxNZ/t8fXGS3SWg8c8/ThNuWgKbQsmkTBCI4mrohWk9k5XqiNVHMXAoMDVcoCpIDf9cq0BRMTaWYK5LNlkikFeZSRRTVYGa+gG6YRCNeolEfE4k8Q+Mp7nn0NM+8OMzcbJb5hQI9vXP0Ds6jKDqGZuByu9i8vUOAMtQCkbpqkWIrqYusJIW8ajN3eGhsbyAQi1DdXE9Daw11DWGqG6qF0wXMkoJuR3GL/V2Arpv0HBtlbmAQh9OBWxYcjYVssYJOUPKLVGKL4qmGVqE7W0T3SeI9tWCjGN3C0dgOn0BURHAuubIPt5fqrm5a2qvJprKEYyF89c2QSxKOhYXqhGkIR2OZlUiwHDU5nMyOTpGbGGFyvsCqblGbO3lMLIwOHRjF4/UQqo5RTMSFZh/YyFu7jm0Ylebt82E2uOhcHv8D7QvANoQ2GJZlHeW1lZrrANmyLN32D3cA/70EwIh61dckSboXuNOyrNcq6r2qWZa1SFRmFwd/Yb/8zzAxv9L+v4XoZUCu67Zkj4v61loh6W4YAl1VyIiUn9sragluF0peYdnOHfS9dBgjnSDv9VDI5pFseHMhk8Xh8WKaMXEzltMl5cjLtPvFdCFyqUwO2dFINcxPIneuQR06KRxBMUcoGiKbiYqDLvd1ARQyVG26kIUjewmv2ULmzInKfjwBtKkhRrwyVqnAM9+7l1U3XMv8jCBnpW6J4Et0CS49QlUU45MiElKy9GcWIDvP0isvZ3RwVnwnEOPjf3QFC3mVqYWCuDb5NIqhccV7TyxOWBtuvZnjBwYxswuLRK7zh16spGclib7HHuMvJ7ayan0bR3J5vKEgSnxicTJcOHEYvAHiSpG+1ggb1zVx5Pg0xVyRXzzVx8LkDGt3rCTkc5NKZPAGvDS2b0Sz+7Eu2NzCh7a18K8vjLLr7gH2P75vcaGgZxfsv0uWQrbAXfcc4tYb15Pf0M78fIHtl61h3zMWTPZyz1e+S+Nff1yAA0wDJIlMfw+4XEwcOyGcVNBPThGpz5nDh2xn78bj8+Bt7SA3NmirdSfRfT6KRYHuE0APA1l2MD9fEEo8uoWq6oTDFUaOquoA6XQJh9OB1+tm3bIoJwfmyWZL7N8zQCm1ALKf9Ow8/khYQMyzogHaHxARhyQJ5KE/5Mfn9xAMyhQKAtyRTWVFJsAG4pSUEs5wFYZuoKkaM6MzmHbvViFbwBf0oRTte8RWHl8Ue9WVSk2rDLEvL+TKtaUyDZumCoYOyxIOrJzaLSMY7YZmAjEkh8SpvadoWt5FSVEpzk6BN0Bq8AyOqkZ7knBUHJhqK0+4XKCZUMqz6ZoLmZ7JUhP24vO5ueTibtJ5lYsv6mJqLkck7OXIIciODYvxoasg2RGY5Kic03mx/1mNzK/TdMuy0q8DU/cz4MKzXhv2e+eda/f1NDu/B0GtP4iA179kRz2vy7vaNa6yvRVRWwPBqvxOSZI8tnhamYl5GshKkrTDRiW+D3jgXH5L9rhYmE2hlkTx2yzmK6tDTfR3xfv6UZUSgUgA0zTFatA0KOQKOFxOXG4Xui60wDxeD+5geJFiKtzaLvbnkiuNnGV2gkJG/D87Dw1dqBODuNpXLcLws2NDIhLQSouILilcC5KDlrYq1t10PZnTR4iuXF9BVS5M0XHxheQnRiAV5+L3vJXTB/tQxgchUoscCFK/fSdUNZHNqoRb2wk2twmHHYwtIg37n3iSd964jus+eDPMjfLNv/0+jz51hufuflSkgVwynu71yB2r+chnPwwOJ0cff566ljq+/++fombzBYvoR0A8V7dApI7sqUMceXg3DZ0ttHTUcc07rmTd9Vfy7S/b/KL5FO2rOgn4ZQ4cGkNVVHRNx+V2IQeDnNh3hryi8/kPbWXbtg6+cNtqZkZnGDt4iBWNQf7x6UHeu61ZrKztxtllF28Hh0Tthi0Qa0SbHEA5c4gffHcXfp+bpiYBRWduFGpaIVzDcydmxOTa0FUZMIUMBGI4qxrIJeZpXt5BNpnF19YNpkH1shVceGEXuVRWRJgeH4HOFeL4XQ6iUR+J2QyFvMJCIkdiJkU6WWBhNkVHRxVz8TRKQcE0TMaHZ8lnClRX+8hmSxzpmaWrLUp9fVCwrISiYOpILjeGYZBL5dA1HbfspljUkGUnum7icomar66bDPRMMT40I4AgnnIdSdSvXG4XRjIOpoj2zGJ2sefKtJlrkrNJoaZQJq+GCtpQU8RiyxcU7CzlWrDLXrgpWXH9NEU8K3nh0FJx8b1iprI/w4B8ksREHE8kytTAGHNDI/jqmsQYVRVMza5ZKXnb2ZxF4K2pi2jHnuPjKIrO4VNxGmI+skWNZ546jexyEJ/JMTKaYumKRtFor6vCEZYjsDLw5DyZBRg2k/6ve/wPtJOSJP0O4JQkaakkSV8H9rzG9i7Lshbluez/vyFcu69rCWJZVgbRJ3Y30IhwQoclSfrkK21vMzG/BCyXJGlCkqQPA39vw+WPA5cjcqZYlnUKKDMxP8avMjF/GwH2GOQckIkAlmlR11SFZVmkZmbFIM4t2I21ETH55tNcc/0GkrNJ/H6ZhlYbMjw/iTkzjJacRc2kkWQvxUwWLZUATcHl8xOrCeP2eitikpJDIBLLEiqWKSiO4kOgKegjJyGfJrpuG7g91Hct4Z0fulYUwv1hrIke8ASQJBgfnQeXTOr00QrsvZQnPjlPrGsZuGVe+OH99iRVoGXdGgKRAPGeHj7w/ktRCqLBO3fqABQyNG/caO/HJLhiI9/+/os8+oNHFlfS6VOH6b70IlZddgH4gpSS86iDx/n23//HIlOC0+Xg7x/uI1YV4PIP3FKpp0VEHw6FjEh/KllmTpwgPpUkEpBpawzxqa+/QNdll4BLZvS5Z3nuxw+TTqSJ1YREw3ZTmBtvWMdf/dFV/O2bV1HSLUbGU3z4T++kpasJT0Mb+wYXOHp4jA986XHkQBBvQys//vrv8n9uXM7OW69mbmya9lWd4lp5g5CKE/K5WdMWoybi5fqP3MKn/+gthDqXMzOdFQ5tup/2zRvAMpGXrIbMLEY2CZkEkz395NM5PvLOzaIhPehlajbHhh3LqNt+CfjC5McGsRITpBdyZDIKHV21vPv6ldTWh3HJgo2juj7KmZ4Z6hujACgFhdaOOprbqlBVMcSbm8LMzOdZWCjikl24PW4CtXXIXplSLo+SSqKpgkFGll2MDCUoFDRy2RKmKVLmaklFnZtiZngCtVCw08XC2ZcmhgAIxkTdbBGsYRp4ozHy6bxwfJk5EYXpmojgy86jzGqha4vjCEMXzqks9ir7Xr6tQwJvqHJvaDZE3hsQziS3gGVZBKuiUCpQHO0j1N69iACOdnRX+jpBAHNkrxjz1c1gmXQsa+TGSzqYGplhPlsiGpB5200bSOZV1q6qo7k5TDgoCyfr9oLspW3HdjuytJGJ5f2fB/tfnE78JAI5XgJ+hFCC/tRrbD9n19EAkCTpJiDxRhzYr00nSpL0Nsuy7pMk6S0IOv0u4C5gm2VZs5Ik+RH9Ar+iLfNGMzH/OjMti1xWQfaIhstAQxP5VIZIbRXpyUlIxfF0rGIhoxCMBMnnBQ1OzfIVJHp7oFTJvwfCAXLxGRzBGGapiJ7PMjUiiQbecprE4RQOLVILhSyrrtrJ6V3PiJscFkEYqcEzkEsSH3Rz9+H9bH/Hm3E6JbLZEid2H+DYo8+KtKOmIHesRh06iadrLVq4BiWvUOg/wZZbrqe+yk8irXBkX4SJI0fp2rGZ5NEEJ0cWSPT3CZaKhi7aVnayvKuKyd4AROqEDEu5gdUUjAqbbr2Rk4dH2Li9y2YSCYub3hYgfNPNO7hkWRWf/9purKk++k2DxosuZ/rQQT700Wu4uivG7uEUt//DD8UEkUuS7TnKyfYaQiEPja3VLO+sZmygG23kFJgG5kQv8YCXUsmguTnM1EKBhoiXrzw/RFPMh6oaVK9cy7c/so0P3r6P3Xc9QPWGbWT7TmIEopBL8q7fO0Xn5ZdRWxuEqTP4Ny+l5YKL6OyIcWj/MAAH+2ZJJAo0Noa4b3Ce7In9lLrXI/t8qC6Zay9o5/bnnkXNZcEfpaatGV/Aw+xkglJB4ev/9gTuYJj5mSTjvSnkQJD/85ELaI1soMor86d3HWXsVD+qolLTWMXDL40iSZIgfDYtqqp8hEIeqmI+qqo6SKcVMpkSdXUyxaKG1ytuw3RaYWpkBl3TcTgdmJl5gYhVi+CPoOezmGaAicEpAuEAiqLb3IkRstkSxWIIvaGaxHQCt+zGF/BhWZZgzrAdilt2i3qZZYmoCjB0AzOXpGhGRG21zExfzIpIRS1WCKTLKcMyarCcoitH5eVZ2tBAF7VWNNtJOG3OTSW/KN1jmRalYkk4NV+Q7HwSf0MzhZF+UuWIUFHEWFSVSvpvdgSCMXqPj9DdFmXNpg7SGQXZLVCglmXRN7SALAs5mjJkPz3QQzKRto8FcT7nniL7tfa/OJ14g2VZnwM+V35DkqS3I1KEr2S/h0AlfgOBaxhHZNHOu51LJPZ5+/ntiP6udZZl/YNlWbMAtjjbh96Ig/tNzTIt8um8qBtUV9PQUg1zo6R7jwuHEq2ne2UzhYKg+MnnRfSrKiqEaytNkA4nuXQOX3UtkkNaTLVoE/2CSqnMJWej4FiYAk3h9HP7CS19ue8NrdkmbmJviGBtLegq+544yJ5H9iLLTsgkqFm7ntaVnYLxe/C4mFCAYDRIa7dIuciyk4fvepREIs+Flyzj8luvYPCpp5A71qAoupiA7OZrwzAZHk+BkqN+9RoIxnA0LwdJ4uqPvouaLRdzdN8Ay9e2cuDFMzirm8SK3B+G2nZYmOLx23/EXc+MiBYCu8gvSRI73nYV371zN+/69F30z2REqtZuQ8Dj48yJUXpOTDLwzHM8/O8/Rhu2m/5jDdRv30khlaGYK4poIluiZzKDT3bxwqk4a5bXsnpNI7/on0MpKLzt99/B/InDhJevJda+hLpN27jsvTctUkR9/45PM3B6Al0zeO7On5DvPcKjDx8lkSgwfnqA/fc+xsaV9XzpHz+OOiccQePWHdz+d98ntHKDIGuOD5EYGmI+nmTJ0kacbgFU0HIZCtNjbLhoNTt2LuNv/uFB/va+Hv7k+0cWe52Wr2lmrGeIFjt9ee3FS6itC2CaFhesbqA+6iPgceHzuamrC+BwOFjSGqWxPoiqGWRSRaI1UVq7mysoz3LaVlcFkKSQxVTy6JpOOpEWtaSioE+rqfETifqoa66jqr5K9IP1nV7shwrV1mBZFtmJMeGYZD94g4I9X1MqzcQ2OEnU1Gzgg1oQbROGIRyRx19Jxbm9lf/Lvgpq0TRE3dDQRJRermmVHZGSwy27WbJMsNRjGvgjYQrDZ8RC0O2tQPNN3a5/2k7CI9TVa5tqOXwyTntDCEXRefqx4wyNp+nvn2f0eC81NQFCQRm1pJIe6gOnm6bWanEejrOQtOdjvuF/NYv9Z8/xPQAsyxq0hFDyKmCVZVkXWpY18EYc2DkDOyzLelUvalnWU+fncM63SbR01FEsagQjQaZG58DlQW7uIFoTJTnrJp0u0dws+O/6eqZxOp1oJc2WbvHiCMZAAlNVBRP93AzBxmZkr0wmEMI0TcySrTNWzCw2COOSad+8gdEXXhA3bW07bauXMnb4qJgcInVU10fJTcSItbTQ0l6F3+fmnX/0HkZnc+i6ybhh65LlkpSy85QkBxk7VbPn50+DP0IuW+LAvmHys3Eatu9ELan4/W4bZKJBNsHkS2MCbVcqEB+Z5EO/dwPf/cqPueIDb2PvvmGyJw8QWbcdw7AEoCE+A94gvupaOpY18tkbb+S9n7mb3oO9NphBADmmjh5h6oRbpJ0MjafvekhMWI1LYXaE2PLV/M2Ht/AHf35XhfPOLqa3rFnJ2y/v5Ktf3kfG42FiXEZySAz3x6lrimFZsLI9RiKt8Ni+cWrqwtz3/cfxtC2jraOWk3tPg1rALbvILGTJjg/zvj0HWXrBZvr3H8fRvpZARDiK8acfx9m5npquJezeM8y939wPpTzJXFJEyR4/gXCA9e++mRd+sQfyaQpjOc4M9YiFjEvGEarGlBwcffIlMblqCu+6opMvf/E/uOb9N9F043auXVPLQO8Mw6MpPB4Xp8dSGIZw9s8cGsflcuLzuSgWdRwOwa3ocEh4ZCc1ES8zQS+GYTIfT4r6lVoSx+cVTcSOcLVASbpci+jDfCaPZVqEo6K2ZhgiCgmHvCQX8uAPga4ixRoxDIPsXEI0IqsF4YjcHvKZPFK0QfQvmobNRG+nyIsZWxNPpOKQpEWH8zIrQ/E9AfHsdFbUDuzrtQjTLztmVaEwPsC4aYo0fCFNYX5O1FfzSYGSLYNHcIjIsZirKJOrCvGTx3HEGunsiBGJeKGQ4vQLh2heuxpMA7fLgcflwOly4m/vJjs1QSAgIzd1oM6OV5qzz5P9b4vEJEm6DrgeaP6lfuAwr9D3ZWfsjluWNWq/9SfALZIkjQKfsnuAz6udSyS2QpKk46/wKNe1fmvN4ZAIhWRk2YmqqEJWxelEjY+TmkuhzU+jFEokEnlGhgX0u6SUxATh9oLsw9Q1zMQEcsAvkGF1jeTm5gQzvtuFWcjiDQt6nRUXbhIgjKomQEjF4/GJekp1NWO7n7QVocXNPdozQrSjm/qmKCf2nSGVVjjSO8vCQoHZ2RwX/s5NUN9ZOSFJWnQGNSvXwNwoLa0RItUCObdudT2XX9TJ/HwBub4NSnlaNm8WjN9jp/G2ix6v737j51z5nrew98VB6hoFQ3n6zElOP7OH3KhYLH3qE9fxe+/awpkTo7z3j78ral5Ol130t+sfui4izzIVVdmBT/eDkmPjxhZ+8NIkV952DZG1W1l5w3Ui+vvgLSzrruLIaJJPfOY9fPVPL8fQDeJjcZwuJ/HJBWprA8xnS8zMZPH5hNhjzfIVbNzWSSzqZdW2laAWmTwzLEAhtU189a9vo//ZPXzkY9fhcrvInj5MenQYvEGMwSPED77EfP8ZPB2roGWVmFR9YVByOBwOXnj6FHKstgLpDkShVMRf34w5PSCa1z0BPvaxN3HJLVfy6OEpNt54NS01AXY/3cPtjw9y83WriU+I5t1kUkDvB3qmmJ/LEgi4cTgkamv8uFwOQiEZn8cpOAwdEtXVPpZ1V4traVm26KrG8i0r8UWjosk5FAO9hKZqOF1ODN2gmC8yMzHP3HQSVdWRJImG+iCpuZSoSdlq26ViSaSY9dLiGEUVUfBihuFsyHkwJlCZsh11lR1XqSie8+lKtsIfthGczkrNzDRE6lGz04GSozL+y4heVUGZn6W6oVq8l7W5ESyzQhxc5iQt5ipR/ln0VoFIgOce2sOxA0PiO4bOQjwpCJ8n0swk8qiZNNmpCaRAFK/Xxcr1bRUHdr6EMS0wzXN7/A+yKUQ/rwIcOuvxIPCmV9j+S8AcgCRJbwbeg8jUPYholj7vdi6R2DDwljfix99osyyL2dk8akkXLA9Axi8mfKfLibu6kZWr6jl9amZRckVVVHRFEQM7kxA3ZbgOLHA6nWRyGUjFSafiwkF5AijTYtHR+/iTomidnUeqW0L/i/vFPmrbKQzYIExdFVB4Q4O5UTJumaUrGkCS6D89CYjCP3OjglqqugUcTt78u7fx9NNnKIz207p9G9XVfiKxawCorvYxlUkwPp0hkymRnE2hjvWCZTExMGFHTg4uuXQ5J+ur+PD1y3jy1CwfescmvvHXd9iQaSfkU3RedTVDh07ytb+6Q6yqY42Qnafj6msJBGROPtgP4Rq6d2xitH8abVRQCC0W9W3IO5bJwFCSuroATz15FOYnSB8p8Mm/+j0e3jPKzMQ8hakxpi7cwlB7lIu3t/PAA/Ok+07TvHUriqIzXdRYv6qOiE8mURugp38eTTOYmsqSXsiCS8Yfi5E8vh8kB996oplbPnoT375zN7e840Luvb1fOFlPYDE6pJDh1htv4JrlVTzZn+Sub9wLbi9TB/ZBKY/qD1daGmQfhCQMw6Bh24V88Prl/L8vfJfbv34/BGJcf9MWnn66V2ixAWODM+RyKvUtNczOZAiEvOTSBSzLErI+RbFwlSRbcVl2oeomTofEk0/2YFkWK9a2Eq2JopU0tPlpcLoJBgXgSFF0poenhPPVSpiGjGVZuPziNi4VSyzMLNDYXsf4hCDE1bIFQbprWZjF4qJ0jhyOCTJjXcPhdIhcmOyt5Locko2ctaHyxawY26WicGiaKjTEbMq1xVqYron9qApYtsyJPyz2e7bsiWQTZxs6eEPMnzounKCqEKmJki6kqO1oY25halFVYRESr2tivNq9XsVcEVe4SjhilwxON8VMlqqmOtxup1gw1NeRT+dxyS5cTgeGcVbEdJ4g9hZg/i+LxCzLOgYckyTpR5ZlnQtTsmWXmADeBnzHsqxDwCFJkj7+Rhyj9OvIKCVJOmJZ1sY34sffaJPruq2md/0z1TUBcjmVQk4hcaZH3JD1ncRqYyzpqhFih8kCSkHB0AyRIjRM1HxOSJiroueqacVSUnMpCsmkaOQFgXCLD1Xy96ZRiUycbvH53CjujrW0dDYQiXhFU2lBIxz2cPrJ5yFav8iaro31Vmog5XpAuYhu6GIFnZ0XtarpfrAstt12I/ufPiZqOuV6hjcoIolUnGs+/HZ2/fxFwWJvWdCykuvfvIFHbr9bHGd5ZexwVhpSywrVv9wIWreEQG0d+eE+GjZuJhzx0vfk0wKIkorb/UNuka4yDREJlFNS3gAf+cNbefvqej75wyMkF/Jcc3En25eE+OcHz2BZsDCXQZIkUr0n2HzjlWzqrmUoniWdKzExkWbHxmZCPjc/e+Aoykgv3iUrUOITrL9yB1uX15FVNH7yjZ+w8k1Xct3WFs7M5JiIZykUNPqfeBJMg6pNF9K2pJrtK+pwSHDnTw+JNoUyaKG6RVwrf3jx2qy+bDs9x0ZYtqad3qdfEOcn+8U1iTWApuAMhPH4PJiGSSAcoL2jWuiGlXQiES+aZpBKKYRCHkzTwut14fG4yGQUErNZGpujRCNeDu0bopjNsXxDF2ee3QOyj5UXbaJQ0JgaiaNlU+B045AFU32kOoLXJ1J1SlFwJlbVhEgt5Jkftetf5b9zISMiLG9I1HO9QYJ1QuG6MHhSjLFyTatMF+UNVFCJDpfdjK8tLo4WG5LLPV1lKL6uiajJELRqlArCMTrttXO5Bufxcd17rhdo2WgjZGZxxBqRHBLG1GAFOFJ2ZHZv3yKYJNYoKOUkCYo5Vlx5Cb3P72fjNRfidDo4+NwpyMyy8vKL7NphgFSqyPjwnOj3syyUZz5/yLKsLb/JfLN09Qbrn3+y65y2ffPa+t/49/4rTZKkpcD/Q9S4zpZW6fyl7Y4j+sMKiADoFhuYhyRJpy3LWnW+j+1cliDnxDwsSdL7f8NjOe8mSRKNTWGSyaK98HNUKGzmRPQkyy4SsxnmensIhAN4A17R9yO7Kje/y72Y6/cGvGIyqGkVN2BiXKzaS3nBYGEawqFF621klWCU1+KjzE0n0XWTod4J3G4Hp5/dR/XqdRAfQh08LqIaf1g4Ktuh+JdvoOHCy7j4XW8RkUFyWty0syM0bN8JwPx8Qbxv6GIbf1QceyFDxxVXsqUjCqk47o61uDvXwfgpnnziNFQ14eleT8P2nWy+7a18+q9+l5VvuvLl6ZXmFWLisCHJ7lCUT79vK5e9803M7H2OvkcextWyDBamcLauwN+5itiKNYLey9DF/8ss5prKvp44b/rz+4jFfOQzeTyykzueGmZJW5SqKh++oA/TNGnaKmp0Y4kcly6vFsS3AZmxeJYXjkwSrY3yrk+8g4t2LuPyWy7nbdtbGJ7N4fe4QFfp2X+ar3z1AR6+/wDHHtpF/64nFs/L5XYxMjjHvt5Zvv2j/eiazqf+/J1i0g1VwWSv/bfLg6bQuG6d4BXMpZAkuPebvwfeAK3bt0G4hmhdNQ5/CKfTudifVVMXIhiQcTgkZNlJXZWf2bhguC+jEUUjtMGZgz1s2tBM/+kJjh0ZEwKtpTxnntuLs7aV2JJOZmcyVFX5WLKsCTkcw+0PIHtlXG4XkagPh0Mik8wvkv5mM4roKwtFxVjyBITT9YUgn8bj99qpPRdOl5OSUqpQRpXTwpJDjEeopAf1UqX+5XBVrlMxJ/5fyle+U3ZusNivtnj/WZYYU3Zt7NHvPSAIh23whsstjovadpG5CMbE8RtaBSlpWWJ/xQzuqnr7fSfxqRTLL95KKqUIp9XaYAOcLDweF/F4lsRcTqhKWFaFk/E3tnPVdf4fGa3diWBb0hGtUd9HoNR/2f4ZOIpIQfac5cA2Ihiazrv9WidmWdYnznFfr9Uz8N9iZYSXrunkMkVURaW6o0NMqtUtdC2rI5NRCIT8RJZ0YehiMOvFAk6nvWo1NIE6zCdJziZxupz4wqFK86bTLSIQS+g64QsLpFt6zl7tJsRsFa7D6XIyOjRLKBoSEUekjkjMX5FwCVWLqK+QXpSJcMtu5ibneOGH9+Nq7LBTNqLOMHPqJOtuup7Bp59Bqu9Aal0FVc0iSgDe9tGbKeRVvvzln3DTx96ONjfB5gu6Bepxoh8S45QGTzBz6iSHnj/N7lNxVnZUCWSYZDv82RHkrvW0X3YFuGS0sV7+6nN3cOjgKFQ1sf6Wm/jou7fTfc01VDdUUxg6TbK/R0xsHj/LVjaw7IpLF2sPJx5+gltv3croSBKn08m+UzOMDSeIBTw8+omLFrW6ADIZhXReJVXUcTolYjEfXq+LK7e28varurm4K4LP42RsIs2PnxtF1Q0ubA/z0c9+mFBdHe/80LWs3rpsEc5djhJnD75EJpmhuyWClk2hTw3yta89KCblgt0/Vo56izm2rm/E5XLgra4jl1P5xHcO4qprY7x3GNQCqYkJzGwSNTFFakzA6w2bv3JpW5S62gCqbnDzlctQFJ1kskixqDF4ZoZ8XuOGWy5kei5PU3sdkaowmqpR09kJ4VqqG6rJZ0Qz8txcgbmZNC63i0A4sCjYmskoxCfmAYhWBTF0g3wmT3p2Hk1RKinehclFB+UL+ER/n32PSJIk0nnegIjgnTYzRqkgxuTZyEVfUDioUl6MR4/P1hiz0YOFjHBqhYxII5YVBbyhygLJJVfYXlyexbFGIQWGgTo1bG9mR/aFzFnRXqmSPSgVQC2hzU+L2rTsIznYh2VBOOzBMEyWdFSz85Yrxe3qlAiHvcydOcP86BhrrryoglI8D3a++sReRcaqSpKkJyRJ6refY2d99rpkrGxSiZ/Y7++TJGnJrzkknw3gkyzLGrUs64vAFb96/tZ3gUuBDyMAIWWbQTDhn3c7f8yXr8xx+N9qpmmSy5VQFZWlKxo4fkjcGI6qJiFtzipmJlN4/B4sy2JuYFDcUKZOdmZa3DBltJVaxDAMSsWS4LWra6I4MWg3hIpTT0+MQzFD9vRhu0E4a6dTdHzhEPlMnlhdDKWgCJizPyoQk+Ub2+nC1diBPj8torlQlYBIByIQqhbN0pKDltXLWbXsImYSeY4/9izRNZtRCgq//ztbuWf3EOO2TPz9DxzB7XHTuGEjpwfnwelm709+UYFPO5w0XXQZhWyB1PH9HPzZENrN1/OB372e733rEaLtHVTVhhja9RijE0HhWP1RKKTITk5AYpxj945y7B7r5ZREZYZzYN/PHhbnVmYzkSTuuf3nfPzP3sUvXhhhVWc105MphqczfOQnxwSyripMNOolGJRxOR0k8hoTExnymQL5bB5zexcd9SF2JQp4XE662mOCqiqvEnS7yBRVsgsp7v7+02Kiddq9ToYm0qyROsxClnu++VNu+f13EPC6mEsr3Ly+jo999keQnsXRuoKrrlnLrv8Y58H79vOvn7+OL/xHgebmMEubIswka9m7dxjDiIIFmqpx1dWrOXx8mnhvLwPZHKHQCnyyi1xeZWGhiNPhwO93UyrpjB44RLhjKc2NIWaTRXw+N4WCynUXLeGO23tQxgdxNy5BKSgEo4LFQymWCIT9+EN+EtMJnE7BaG+ZlqgHAbNTC0J/DPCFQ2iqhl60U3ke/yJ3aCqeWEzTyV6ZXDongDqaYqcCDeGA1GJFF8wyhZMr/519QeHgQDy7PBC0NfZMuxetXG+VpErDsSRV0tWSXXtzeyqLDYcK3hCR6gg+vwePx0liVvB5JntOVuD25fqaW6TflXR6sXl/bHCGDVs7CPtlIYmj6EIpoKAJ0IeSp6qrm8mxhd/Wmtj3+FUZq88AT1mW9beSJH3Gfv3n/0kZqw8DScuyuiVJeifwd8Btr3E8iiRJDqBfkqRPAJMIfsRfMcuyJu3Pz37vDYnC4HUydvwa+62LkV0uJ8Ggh2AkwPR0llA0xOoN7fhDfrp2XoBqS8OXiiVC0SByrAaHx0eovkHcTPaN643GINaE0+lEyStoJU1MGt6g2KamVdw8iXHxuq7jLLJTHaL1hKvC6IpCYiohJpnsAhRSKCO9YmJwupCjNeiTA5BL0rjtAi6/6SJq120QNTBvUCAVLZOJfXvZs2eQyfEkcnMHqTOnqGuu4au3P8P47idF9JdPYS5MUdtUQ0dHjExawRGuwdG0VERatmjhkiVRUicOEF6zhQvffTPHdr3A6bEkJGcIRgJsWFEnHLliS5uUJ5/ktJh4Yo0VyLNpiHpSOaUKoJW48n0320rRNru57OXhF0eYnUzwyK7T6JrO5qW1nBleILOQIRzxkcupWBZs66piTaOftStqWb22SVxH3eTk0DyrmkIsqw9wQVeMiUSeZEbh688OUx308L0v3EBVe1uF288XFH9T2QsLU7SvXc6nPvd+7v3Gjzg9muTRhw7x7efGWHfFDj74Z+/DzCZ55qnTXP6et0Aqzue/c5Ca2hBzc3nuuus5nvjez8nOzlKYn6eQmGXHzmVMJ/I4nA6i7R34wyHaG8L4ZCdVER+dS2KYlsXMZJKJoRm8je3U1EdorQlw4YpaaqNeLtnUgtct0bp2Jb62brSCiMA6umoIBGUiUT+y7MTvd+H1ezEMA0mSKOaLaCWNZDxBPj4t6nLZeYrZHHo+KxCYHr9Il9rM+BRSi2nBQrYgWEqUbAWtV3Y+wVhFZLXctL/IO+iwGTQM8XctozrLJL3lFGSpuAi4WITZl/dVFst0uMTfxyaUlkMh5kYmyGeLorctmRVs/DYwZbHfzGUjFZ1ukR0J1YChocxOEY+LMeuTXei6SSzmo64uQCExu9h7mew5XuFmPA92vvrEXkXG6iagTLb+H1QkqW7i9ctYnb2ve4Ary1Haq9gfAX7gD4HNwHuB34oS0vl0Yr91kZjDIWD2LpcDn09IvCcSBRpbq6mpCeB0SjS2xFi9ponGxhCdy5tp6WqiVCwRiNp5fYcTZSEBsyMYuiH0yUqCuXwRRDE3hmPJWuouuLwCMddVMbnXd9KydhXJuSQXX71epJp0MbGuungzyF5qlq8Ey0IdPknbRReDW6AkR8ZSbNnQjL9zpajhlemsQlXkTh1gfjqBP+hHbuogPjFHqCYmnF1VE6E1W0HJM/Hic+z5/s8IBEX9xBw/zV/9xa2iZud0s+cH94EvRGaoj9HRFBSzDA/Nc+F7b+GCjU3cd8f9/MUX3y/qEm4vBCJc89F3ivOsahITVBmqLEnCkZdTPbY9dcePiK3bxp98/v1sefPldF+wmY72KMrMOPmJETw+D0/uHyMW83H55SsolQwkSaQT9w7M88SpBAGvi3RGYeXKelKpIk6ngwtaojywd5zhBRENHH7hNH1nZvnml+/kWy+MsWp1I3/xuXfRdclFBNqX8ld/8yEo5nC3raChIUTPZIYf3v5HHHzqEKTjHNk3wPFdz3HnHY9Tv3wZt9y8kWd++gTkk2zd3Ebvc3u5YF0jV795C4SqRLO6kgOnm7qIj5u2NpOaS5GKJ3A4Hex+YZDByTR5RWNqJst0PIckSZimSX1LDdGoj/sePsm3f3qYWMDD5HyeqaTCeP8ExbkZqlsaaV5ST32VH8uyCARkupfEaGwIIUkSHq8HySGhlWyEoaaAYddzXTKOMttGIS2ozcpipi5Z9KAFYzg8glVkMetQBnGUWd6VfAVJWKaqUovi/XJ6z2kz1pTh9S73y/NmZZCI0yYJlhzCqZb1xcrowzJgRFVQp0fwx2IUsgVCIQ+hWIjlK+2amctdGV/llo/y+CukxXk4nAwfOEL/8AIlzcDplHA4JEaH5/FV14InQFWNUDE4r/yJ1huq7Fxfjmjs53Ik1IxgxChbWa6qmVeXsVr8jmVZOoJGqvo1zuuAZVk5y7ImLMv6oGVZb7Msa++rbX8uJknSpnN4rP11+zmf6cRzAoD8V5plQT6v4nI5yOc1ulc0kM9rWJZFMlkkEHATDnvJF1RcLie6XRNzOB00tdXQP2HLT2hFcMuouSyB6ipKWZs8tZAR0VE+iTk/RTEcqNzs5dWsoVFXF2Di1BleePoUoWgIpaCgWSbFosbFb7sS07JY0nk9TTUBHvzWPcTWbsbtcTO8/zDDx4Nsvmw9E9EQ8RPHRFQ2OyJOcLKX1IRJ5zXXMnSsj1LBy2Xvuo7dD+0lOzoE3gCf/NNb+fqX/oOhJ3ZBfSer3nw9X/jyPWJ1XsyIukh2HnSVyTPDoJVobYuxZ9cRmBE9Y1/+7Ddxda4n3NbKNZd20xrzsisQgbkxFnkdoTKR2JyRnvoWSgPHwCWTPPQ8Pwn5+NoHNvPev3uSgWMDopbojzB37DBz3gCuHRuR3U5y6Tyf+8Bm6gMefnZ0htP9CTraxMr50P5hOpY2cPS5o3zZ62JZe4y7fryPlq4mqpvrSRw7BC6ZPd+7GyyLF2QfOJzE1m7hiVNzfOzP38fDL4xwZN8gb7lhHZ/45kt0blzJ0O5nqWmqYWZuAlweMgsZ7v7JPvBH2HnLlez61o8IrdvBrheG2by+CSlYhS/oI2c3pN/7g6fY1dSCx+ehmE6jazr+kJ/eE+M0tdcJFeeSTm1DhFw6Rz6rMDUSJxAO0NAcY3Ihj092saoxyOCOZRzbP0DbEsGtOJ3IU10dQFV1TAuqQ178If8ia4eaSeIMhBfTfLJHxhurRsnlKwi+shTKwpQNew+AJ0AwEhT9Y56A+EwtVpqUA1FRxjd0Aaooqy2U2ynAjrYsMJQK/VoZuWgaol62aE6xbTl9J2HX2soNzVS+Z2gU4pM0rFrJ0X0DxOpi7LnnCbGNrlUiO4dkM+1riz1rnlg1pcQMAK0tEZKpInXVAfKKRl1DmJ6hIdBVBvbMiv1ppd98sqGcTjxnq5Ek6eBZr79lK3D8Z+yVAgjrNd5/re+88g9I0kOv8HkaAeC4/ZcFMiVJ6gImLMsqSZJ0GbAO+L5lWamzNnsWOPAqx1K2Dl5b8uWcuBP/5LU+tyzrK/bzuQJA/stMcKiJpmOPx4XL5cQwSng8LtxuB5pmEo+nqa8PoOuGADu5HQQjQUHd5I8IMc2ZEZstIINS8OOPRinmi1jpWZgZBIcTZ9tKsn0nX4bsc7avZunqNg4/ewwWpth0y5s5/OQ+0SRa1czkcJwlbVEOHhhBVVQOzk5CMCby/rbOly9WxfGDw2gjp4Q0y2CvgCFP9oofiTUytOsxbvuTDzCdLLL7rgfA7WXdtZcyPBDn0b1jEGvAV1VDqVii/9Q4FHOsvXw7fr/MlWvq+PKXfoyjerlgJnE4OfzTn7+8TiA50EdOsuzCt3L3P93J9771p2etfp2Vcy47cF8YDI3SmUNiG6eDDW9/K7OzeW793M9FpApi8rJ101ZfvJHRwVlmp1OEokFeGEixsTVMQ8RHvDqA0yERn8ni9XuZny+w+oK1fPjiNiTgM5e/nbd+9Xnmz5wW+1WLldW/bcnJKYzVjTxzeJLkXIqN27u499/vgXANyZ4k+MPMTswKOZ6nn6WoZCFYDZKD5+95AiQH2bFhsvk0j/bXUt3Rwc1XLuOOgUEcLif1q1ag5BXUkiCZ1n1+VEUVfH3JPDV1YWYn50kn0oL3sKAgSRJKQWFsME6hUMWFG5soaiYbumtIJosoik4+L1oxTNMilVLI51Vqa4MoeYVUIoU/5Ef1BISwK4A3xEJ8AUsXPVkOfxizkBHXIz1bUVuwUYKZuQVkv7/SHgKVFGw+ZV9Hya4tul5OlqtrFQdQ/ru7nSL9WI6yzLMitLKOl6mL9KF+1nedLrG/xbYSAWCaOXECHE5KIRuZ6AvZ1FdKBRRiU1CV2fdLyflFpKWqGUTCXrIFlVxOJRCQhSRN2mYucbpFe8j5MIvXE2Ul/hMQ+7gkSY2WZU3bqULbC/+nZKzK35mQJMmFEK385fTl2TYE1AI/tl/fBsSBZQitsPf+0vb3AlskSepG8OU+iCAOPhvsccCyrF8Bh5xtkiQ9/Vqfw7lFYqGz/v8x4PZz+M5vhZmGhcvlwDQtgkGZeDyH2y24BF0uBwsLRRwOCUXR8XpdQtvPsGhsjjA3m4f0HIajoZKDVwoYqkohmxS5+3K/imViTPRV+sMAqpowUnP0HizgiUSxwhEO7zkDuoqruZu6ljqmXnial5wOoT12FoAEJUuoawXFfJFiKoU7EMTRsoLu5Q0cXsjARA+htdvIHt8roqhwDT+77xBmMr7oEPpPT1JMpQiEAjA3RnF2BNxeTHvle+bEOOrcJPvuyUNtO9svWUGhoHJsvBeiTaLm5fJCQ5cAD0yeYe9PH4ZYIx/60i42XruTZa1RPG4nu14Y4abLu7j9b78HQKBzBflT+yv9QIboizN0oyKqaVk42lZhTg/hilSzvD3G2u4a7v7JPrZsaaelys/JqRx7Dk/S0hLhpb1DQhZH1VEKCsuW1vCzwzPURby8MJLhi7+zlo8dPSLSSbLvZSt7b+c6YnUxYkEZj9vB2qU1hHxupi68iPFndolo1NAxU7P0PT0M/jBydb3o25sZAF+Iqz9yG5GAzD3/dg+rL9pAW2OYu+45BEqOhlUrSM+nsUyhJJ53yegTfVjhjfgCPqIxP00NQTTNYGY8geSQkL0yuqYTCAfIprLMjM3ykgRNTWEURWPtilpSOZVsNkV8JkNNbRCHQ8IwLFKpIh3dtZzMihqc0LYTtalwk1A7zmfyaCVNsNnrqs2l6ReIQ3ucyZEYlmkJx1vuRSw3Jy+S9HqFozA0FqVRyn2MhkDjLqYIlbxIR/qCL3dY9t9B8DXakZkp6L4AcS+Vn50uO6I0Kuwe/rBArPqCIvthU4EtLlKUvDg+2SuARy4ZZzCCw+EgFvSQLwlQR6mkI0nQ3NHI2KEZcS10/WWp79/U3mBgwIOIOtTf2s8PnPX+jyRJ+goC2FGWsTIkScpKkrQD2Icg4P36L+3rJeBW4GnrtT3wRsuyLjnr9UOSJD1nWdYlkiSdeoXtTcuydEmS3gr8s2VZX5ck6cjZG/w6B3au25wLxP6vyg8gfvZr+73fahMcdQb5vEo06sXtdlIoaAz0TBEKyXR2xAiHvTidDlZ0VeNyOVBVg0BQFjpSxQzIHrzVdThqW8UkaegCjRWuEc7H7a00Yjpd4uZMTkMhg78qJuTlB48Tq6uCfBp9ahDTEIkHZegUON3IVbV0bttosxG4yU5Pok8PE2tqoKapBnOil5NHRuhc2crSa69l50VdOJasFTdgJoE5YhPr+iOc2tcj1GznJ5g5flTUvxZZxk3QVdTBY5BJcOFt1xOIBHnp509y7NFnqdt2sTgfT4Db/+X3YW4Uq5BeZLunkMEcPcGRh3fTN54ilVdZuaKWombYumcW+Z5DZwkgivRR38O/IL7/BRbZ8x1OzNlx5NZlVDdUc9+Pn+Xur4vm66qQh9FEnp7hBaZ7+xkdWcDQDZL9vWSnJwlGgmi6ydhUhseeHQRg71iWn37tI8IhQQVAYBqoJZXpwXH8HhfpbAlJgu/9/Z2M734SeelGGwwgJl13czf+hmbUvsMYusFXv/J7IPt44idPMDSVgZpWTj38OI9+516UuWnQNaZOnkKShGPyBgTzf82GbWRTWVRFRZIgPpfH6ZRo66qnubWK+sYISr6I2+OmY1kT3ataKJV02moDGIbF5GwOh0MiEhHN02VBTcOw0DQxntVCkez09OL1RJLIJrO4ZdFj5ZJdyH4/jkhNJfJR8osMK2o2i1YUTDXYadfFNLmSExGOkheRVDlF7vZWxGADEZs4WKsALWzUK257vJ0d0ZcXapKj0mNWBmVARZtPVxcRv2VAiZFN4m9qw9e5urLPcl9aGWCilfk5JYx0Aq2k4nBI1EWEYKYsO3E4JDTNTvUHYkSWrar0g54HO181sVeRsfpb4GpJkvqBq+3X/CdlrL4DVEuSNIDgN/zMrzmkWkmS2s46vjagHMK+0ipAkyTpXQhHWRY+fsXioyTsPZIk/WV535Ikbfs1x1P5/uspMkqSdNiyrE3n/IX/ZpNru63lv/dvOBwC2AEwP19E1wxmTp+mdcNaqqv9mDZcKBL2kEoraJpJOq2gqRqJ0Uko5Qk2t5FLCgfm8Pow56dw1jRjpOYqwn0lu9jdvAJKeRz+EOZkv0Avzk8QWr4ep8tJ17I6Dr14BqbOANB22VWMvfAcvs7VIv104gDL3nQNmbSC0+VgsndQ1CtCVZCc4eL33coLu46IVCZU0nIATjc3/v47efDf7q7A3sv1uVC1iNwWZeUdiwjDSGMD6bkFmOqj8+prGDkzidvj5tprVvPAv/6QMledd+kGlOHTEIiy5tKtnHzqRVDy1G7ewdzAIEu3rqWjNcqub/9kka2jbselpOZSqEPHxbWZ6gO3B2djJ1devYZ9+0dobKnC7XZw4ucPQriGYFuXEDI1TSFLsjAthChln0CWOd24g2HWbelgXWc1jWEZRTP5zn3HaWmvRpadHHnseYHUrGoCy8QRrWPp6jaKRZ0Nq+p48F++JyZJb9COtHMvb/T2CqmS6JrNpHpPgKYQXr2ZzNiIuLaeAHIgiGmaRGujGJohVJVnZ8ElE2uoEUAOw0SSJOoaI6iqQSzmQ1F00mmF2toAbreT8fEUM4Nj+CIR3nPLJvaensHhkPB63aRSRVEbG5sjWhultlaoQidmRPanMDMpoPLhGGo+R3VLI6qiYpomlmVRSKYWFb/xh0Va0e0V41ItEqxvQCko6DOjwtFJDjGxe4O2AKyvAvYoj5syCKOs71Vmu9dVEfGVe6/KApRQSTdrihgb5QjOsJuoy0jDs5k5QByzqlRSmU63LRPjqYBLyg7R47fh/m5qVq7hom1tyG4nmYLK2FSG+HSauoYIvc/vB00lsmwV6fgcykMf/40ZNDpXrbP+5gePnNO2797c+j+NseN6BPfhIKKG1QF8HNgNfNSyrH/+pe1XIeRYXrIs68eSEDq+zbKsv32Fff8bopx4hWVZK+3+t12WZW09l2M7n+jE3zpzOB3ksiqlko7T6SCbLVFdLRghwm1LyGeLuFwOSiWdXK5ENqfa0G4Ln89FqViieXkHsc4uVEUVaK9iBjOdAMPAKOQqmkv+kGAXCFVDIc36neuFA9NVgSrUVZAgNTHBoQeeqNSF6joYe/ZpsCyKs1OkB8/gaFnBwnyOVCLF5JEjYgIyNIEwkyT6+xPiu96gTcqrQ+tqNtx6MwAPfvNHYGh0XnGFgNSXe3AyCeFExMXB0b4a6jpw+AJidTjVB5JEV3uMQDhAKT7BA/ftr1xQ00DpPSgmuOQ0J+9/ELLztO28lLmjB/HXNtD/yMNkixq3fPI9rLpqJ5gG8zPz1LfWgsOJL+DDt3Q9t3zsFtZt6WTXXb8gPdBD72O7OLG3R0y0xRy5ZBozPgzzk9S11PGBj99M884rxHVMzsDcKNr4GU4cGmHXnlH64nle6p+npb2aXE7lyIs9fP5zt4FL5m3vvRp/YxuXXrma7WsaGDszyoP3vCTOqbYN/9K1IsJ2npVdL9Ma6SqpkSEwNBzNy8lMTlTQei6Zpatb+MA7t5FOpElOTCB7ZWo72mhd1obH6yFWHcQf8hOrCS5yJmqagcvlYPXyWhwOiUtX1XH9JZ10retmxdoW7n+qD4dDYtWSKrLZEltW1qPrJlX1VRi6weR4EoD65moK6SyxJZ2QXUCdmwTLIjmXxDAMTMMU7B/55KI+HbmkOK9gDIfLjTMYwRf0CXaMcvtEuUal2bV6wxBjvBxdne3AilnxXpmZoxxV6ZqNJzcqVGxlfbByD6Vp2VRUSgVMUma/d7ordbXyPaZrItpye4QDW3SCZznYYla0eega2VQWn8eF1+3E6ZDwel3EqoNi0WpzPqbjc0JI9TzZ+Wp2/m0zy7IeQaQp/8h+LLcs62HLsvK/7MDs7U9b1v/P3l+HWXJd9/7wZ1cdxmbu6elh5pFG0ogtsmyZZGYIOA5z7k3uTa6TX3JvwHGcOOCYY5RJssBiGGkkDTP1zPQ0c5/Th6lqv3/s2qdOj0ZSO5qA/Lzrec5zaBdXrbXXWt/1XfJXpZTfcr73X8qAOXKllPJTKJJhpJQJfoou0K9qxDRbvcOJVcto/9+exV5KSTTmrxaY+v0eMpkS8bog4ViY1va4077CrvLZhUJe5uYKTI0lsS0bKSEcDalWDlE9y/PRsW07/nidgr87uYRYazNLd2yFbJLDP34E2paCYdJz4xugoYP08f0qPFkpKQYMb0BB54VQSiM9y1VvvQl78DjTe58lEArgbe5yQ3OOYk3Nprju9i385h+8j+5rb4Cu1dz9jm0cevaYIrp1uumef+Qn2ANHHV45Q3lyMyNgeomu3c41N6wmEA5ipxMEw0He+IvvpW7jDh796o+U8gvGYHaE2IYr3XoeJ5+lkGcqPDT4zJPg8aoi8M5VHN53ge9/9qucuP9B6rbsxJqbZmjXUyAMbnnDaoQQPH9wlIMPPIXR2qPWE4pBIcM7f+V9SuFOXoBijqXXXkVqNsWxC7N84eeuUGhQf1hNGGyL0pl9jDz9KPf++DCnTozx7p09VCo23/z0W/jTv3scTA+DkxlyfYcpli0Onpnig++/BvIprvjAu7jxbdeRm1FsF/NQat6A8qwDEYxYE9S1YhdUEfln/+Sd3PWeG6hvrsfnM5nLl7nqupVcfft2Nm3sZNWqFm6/ejEz4zPMTKawLZvUnApZ6ZKP6ze0kSmUCQW99E1kSOVKxGJ+pqdz1NWHSCQKVGxJqVTh8ecHMAzBxjUtSKlauxTyJQbPjuILBklMJRwaNBUyFEKoPm2DZ0lNTCHq2lQpRCim8krBKJ54Ix6fqjcTQqiQYstiZag0Ua8OQeuQYdkBfxSyTrPMgpvXktKFqkvbZbcv5d17plx0z7FuzyIMp+Fl3oXug5tLq2G71xLt6HSaWlrKkHl9rhH1+BUnpG3R0dOCKQRSSgxDUCxaBINeFZXRtWFSVrtrXw6RC3y93kSo5se/A/yylPIQ0O2w1F887qi4dNeTI69gL8pCCBPn1AghmvkpgJ4LAXa8ZEdfL2KYAtuWVXhzqWSTy+SJ14fJpXPE4wEnRi4pFCpVUlYhBF6/l9Rsilw6V33QdQK8oWcRo/2jqgWI31cFdKT6TrKo9zrlGXl8MHqG9quvx+/3OIzgNp1bt7FpbSvTcwUme1dz882rOD80x7JFdTzwwGH2v+D0jfP4SB7br/JZ9W0wM0Jg+Sai9VGCIT/PfOUenvH6CfSugdwct69q5HvAyo29jA3Heded6/jXv/y6CqVNXsC3bCOdi1sJBr2s7m2gbNncd89zMDuKd9EqPvPxbfz+Nw6zYnUbe/pjJA48W2VUWLqilV/51G9wcDTD5/70yxBtZPmOzfTtel4VTpeLMDtK8qCqssiNmzTvuIFrr1jE0pYwJWs9//zNvRRGznPfV1R4PHdencue5Z30Hy8pBTY3id9jKOg9gG1x7sUDbHrDVQBkyxV6VvUwcArIzKocnDOu3H+UhDD4i3yR3OlDvO/F56sFtfu+dz8Eo4yMpPD5TPafmqRlzVrS6SL952cINTaSGxPzSwW0gs3NYfcfguYeoh1dhOO9/Nk3j9DYFCbRf46m1hhz2RKzCeXVN0T9CmxyZJSmjibl6RfKBEP+apfhgM8kmatgWZJcsUw4oJjVO1sitDWGOXVuhubmEPfef5hV6xfR2BhmaGiOF/YOsHhJE1NTOQr5ItbsOFa0yc0fAZherFyGJRtXcP7JATyhMJXkFGbrIqzZcaXsIw3YtiIpNgwD27YJhAKkSnllqDQvoeFRXk8xp16BiOtZ6ToxDdYQwl1WhxJNp8Bde1WaUNgbUMt6fS4tlT/sIhNrAR7aAOpOCdIifeqwMp463KhDnsKr9ivUDOUSa1c0YUmpCp3DfpoaQ0xOZQmF/ODxYtS3g4Bw+PLUiUkUIvpnVL6MasFylfN9GNXV+f6Lxml78SnnXfMrvh9FCnwp+Tvgh0CLEOLPUECTP1zoji2Exf4RKeWtC13hRct+CXVQk1LKdc5vf4lq7VJCxVc/KqVMOtxdJ4HTzuIvSCl/0VlmK4qGJYiiTvm1V0HSABBoWy57Pvz3lMuWw3TgrTYi9PnMKuRWh3dKJQvLskmnFCtHOpkmFAmRHh5wk9Y6zOQNuDPVzCyNK1Yxc+yQCmWAQuGBy4Q+N8WK226lqyPK7l19immh7zCR1VvInD6sZsjpWahrJdrdQyaZobG9kemDe9R2/SG3hidS7yqSYFRBoa0KhOPc8K5bOXN2lqu3dPDs3mHGdz+pjODsKOG1V5A9oUpTbvv59/Dw1+5XiiKbUB7c7AiibSktXS3MjM9QOX/Y9eByKda/+XbGRufIpXPkTu5X+6SZPBxv0bdsI6Wzh1XOq3O5On/TM4oV3h+CQpYvfO6X+Llf/nve+sn3MDCeUrmrUkEdl2GqseAU0Kp8n3/FFsqlMvZ4P5/5fx/jwHCWr//dd/B2LqPct98d7w9hdK3EHjzhsp+H69S50kznWqGaHhcZp260+YZMSsWbKW2wKvTedDNNTWEWt0W555491DXXk5xOsnxdD2uWNvLM8/00NEVZ3F3H6bMz1NcHmJrMYts2kaifxsYw09NZIhEfxaIqwG1riZArVCgWK3S2RJBSUrEkQZ/JwROTDB49BYaJJxylMj3Cupuu5vTRQQLhAKZpkpycwfT5FMQ+M6PuS6fEIdrSoujTUtMKhOGE50KNzZgeEyklVkX146qUKpRLZbJ9R5UXVXGKiE2vy5Jhmsqj0zlWHR2ofRRruy7o868NUyDi5rV0Lkyvu/pb2S3K1oAVnffS4UxbKmRhIesiJzXcXhdbV8rc9fG34DEE4YCXbKFMsWIzPpOlUrGZns4xcuAAlAoEe1eT+Lf3v+YcVe+aDfKPv/bAgsZ+ZPui11tObJ+Ucpuo6WoihDgspdz4MuOfk1Je82q/1fy3CrgZlW97XEp5cqH7tpCcWPNCV3YJ+QqKq6tWHgXWSSk3AGeY3+L6nJRyk/P6xZrfNf/Xcud18TpfRgTNzSHi8QDhsI9QyEsopBoTqrCC+qxDPNGon5nJFHPTcyRHx4jEI2TTWZqWryDQ3E7bxk1Ee5a5xqToIL0iDeTSOYyWHgXWyKecAtGAUiCJcW766Du4cGaUpx49TqHvEPlTyphk+o6pBy87p3Z5bpJ0fx+yUmb6xafBqtB29Y1qXbEmtd3khMt/6JCzbnjbmyHaxFNfvofRvgt8754XaWuPqnXPjIAwyJ7Yx7UfvhvCcQ4cHnWYxXPQsYJNO9fRvOVK3nzXZroX1Sn0pGGCL0jd0pX4l6zj6A/vY3pkSrWPD8ZYfuN1dN1wq6N8Kiq8d/aw8s6aFmENniR9Yr8KDepQkunhj75+mFs++g4eeewkB793nzur1+i12p5TDmFt8cJJVUJQLnLPvjFeODrGH/7xh/idT1ytGlxqkIpV4bc+sZPgis1qHeWiAjIUHYMP1G/dqRS9xwfda9ny3ney82PvcxF2QijlXdcKgLd7JQ2bd3Dlhnb2/vgJhqYyyoBNziiuzFSRp549BxJKJYtTfdO0tIRZu6SR7kV1VMqqUWUmU6RcthkemGVxV5xcrszUTI7etiitjSESmSIzqSIVWzHw5XNFfPEGNl+3getuWo2nqZNjT71IuVQmPXBeFSlPnMdKzWLoouJqfZZF+twpdS+GYuo+dVB40foo7d2N1To1JAghqGuKQ9MiFz1YyrseqQ7feQNqwqUNDLiTD3Ands69UxVd0KzDeLog2ltjhAxRk1OrYeTQdWsOm4cKbzoQfb2sLzC/Hs0XIFMoU7JsJpL5KrjDNFUft9bWSLU8Jj9wZmHq5FVESrCkXNDrdSglIUQQN+S3FHilKvGwEGKn/iKEuBoIv8L4PpQ3dh+QrUVCvposJJwYF0K8/eX+lFL+4BX+e+ZidmQp5SM1X19AuY4vK7X8X853zf/10Cstp8ZCLleuhnFmZnJEIj68XqiP+jEMQSajGD0qFZty2caqWKo5ZkaFWex8lumjA+DxMp6M19SmZKqw5CVrF3P+5BA+v4+Sx6c8I/1QO7PVJ368R+W/pHQ44rJusluLL6iAIbaljKETTolEfSohL6VSEi2LYXqId//Gh/jO33+HN33qA9z/D/8GwqBh6zXMHtgNUnLoAaeu0etXSqFrDWfOTEMxz9QLTwFgLF5Pa3crh545RLS1jfu+/rCDZGyCSD0f+aW38pX/92WI1BNdv4NKuYK/eT2BcIALZ0b5x9+5iU88+5Sbk2heBLk5oo31FMPrKPUfdz0qJ6Q6fuIE46fPEG5tV/VuA+fV8Y2fddvYpKaVYdRAgLLTKsQqs+/5s/zex6/mH394jOkXnnLr9Syl2P7yf/w93uVb1cy/XHQAA17u/qV38b0vPUAmmVFAnNlRGD7BgW8dd2f8+ppZZcgmMbrXUO7bj731Ok4NJCDapOrlykUIxzGaukjNpgjFQkwfOUiirpVYi0Iel0oWTQ1BFi9porc9xt6j45SKZRpboqzrijEykVYdoDNFwn4VUhyfyTI1U2IwXyYaC+Dxejj43EkwPRimQdOKVXzy7ev49OceJz/S7yD1MtjpGaXUTQ8IgQhGkdoYJ8aUoamUiLa2kcvk8Ae86j4vliiXFG1VNpWjqauNfDZOdvgCFE2XUaNUdg2MfgZ8QfUcFLJqAqLZNnQXZ9MEy3ANUrngTlT0ejQ837ag7IQWdcmK7iGm7wMtHp9rsDS4xJZQ27PRtphNFgg0hwn4TNL5Mj6PyVyqiNdrqBC/zuk5KNTLIa9P+7Qg+d8o+H63EOIbwDXAR15h/MeBLwkh4s73JKrD80tECPErzvonAAvljUkUy8eryoKMGCok+HI0JS9rxBYgHwO+U/O91ymISwF/KKXcxSvzf71EhBA/j/La8MZaCIW8nD09wY4rFzMyooqau1ojpHJlfF6TuniAXL5MpWKTTBawKha+gI+mnk5M0ySTDOHtWkppqI+6jnaSQ4MOJDgNtkXz6jVkMyVIjFLSs0wntNexYQP5bJ5tW7p59IvfdWa4wqXv0S1PkhMgbVbdejOnDvfD8Ek23f1WDr3YR9uiNs6fGoaWXtZcsRrTFBx9fDdv/IX38MTuC2B6uf/eA7TtvJnUTIrZ44e5+1c/wPe+8hPFj9e1hvrWBjq7GzhzfIiJ84MOE7naD3vgOKtuXktHR5RMpkS2McbinjoAdixr5K/+7kGuev/bKRTKymsC8l4/H/z19zGTbuOvHzjDPV/4Dd75v+6nobVBGVDDVB6Y6QFfiA/9yjv42t98A7DxLl5PuViCyX6yyQl1rhyD337NjUyPTtPU0cTYc44BrtJ++atoOatiIZHU1YeYblkMkxdYctsdhMM+vF6TA4++QPnsQeheC4NO/VzLYr73t18luGobt75hNc++OMBsKE4kHiF96pBTvFujKJ38jT1wlLqt17F16yI2dMc5dXSIwqTTt62QVcXKZ46Riymjz+woGV+AusYYpZLF0aNjFHIFGuMBtq1rpX8sxdnT4zzwosGGFc1kC2XS+TIBx1OIhn3M2UUmRhNYZQt/yK8mBIUipeFzTI/08emhUW64YwtPfe9xtwjZ41clHyN90NxDx7JuRSOWnlbXu1yEmAojmh6TQr5EZi5DY1sjyakkwhB4fV7SybTqU9bYTsW2VElGKe8aJlC/BR1uUSd0CSjDEowoxg5QoUd/EMygypfpAuWS490ZuMhFYSgN4/EruH0wWiUDnoca9fhdA6YBTx6f257F8FS9Mw3YKJQsEukiwYCHeMxPNqf2t3nTNqbOnHG9x8sgP4s5MYe9vh7VqXkH6kr9mpRy+uWWkaqb80YhRAyVtpp7hU38GgrtOPPv2r8F5MReU22Y44ndr3NiNb//T2Ab8HYppRRC+IGIlHLGyYH9CNVaYCXw51LKNzjLXQv8rpTyza+27UjXSrn2U/9COq3COCuWNZBMFZmYyBCPBxACYrEAUkomJzMkpjPkMjnFYlAo4gv4KU0MEuzsVSEH01QzSausHtC6VpCSrlVLGN63Vz3ooThX37yesbE0mXSBa7Yv4unnzpM49LwqxM0kCK/YwK++fxt//ul/w9uxhO3XLOed29r5rb95EjubUh6bJkUFrv7QO9l979OqCLVaD+aEZ6KNymupdtn1EVm5kYaWOgafe9ZFd+mZrGYfCcV460fu5LEnT1MqlCilEnzsE7fgNwX/+K9PEm1q5D13beCpA8PYtmRyNKEMk5NMb9p+LdN7nlaouMQ4NHTwo796H/ccnSBfqtAYDfC21c38xeNn2bq4noMDCaZmcgycmyRz7qTT8iMK0SbalnQxvvspem58AwO7nnHRj3qfdYG0BhbUtbJ821p8PpPj9/4YAhG6r7qaoSMn+IdP382nfulvq/fAr/zxL/C5z/wQgjHWXrma4z/8URV5F12zRbXNEQahZesJRUPUNYQ4++D9rsL2h5Qy9fjUpCMxXsPy7lW/+YLUdXaSPHFIne/GTnyxepW38pi0tMWZSxaIRH0EAl4mJ9I0NoVZ3BmnYtk0xQL4vSYDUxkqlk0mq4p05+YKdHfG2bf3AtKW2LZN7vQhtV++IJvuvIlDzxxyQ4W2xNfRSyk95yr41LQLiW/oANuivqMVq2IRCKn9K+QKGIaBL+CjkCtQyKqGmuXJIXXP6UaWXr/ymAMRF4moc4qBsONNafYPv8pbaUSj1/fS5pO1NXlCKANkV2oY7nWtWUV99gbc0KLuMq07bOuu3Ho70qZ50za2beokX6owk8gTDvuIh30K6FWxeeZ7jzlw/yyF5/70NeeoelZvkP/zyz9e0NhfuGrx6y0n9sxFjB2vNt4PvAPFe1idhUgp/88lxj4J3OIQEf/UshBP7JLkjEKIAPBmKeU9P+1GheoC/SbgZg3QkFIWcWKsUsr9QohzKF6uV+L/etVdz2SKZDNFbMtmJpEnGlH9iebmCrS0hMlmS5imgt9aloVpmgTjQQo5r8oXBCLkJ0ZUPmpu0umXVK4mqIN1dUyPzSilVy7AVJLd3zin8hBePwfDfhL955RCSc+AlLR0NPDY0QmueNstpNNFdn/9++x2MDwd197MaGpazWiTEyAMdj9+tNo240/+7yd5+Ngk4+NpReo759CnSYlGpW7ZvphTpyarEPFq6FPn0QDyaX70L9+HcoH6zVex6Yol7Do4Qt/eo5CdIz1+ji9Mz/Abv3gz//bQKWzbZtUdt7FycT2jMzlKpQo9vW+jrTHMA//4TZga4K2//hWYm6Rj502M7nqcLzggmGeCUeqXrSBx6EVX+QNkk3ztbz7Kh37hMyAlA08/6RTS2K4R0VD+KpjAhrlJ+h6bwN+7RnkC2QRDTz8OVoVPffIzjtemelR97h9+AlaZjhW9rO5t4Lg3wPq77qC9OcKR4xOkQzHIznHrG1ZTF/Zx/5N9ymAFonjbF1Pu28/SO95E/6lh7MkBVTYxcsoFhlRKEIiSHHCAPOUCzIxQCUZJzabwBXycnpilpbuVctnG47Fpao5QKlU40z+L3++hULZoqw8RDXoplhWHZ13Ex5mTY7S1Rrnr1jV845vPqeup70Npc+jenyglXN9OrLuH1OAFGtsbGZsacWupQN0DxWyV4T2XzmF6TMrFMvUNIcqlMrl0TgE7UlmEEKrBq75Xatk19DUp1kQdtPdlW2q73oBbI+bxgnTyacWsw8rhVZNAnYPU9+88kEfN7zqsaFsOctIBlejCbJhvwACEQalQIpEp4vUYDF2YYfW6DsqWjUAoAKVhVlu3XC75WfTEHHlUCPHbqMhZVv8opXw5vsV7UQTB+3nl3BkoXsanhBAP1I7VvLyvJgsxYh/UHxws/63Ae4HbgF0omOWCRQhxO/B7wPVSylzN783ArMP3tQQF4DgvpZx9Bf6vVxQppeNxKah9NlvC7/dQqah6ML/fg2EIhodTlEsVTNPECBh4/V7KpTJenxezroHSwClnJuh38gNF8PoI1ddRyBVoam/CF1hBaniIK99yM0cPDGB6TNq6Gug71Dd/Rum0iJjs7GHxslZO3v/gvHj/6K7Habv6RtLJNOWmDkqzEzB8Elp7YWqQP//iCyxd1cH5Xbvn5wk0alIInvn2Q4jmRU5L+oAyYqWLlIZVIbR8I4uWtnL2xBAnjpTJHN8LQHjNNpUTyczymU9/CXwh3vPJt/Htf7iHU6EYV9x+FfFYgOmZHO11QYV8y86p3IuUjD7zqFI2Ok+VUV2xg8s3kj93zFX+ppcPffLv1H7mU/MTClpR2Zb6zzAVL156ugq8KJ7aqy+0ixzV+RX9eVYBr0U8pgABAABJREFUWEaffIjvHWqDUIyjj+7iKDhh4RJYZdZ3Rvnbb+4nPTkNoRjxZauZGxqEQATTdBRlNqHOpZ4YFHNKYc8MOwrbV6Vusif6IdpIiQiti9rIpVX9V2dblESqQHuLysPMzuXJZEsMW5LlHSpENzabI1uosHlrD9Ggl5aoj4aOFmbPnVXb0HnThk4C0QiFoXOksgnIp0kn0i5IxjCVYdDeS7kAtkURCMTjFHIFbDtGMOQnO5clNTOnog+phGKbsSpOrzjbpWbSrBz6+nh86trrFi/CUAZFCNVYU18fHf4zaqDzWrQHBs4E0TPfGy87+THN5qFprXRbGN1XTJMNO8jIuTMnGGuMUipZeHyKGzXgNSmULSanc2p9ybF5NWivSeTCeoW9TkXnsz5V85sEXq5SvEtKuUAAHoPOy8dPUeSs5VWNmJTymBDiOuB9wJ3AHlRSr7fWCF1KHP6vG1BtB4ZRybs/APwoyw4ulP464P8IISqo5N4v1lj5T+JC7B9iAaAOtQMwPZ0jHPbh95uk00VGRlKEQl68XgWx93oNSiWFHvP4PFTKFXw+DyWvB9uyyUxOuIWfUuLx+6kYAnxBrIpFS2cL5VKZ1MQUweY2XnxgF3gDhJpbKBQqRBobyMwaqO7cQDBCpGsxazd2c+q40xbDUp5HZO12MicPkJxOUi6VVX5DP6RO+5XC1BjHzxycnyfQyr9KZKoaCYaWrlFQeFCKQ0qldANhjIYOcqcPcGpGhQMzQtBx7c2kE2ma2urYestqUrkyi5rCHBtMcP/DJ5xeUyWGh1Nct70Lr2mw+9g4TWs2YFkWiYPPu7DrUIx3fuLN3PPZr6ttp6fJD0+x4/1v54X7d1G/dBP5TJ7C2SNqhq5DRLWwal8QpN8N56WnXUNcKSn4uz5uaUMoxs533MKzX/0u2BaeLsXLOPHc4wDEepeTz+QpT4+qMObidsafVf99+o++qLznTEKx/keCFBpbKGaTnDl0FqYH3W1po+ALKu9G3eyu8gUHUq4MydToFF1LOvD7TS4MJZkaT9LaUY/f76GpIYjlaD7LkpimUu7lik3Fsil7TaYyJTZt6kRu7CSVKXL6+CiZoX7IJlh19WpmOhoZOnQUDJNSoUT31i0MHT5GuL2LbCpUA6woKS1bnqYUCBIIBigWLbxew7lFHGOdSWJ7/G7Zh2Z80eLxuUbNKquQqy+gvDENyCjmlJesm2tqw2ZXHBZ7J9ypPbCL4frSriEDtucbukoJqIHg19JP6SJqwwSrRDZdoFgo0tHdSKFQQYZ8CATpdBGzsQMrMXHZLI/kdYs8fFWRUvb+lIvsFkKsl1IeXcC6/wRACBFVX2Xmp9nQqxoxx/gMomDuvyOlTAsh+l/NgDk7995L/PzFlxn7fRR9/6X+2wesu9R/r7wDUF8fxOMxkFKyvLeBwVFV8CpqZoKdnTHKZZuhCzOEokG8XgMhhKLisSqqzsj0gm1RKZWrM8lQRIViSsUS/liM1Ru6OdB/EkpF8sEoI7kCdjalkGKg6q1ML3VNcaamMmqm70DIEYJcJgeGSeHMQZVrKhehYyWkJtn5jlsI+T0cOT7B+O5xJ1nvdVtk6FYYeRV2ZPgkOW18ywWQNle87x3seWw/jT2LWL6yhRd+NAyTF1h62x2cOzHI6LNPQOsS6pvjTKcK/O5Ny/j5f93L8HPPEFuzGUpF2jZvJRr1MZHM0xj1s2VxF3VBk68+3k/C4UpEGBBr5p7P36POWzCivKjkBC98/xFuev8beeJLjgNvmFQrPTTdkVZOQYfTsGmRQi7q2Xgw5oZvNXouGANb8uzDB8AwFTDmu99n4oLPCUmGuOaqJTz0+a/RtOMm6hvD9D31rKs8CxnnXHohl2b8xEnFfKKBB/r85uZwe2hV5oe9tDeoxSG0FUIQDHqYns7R1hahUokRifgwTYOgz8P0XAG/z+T0cJJNSxo5c36W3p46yhUI+kxODCSIR/2kMkV8Pg9vvWMthfIquuuDfOYfH1Ndmp0i5NLZgwydV9dd2p0Qrlf7n08p78VhobeLBSpeD9Pjs9Q31yGlxOvzEmuMMZ1uUPsfaVTv2Tl1XLrzcrnGczG96jzoXJgWb41hsRyjX8q719f0zKeL0sXSulVMLckvqJyXNNzJmC66BmXcvH6nRYuG8KvQpMfrYXZyltNH0my5agUhvwdblpmZSBCOhUnNWPOP5zXKz6gN42UQ6nPAUSnl5CX+2wl8RAjRjwoRCpSBegniUAixDlUU3eB8nwY+5BAbv6ospE7s+yg04LuBNwshwvD6YE7RbB2FQoW6WIBsoYLHY+DxKB7FdLrIzEye6ekcgYCHSFy1fweqRi7Y3OaGv7wBvH6fAiT4w8zNzJHP5rHKFsV8kdaGEL5FK8AqI3Nz2BMDAMgxh4WjkIX0DMN79nB+z8Hqw+PpXQ/+MF6fl9Cy9WpspaTCVpkZbnrPbZw6NcFUIsf4/hfV/x6fQzgsnfyMV3kSwLUfeZcbenF+Qxis7VHouUWLG3jh+48Q6l4GwuDcodMw1kd07XYijQ10dcUwDMH/fuAU779lKc1bd5CanKZx7QY2rG1ldiZLT7MKh52bzJIt2USjLkKsc+cNMHGe8LK1bLzrNiiX+MRHriO0ejuhxSuVARMGH/qdj3Djh9+uFJAO/+mao6hSoCLS4PZOa+pWYbJi1g2T6aJYQDR1qZBfIMqhe35YRRgCUMzx0D98FaREGIK+hx+mbet2mnbcoNapt2961GQD8AaDEIqx7cZNVVosfEEFkNBK2Glz7zZCla73kJtDmB5C0RCnXzzC2PlhikWLhoYg7U1hlnfGGZ3KMDqaIpsrEQl5OTGcpLk5jGVLfF6DQtmiVLIYn8xQKFTI5Uo88PgZRmZyjKWKPPY3762CE+YV4Zfy5M4ccropzCljZjueT6UElRKVUoVKucLUyDSFyVFK2QxW2TEMuaQyfBpMo70rDaMHF9IfjLg0Ux6fynlpLsR8yvXGNM+nDjNrnsZaD6xcdD/rCV656DJ7GPo6ed33SslpHVNx3qVTc2YyPTZNJB6hsU3dT/lShblsicbWelIXzqntmK86l1+QSJxU4AJer0P5OIoN//3O6wso9vvnhBAfvMT4O1ApoVtR5BZvct4vJf8C/KaUskdK2QP8lrP+BcmCWOyF0ug3onJhbwRizkE9+NO6fv+Z4mteJpd8/B+qnlhjY5hCQc3UZmfz2LYi+tVFz1KqTtBCQC5bJpfJkU1lsTJzVQ8gGA5iOcljr89LpVzB4/WwbFU7I8NJ5qbn8Af9xBpijA+Mq9YLsyPVws/2tWsY27cH6tsVq0e4Drx+gk2t5FNpGD3N8jveyPLF9Tz26AmFNCvlqe9dSmJylp03r+PZe592GSh0WKuYAyEwe9ZiXTimToBh0nPDTQwcPKpQdb4gWGWCyzaQn5tTKMh4C9HOLprb6pRhBcKdPer8+X2s39hJXdjHj+87SF1zHRs3dhIP+ZhKKbb/ntYIBQeMMDGbQwhBUzzAvkMjtLRGOf7CcXo3rKD/ySeUMvI5ObT0LJQLbLj77azsqeeef/0xG2/dyeEX+1SOqZRXTCPegCJL1oZNs/D7glTruZxjpbmH+o5WEuf6lHLTdXmgFGUwppbVkPN82p3pm16lgP1BPC2LqAyfAWFQv24zicN76L3xJvqfflqdZ3/IZaG4GPnZvEhdl0wCTC+BZRsoJBMgDALxOKFoiJ7eRkzTIBT0ki9U8PtMpqazGIagtytedQ5VG5EgLxwbZ2RwhlKhxMp1XZw5PkK0PorX52FJbz3JuQJHfvI0bZu3Mjk8SUdvO8PPPO7m6KRUE4C5iZo+YUFoWoTXrzzF0uApCIQVzyKoe1aDKNKz7jnUeTCoesZm+xKsbEoV1Vs19WQ6QqCXMb0KTajPdzWfpZk4LBc9q7047cH5gm5YUYNM9HjdukUflxaPl86t26iULRb3NlAuW9TF/KSzZXK5EsefelF5f5Uihd3/32tGC3avWi9/41/uXdDY37p+6esNnfhj4BNSygnneysqOvcJ4JmL0ec1y7UAAf1dSjl4iTEvYf54JTaQi2UhnhhSyRNSyp9DQSbfjyo4vrCQ5f+rxDANMqk8c8kcuVyZfL5MMOhFSojF/JimQTajWO4LBRVvt22JaRoIQ4UThRBqNunx4/EqXkV/0E9zRxNNbfUsXt5OXVOc4cEEs+OzlIslVq/volKuYI+dRU5eoPeqK9VsPznB2HNPqrDO+FmufPddGHWt4A3g8XnYsGMVvuWbuWZjhzJgM+OKAT+bVFyGhbTK98xNsejqa9BMGTvuvp3ouisg3oLVf8RRAOqhHnjiUQVucHovhZZvJH/mIEwPKfLgSon1m7o5f/Qct737ZryN7WQTc3h9XhKDA+zf08+LB0aQVoXEwed56oG9PLd3kO1LGxkaSvK9Lz3AQw8eYTZdpKs5QjKZ56HvPIHH6+H4fQ/AzDCjA5Mums8bcBlHPD6O/Oh+zo3Mccf7b1cGLDnG1e+8Df/S9crwZmaVN6Dpu7yBami3Gm7Uym7yAoljB5Uiqy04FwICET72W+9zPQqrQmDVNjWZaOzizk++jzs+/g4+8svv4G1v2awMplVWeb5ijv6HH3CKai2XS1DnwXSIy9mHqtIv5VW/uEqJcGMDhbEBpJR4PCbZbAnbloyOpvB7TZZ015FMFsgUKvi9JtNzBc4NJjk5lFT1bz4vHp+HQ0/soVKuMLH/Rbxeg+PHxlixqI5w7womhiYIx8Mqohmug5ZedRy6JY8GewC6JUq5VEYYotoLTubmkNmkW9dVqbjHGYgqA66Lka0yVEpE4hG3m3aozjUkpbwb7gU39yVlDVBEug02NbS+1tvTgBBwPdxqiNGc1zeuKnriYphkUznCER9zcwUKhQohv4e6iI98vqxyqrWIyNcq0j28V3u9DmWxNmCOTAIrHNzCS+CdQoi7hOp71g88jbIVL4dlOC+E+CMhxGLn9YfOcguSheTEDgPPAruB56SUF1DUIPc5NCT/bcW2bAIhP8GgMj6lkuKrM02Bz+elVLIolyqUyzaBgKf6fzwewLYl+UxeQY09PsxgSLG0A8FwkFDIy/jILNm5rIIrj5yFujYoF0gm80zueRY6VkAxy8zkHEvWL6W8qhfDEAzsfp7o2u1UKhbti9sY7R/DqlgcefE0G65cyVf+5hsqD5SaptrbSRgwPaQOTNoMPvEwq9/8JhKJPC9884dunkB7HIUM/uWbkFJSGukHQxDqXsaSle0cOw3UtTL03C5oXcLuRw5CapqH792jwnFAcvwsLVdeRyaZob4hRDYVZ92Nb+PXb1rC4+eSfPbTX6py41m5FBcutPD8cz/At2QDK67awpldL+BdsoHy+SMUT++vsp03b9jE1IVhPvih67n34ROkju2juT7IQ1/9MYRirL15J7u/9yix5asp6vBeesZBJ6K8uJyDZCxkX+qN5ebUy+NDt6jHqkAhw5f+SrGaeLtXEm+Kk0vnINIAM8M88OX7aFi7EY/Xw503LK0CFIzWXtUJQJ9bzeZvlVX8qLbvFThaynIVfymPEVUhx1BXL16f6g9mmgZJp8wjlS3RUh9k+bJGyhW7yp/b2hxmLl0kEPDS1hFnYjwFXYswDINSMUv/vsO0r1vLdKrADdevQAh48IHDpAf72XLHdRx4Yh/Ltq3j7FO71Ap9QdfgG6aC6te3U8xUMGJN2Pm08lBzKYciyiHW1YjEStGB0RuuAWnuwTAM557LqhC5VXZBRNJ2G2XqHJj2srRnpz+bjpeF4XpYunNCtems1yURrhRdzwzcgmzDIRWQEsM0mJlM0bmokUDAw2y6iM9jMJfIuWhKWXP9XoPocOLPqOwSQtyPi0Z/B/CMk15KXmL8p1GF0Y9JKTcLIXQk71LyMeBPUMQZAngG+OhCd2whxc7rgKtrXmGUQdNGbc9CN/afLYG25XL5z31e0UlZkmjUh5QQDHqUzrcl+XyZxsYQxWKF5vpQFfhhWTYTYymmx6ahkCHc0orP78OyLOoaY8xMJMjOZVwkVHpaJZZjTSqclEvRvHUH2VSW7t4W+k+PqqaQ3gBt23awZGkDh/cPkJ2arHIKak8j2ljH7Tev4p4vPeiS++oHta5VfU85xfJaser/GzpUIj4Ywd/SyS23rOGhB49gDRx3YNkdTgGsowyCEYg0Em5soJgvsuPalZw+PUlnVx2HHt4F/hDb3rAdj8cgFPDwxPeeVDPymWGMjuXYQyfcqWXXakW91a/4IFuuvI7JY0cQ9e3IkdPUbbiC5JE91RDSJ3/nfTy2b5i+hx8mtv4KUufPOCE+jTpT4T3Ss2q/0zPKY5gZVkrTNGFuyrnYEXd2r3MuWjQoQRjc9OG38sSXvw+2xZZ3voUD9z1K27YrkbZkZnyGt71lMy8eHiMc9nJyzwnlhZdLyrjXhiZrvQOttKvGrWaclCrn19ilznd6htDyjbR2qcadDQ0hhIC6sK8a0vYYgrlciYolKRQrGIYglSoyN1fA4zEYG5ggFA2pUHchT2NXOzPjM5BN0LJyJTPjM6o4upgnVF9PtD7KRN85dc0zM26DS4/XBVpEm1Sor1xU51kr+FiTul9quQx9QXWu25dDKU/TksVMn7+gQqi2pfJjughaG0PtMenzphnr9eSgSmlVA5TxBlzvrRb0UztGI1V1aNEfptpnzBm3464bmJsrEIsFiId9lCoWp/tmyKVzzJ0+BpUShef//DWH97pWrpe//I8/WtDYP7h52estnChQhusalKF5Fvj+yxGx1xAGHwY2SyltIcQeKeUVl3vfFgSxB46hkm8IIZqA96Aao/0VYF7unbpcYpgGhYJFZi5L77Jmcrky5bJFuWzR3RkjX1SfvR4Dn9fvEIQqj83jMZzaEoEnVo/Xpx4yr8+LdGZ4hmliW+pBNJu7aWhtoJAt0LN0Hcd2HSAaC9DSGqVctonURZhtXQLJCfLZPLsf3k9dR7vyGvIZiDfjiTWwdvNiCoUK3//hfqXQNVJLP7BOY0zqWpWB0yi9UJ0yZIWcUvzJCcrxFu7/+6+r8bpmTCv3UEzNuH1BVm1bRTDo4eAzRzi47wLZ43uY8gXB9NKybhl3bm5nMlPmzFiaJVds5vzTu1QtlDZgWqmP9VHSwIJKick9z/J//uIX6J8t8OXPjSjKLj0jB/7xc/dWu2KnE2mwLNbeeRtnT45QnJl0iXtNrwrTSVsZMWGoMGOteANujtAwXTorzaju5F2e+MaDUCmx/X13s/d7D1C/fhvjp88qxVwucOjUJIPPPqM8x0gDV7/1RurCPh78wj2KGSI97SpVAFETH6qWODiif7cqyvBG6vEtXktupJ+RSoVYfYyZqQyLFjeQEoJCsUI84kciyRctKhWLSsUmkylRKlnU1QU4d3KEzt42isUKPr+PYj7EzKE9ysgnxsmmurAmBtVx17eTS6W5/voVPHTieA2azwK75BoQj1eVEDj8itVj0Z6txwnflvJuqE9Pgkp5ZidmXQJr3V1BFz5rL0wb9NrwoDZMDnl0tXRBGzcdstTLawOp67p0Xg1co2VXFIoR51g9XiYnMwQCXkqlCgWfSSpdxKpYzJ077W7zMsjPsifmGKvvOa+FSFIIEUF5Vd8QQkwCl2TkEEKsAH6bl7J73LSQDS0knGgCm1Fe2DXAUmAEhVR5fiEb+S8TCaGQl3C4jtnZvCL9dGRweI5o1I/XaxLyexgcTRGLqf5ipZKFlCo3ZphGNTdmek38AR/ppCpYNz0m/mAcX8BHMBxk2bJGsrkSHo8K1Zzfc5B1N1ypmPNNQyHFijniDVEWL23m8A/vr3odRrSR5s5m+s9Okjq2j+jarRDdSPr0YULL1ql6L2lDKM4tH7iTR7+rGCqI1EO5gNHcjV0pK4/B6cdlmAa2Tu6X8gp1p42go6za1qxmfCRBW2c95FNkE15u+sR7eP7Zs7z9TRs4PZzkR3uGGR9L09YeJZ0qsPb2m2hpCvPkw0cUUbHOS1lO8alG7eVS/K8/+grxVRt46J8+xR2//W3nukjX43IMmhw/B/4Qxx96zAWA1CqYRetg8Jg6hxotGoy6nYXT0643q6HupkcZa2EoT216qEqQu/fJw1ApEYwESZheVmxcyuC5cfqe3o3RsQy7kIf0NOPjaQ4Nz7hNG7V4A26PK40SfTmxLbX99CylUgEaOikNnCItVtPU3sj4eIZo1EcuV6ZQqGCaipi6UrGpVGx8PrNaFrLj2hWcPTdLfX0QwxBMT2VZctdtHN5zFqNnLXVNcVauvZFEIk86lSc1k2ImVSDa3Ytt22QHz7nnRxsVTSuVS7vAjFLeLRuoPQbdescfRPhDyEoJu2JBpE55xbWGSJ8fbaA00KPWeOkogo37Duq66WLyWpovTWNV6+HpQm6M+UbTMMGynDpRlS4I+z14nS7vk9EmB/xjc7lEvj6A2z+1CCHSvBSVPgfsA35LSnn+ov/eAuSB30BhKOLASyinHLkH+CeUTfmpY7sLyWimnA2kgd+XUm6TUr5FSvkXUsqnf9oN/meKlLLaK0zluWxM0yCdKmCaBrYtEQKmEnksSyXZU6kiUspq3zGP16NePg9IKOSKlEtlIvEIDa0NROoidPU0kppNkUqrB/7MybFqwjqRyDM1lSUWd9KHpofBUxeYnc27IZRwHHvoBGN7XyAzl4GmbhUqqljE12zmih1LeOsvf4Df+7NPsvKma3ns4aNV6iFyKVX3M3QCRk4pZGGojradN1PXXDffEGQSGN2riKzaXP1t/NQZksf2c+qBB6GQ5e537eCJe5+nobWePcfH+aWbepmZyeMPeDlzfISp40c5/tSLHD02hi/or0LhATffYipaoeja7Yo5YXKGu//8EdqW9lSNS/NVN7oM5ULwxo+/neU7rwSrgm/pRoc41quMoemBoeNOeDHsKuF8WilWHV6qNWCOUYn2rlTjnBDZXb/4brXNuUl+449/ntF9e2lb2sOZhx+hMDkK5QL26Fk27VwH6VnO7z9G7kLfS28uXeSrvdxQXHmJoTjeFdtcxJ3eN52nC4Rh9DT+xaspDpxm5OwQk8OTlEoWqUSGsZEkiUSB2ek02UyBXDpPNlNkLpGjoT5IwGvS0hKmvTVC/5lxsqksfr+Hd969nQ3bljJyup+zp8cZG5xienSa0nAf2awy1rfctApf2yK3eFnnpnSOUZPoai9M58I0xL4aUlR1YdJSRMgen3c+wELX1WkjqQuXwWFyUYAkPD73/tQTEOcZoVx0i9h1k0593rVHqT02zXxvmG65hOmtGueje86QSOQJBr3M5dQx5HJlKKTd63M5ZIHw+tept/Y3qM7OnSjqv99GweC/DXzp4sFSyqyU0nb4EB8APvcKBL8VKeU/Sin3SCn369dCd2whBRKfQHXz/ATwUSHEXpQH9ryUcmShG/qvECnB5zMpl9Vs1jAMUnOFKshD/+fxSBKzCqDR1BTGNFUOQghBKBrCMAwMwyCXzeELKEiyaRrEYn78fg/pdJFcJsfw4CylQomORU3MHQVyKSeU2cLAeZXD6rj6eoJBD+cefQRv73rK/UcRdW3c+K43cLpvhq6uOH2nJ5g9ewYz1ktTa5ynvvuI4pqTtgppOeCLasJbKwYhKeQK+Dp6GX/uSTU+2gjBKEYwisfnodR/nEy0EbOhTYWdtGcmBNGVG3n8mXOYkTjpZIZQqJ7v7B+jd3Ed77+yk+8fGOfQ0Qi9SxrJ58u867ZVPHVolBPP7HEUoQ2Y0NhJsKGJ9NEXqjPlt9+5nnsfPqG8nJE+pvY+Vw0RGT1reWbXWRpb6yBST2nknPJuQOVjtDcZirmhKsNUCflghNiazaTOHHdDjDpZXy6SPvRszc0Q5Cc/OaY8uFKez/zxv4BhKnReMKLOcbyZD3z0Fv7t775DZP0OWjoUKOP8U08rY1irIDXQwOtT+SAAq6xAPoapDFs+5eYtw3FFWVbXSrH/hGqpM3qGSvtywmEfECOfKzMxPEUgFCAQCjB96iSexnbWb+1lNpFnzhTMzuapVGziTXHGjhwhuaiJVKpINOqnY0UvbW0RDuw+DUKw5tYb1b0aD+D1GLz7bVv4+mdOuuFAcD312s7NVU+m4r70f06o0PB6CYZjKjesIfQyC4bXNXx6/VDjIV+EKNTb0R6R3l51XMUdX82jGe57LY2V5lP0eNX2nFBoNOqnVFJsPBKJEIJo1yLSZy8q3n6N8jpFHi5EbpdSXlnz/V+EEC9IKf+PEOJ/6B8desC/AGZR4I6vA02AIYT4kJTyJ5dY94+FEL+E6idWy504e4mxL5FX9cSklN+SUv6qVB05bwd+jGKWf0oIMbCQjfxXia61kVJiWVLBm70mlXJFRbIsiWXZTE9lqasP0dwcprkxhJSQcyDQVZg94PF68Pq8NLbWUSlbzM5ksW3J7FSKzTuWk5pNsW5TNzNT6WoDy7mxcWZn8ySO7IHGLkrFEueOKs+73H8UwnUsXtnFXLqIx2MwPZ1ltu80hOtJjwxz7smnIJNAtC9zEWJC0HTlDTRdeT11m68BwyS4fCNIG2t2nNKF49C+nPZr36CU6+QFELBq/SKW3/IGSM8ooIdp4l28FoJRQqu24PF5SCfTWKUSvoAPy7LZd2CY0bE0f/69E9gSbrhqMUIIju49y76z02xZ2awUs1WpYbiokD9zEP+KLXRdeyMbr1zOo89dIDVwng3bltJ59bWsuO3WqjK0h07R1tWgCIBDcYfI1VGaGlLvhIaq4SxdRpCaJnVgF/iDhDdcrf672AvSkk+pcyMMVYNW3wZ1rWzd0Eb9irUQirJowxp++OAxEILM+Cjn9x3h/Av7qgq/97Y7oXkRy2++UXmLmj09GFGvWkqmSkmxXoTrldHLZ9SxaRaN4ZPqfayPYy+cIJctMd4/XM27lktlCESoJCaZmFD3GkA47GN8bA5pSxZt3YxpCvL5MgG/SV1dgAvnp9lxwxqWrV1Ee0uEK1a14PN52H98nLlcia5rrlMTgtr6LNtSE4dywTVgmiHlUueyXMTj8eAP+vEF/YSiIXU+dSjP66/xlGR1EjHP+3ImT9X113ZL19dXGzRt/Dx+9e4PO/eGU3SuWfWroUyXZSXe2oxl2c7ktYJAEAiYZFPZ+Tm61ygSqNhyQa+FiBDiN4QQx4UQx4QQ3xJCBIQQDUKIR4UQfc57fc34PxBCnBVCnBZC3Fbz+1YhxFHnv78T4t/lftpCiHcJIQzn9a6LDl3L3wP/H/At4AlUbVkbilbwz19m3R9GeXm7UYTB+1FhygXJgkrVHRjllbh5se3AEPDcQjf0XyFCgGkaBAIePB6TQqFCIGBiGEGKhTIej0KD+fwepidThKMhZmfzxGJ+6htC2LakUnbyYx6ThuYoPp/J1ESa1vYYuVyZY88dJtTUwoXz0yxf280LDzzHuuu3M3NIIbVWbF3N2ROD6iEe62PW42X9lSs5+oLt1BTNMD2RJJspMnn6NIHmdq6663rO9k0pb6VlMcwMI4dOQHMPpGdY99a78PtN9t9zX3U2mu87TPOOG6rNLhk9zdjoaeWJeXzYmSRHntyjckqgFHkxpwxpQwemqYx7c2cz06PTpGZSTJ8+BVIyk5qGpm4GDtvg8fPu9+3k5/7wdv712UG8HsOFuJdymItWYw2dgs5VFC+cJOFdrwpvI/UQbeLQI88SaO8hE/QrRVTIgOlRnbdXbCSXTLHy2iuZHJ8j0X/eBWzYlsp7adEIRg1UmRlR/clg/sxagwt0PsaqqJY4kxfQtWv3f+6r0NxDuK2D2ckk2bkM7/3UO6kLefn6Dw+TOeE8Tx6fYnTxh+l7erfrIQAUi9DYqQxVuA5dm8bcFAhBeOUmsn1H1aTCKlO/6SoS+55WCjkch/GzTBgmncsXUcyXmB4YItraUmXhKOaLeBqClMs2U+NzFAtFckPnaVi5hrlZi2AkyFyqSFNjiGy2RDjgxWiJcOjwCNEdi1mzpIGBiQwCeMeNS/hWUTHWZ0/ud89hbQsU21JefyCifteesQ4ZW2VK06Nk6CBaH6WQK+APhyhWjZB0oetVD8t2SxR0HkvnU/V2cbxoTWelDaFhul6WBgcZpsqh+fzz+5XZlZpWMVnyWcXKMzM2Q0NrQ3UyEK2LMjdyERjnNcrl8sSEEJ3ArwJrpJR5IcR3UYC6NcDjUsq/EEL8PvD7wO8JIdY4/68FOoDHhBArpJQWqij551FNiB9EOSML45915f3AZ4HPo4zWC8AHnDKrX64Z55FO42MhxP+RUr4AIKU89XK289/ByzhPFgLsOAgsAnQY8a9RpL3/bZk6asVwim60VyaEQUODn7k5UQXWmaZACEE2nSMQClS9NsMQKtTkjPN6lQGL1QVJJgukZhV6MJfOUsgX6F3aDL4gx+57QG081sSZRx8ntHw9OUB0raaxvRHbltS3t5KYvAAeH+mxMdJCwNwUhewcz2fzqsi5ZXGVrSK67grSx/dC2zJGhmapa4iw84Pv4PDBQdJH94C0mdq3252lFlXYrW3jJsZ3PeYw8Hup37qTYr5IIVtQTPuLWli/qpkHv/gDhRKUNu//1fcSC3rweQyODc2RLZTZt7uPSmqWhq52vvOPP+BH3csozk7R/cGbXcCIVcEa6SOwdD2Fs0dov/p6xvbtoe2qGxg/Pwj5FEZDO4Whc3zy997DZ/62n9bN24hE/Rx+8EniK9cRqotRVxdkqH9SHcusQ5LsCzitREJu3kYYyjgmJ9xZu87daDh2TeuZalhveki9B6OuAp0aIGuYvPHuncymi3zrn39EsGsp+dMH1P9dq2HiPKcf+olbbO3cWNd98G08c99zblF5JqEMU3KCQO8aCmMDZI/vcY1uMU9iyKn5s8pqvMeHPxJm5HQ/rUsWEW5qwuP1QDZBqGMRUkounJ2gY1ETlmWRz+ShXCSfyVMsqND3+TMZlq5so6EhSDjgoVSx6OyuZ2gyjddrYts26UKZqN/gjdcv5f4n+sh3r8EerEEugquJSzl1rPPIpmvAF+lZaO4gOZ3E5/chbemGtks5Nyemw31WRZVGVIqK4V6HBGVNKFGf29piZw0Oqd0HvW7T6xQsC/c/3XgTwLYIx8LYlo3H56G+IUg2WyKXK1MqlFzC4MsgUsrL3YrFAwSFEGVUleQoikD9Buf/rwJPobqCvAX4ttPSql8IcRa4QghxAYhJKZ8HEEJ8DUVU8VMZMQe48eba34QQ26WUZ1Fwey21KJk882XeyRFCbJFSHnil7S5kzEI8sQ+jSB5fd9FeKZXh8vs92LbE6zWIRv34vSalklWloLJtSSCkZruhkJdKxUIIgWEIfD7TAYCoUITH63GMn6CYL4I/jOn1sO3qFSSTeYL1DeSnBiAQZc11V3D25LAqBpU2jW2NtHfEyeUcVJxtQfMiVl+5Dr/fw/j4UsaffwbG+mjadjXTLz7t0iGBepBHT7Px9k089dUf0K9rkoQytJqWacnOHZx//HEAxl98Timhll4wTBInjihwQWoa2yozdN5g6EAT0ZUb+bl3bmL3mWn2n5rk1EMPs/XuN7H/Bw9BYxfNi7uYMw1mj+wDj5/ixDAUc9zzjacwo/UKUuQYnULfIbAqjD39MHgDjL/wDADx9dtpao3Dyi4+8/lHaFm1ipnxGfLZEPiDzB3bB8EoL57YWz2uJbfervqm1bWqMJzpUcailFfB8MQYtC3FG62jfGafy6KukXEaPKJvCIEbQsrNKSXmhH5JTvDwT45izY6DYZI/c5D1b30TR39wr5pMhGKKdFkv74Aenvn6D+fDx0t5Fc5q7qGuqY7xMwddFgvbCYlO1Hg2Tiua4mg/hOuZONOHEa4jGAkS61lCJpkhN6macabro/gCPgKhAHmfamppF/Is6l2Cz2fi8RiKOg2IOuw0I6MpYjE/U1M5LEtycDBFxbLpXdrE9Llz4AsSX72RuUO757sSVYBHzUOlPSGn/Y4QAiubomLUYduO/tJemx6vz70mozZMsMs16xNuqyCYP06fMyHm11PqfJiOAmjP0SqrkK02hD4fxVyR7p5GEpOJ6qS2oSHE+MA41c7Yl0kul5aUUo4IIf4KRb6eBx6RUj4ihGiVUo45Y8YcWidQgIsXalYx7PxWdj5f/Pu/S2o8vvei0IkX17ptFEKkUE9a0PmM8z1w0dgvCyFucP57OfkiCh3/srIQdGIPyhNTeyLE/xJCHBZC3CeEeE1u4H+0CKHyYV6PgWXZeL0mxWKFXKGiJoaWe8dJKbEtt6W5YYgqxFlKCAQ8eL0m/oCH6YkksxMJ5aWVCzS2NTIzk2VmOoPlzDCN5m5MU1DfXE9m+AII1adsdjZPLldhdLcD7DQ8nHz+MAPnpxUYw0FbTZ84ph7m5h6IN5M+tofAyq14l27iqS/fM7+o1nk36lrBtpQBcx5O0b4M2pbB7Ih6WBs6lOLXgBCvn6U7ttK7vJWDA0n2P3+WU/ffD/4w+793v1p/UqHgKqWKMob5lEL75dPgC6n82syI8rQ6lhNYvokqc4gW08Pc8QOc272HRV1xmBpgenSayvAZUiPDmPU1Rdy2Bd1rQRic3/0ieP009y7C8KtarsjS1eDxceNH3wk9G/DF6vEH/SonE4i42yzl1To7V13i5nBq78oFFfJLjLP97jsB+LXffDvMTbHl7rs4d3oMglE++JsfpGn1WqLL1jjGrED9xiur9VOic6UL+zZMfN3LYfAYWzYoLkLFfhGaX4Str5/O86WmlQc+PYSdGEPaEp/fh52eUd5juYi0JeFIAKtiEetdTltXA95whGKxQjZbojGmIgmHTk7SEPFTrtjYtmTwwgyb1rYQCnlprwviMQ3W9zZw5e07MNqWsGR5izpPtedP57PKRXciBa6xDkSQtsQMxyhPDCjjX9/uHm9tjRe4YUB972luRgflWGWn0QZNe3X6WuqxNV4wgbA7zumXRqng5tSc0OHxg/2U8nknGqO6ZpOaeul98RrFXuAL1Z5qX83r52vX4+S63gL0osKDYSHEB15h05cyBPIVfl+wCCF6hBC/7xQufx34JVQn5pcUa0spTSllTEoZlVJ6nM/6u/ei4XHcHNjLvV5CaXWxLMSI/Rkw5RzMm4APoGhC7kNB7//bihtCVGhCKSXFovLAfD6TaNRP2iGy1ZyIiuXerBoxvR6/3ySVKjI7NUcx5zYqDTS1UilXWLmkEatsURruA6mKm4cHFLgm1L4I/9L1jB0/wfDRE8qAOcqsvqON9dduJnHIKbnTxbleP/UbrsAMhgjUN0LXagqJGcpTw1UKp2ry3VES9qSDs6nh85OZWZgZZsl1O9V/I6egdYmqTeteBYEwhUKFU0cH2fXkScrnDinFpdt7BCPQ2EXuzGGCkSCbr1rB23/lA8qDaV4EyTF6b74Fc/E68Iexp4YonDnIn/31L6sZucPOQTCqPB7gyS/fA/XtNHc2O73C/FgXjiG616jQpD+Mx+dl5RvvAH+YWz/yNqZOncQeOQ3j58gcU0z+A0NJbr5tA6XzR8gc2Q3ZObzdK1X3Za9fKWTT47Lgg2ouqvn6glEXZBGOs/f7DyKl5Fs/Oc07fv0jHPjefeTOHgMp+fpnvkFjU4SNWxbxxnffiOharfgs4y3qPPcfgvp2Vt55JwiDUt9B/v6ffpsHv/JjiDera5VNuvtRWyReVcqGmyPKzlEulZk+fZKmZcudOrMZxg8foFy2KSWmsCoWlqVY+S/0jTExNsdUMs/WVS10d8U5fmGWeNhHOOwjl87xxBOnSCYLHLkwS8jvIZ0vs6IzznvfuZ1jBy4ob1MDO7QUsy6svZZj0LYg1kQpp0LweB2WDp17vLjfnf5de1fSnh/G09dEAzO0l6XH1y6ngSK6Aadu8aJpq/R2PH7wqP2wpkfwBYPMzRXJ5ysU8yW1bC1k/zWKKnaWC3oB0065kn79y0WrewPQL6WcklKWUZRMVwMTQoh2AOd90hk/DHTXLN+FCj8OO58v/n1BIoTYjcqjeYG7pZRbgbRDP/iaREq5WEq5RErZ+wqvV2X4WIgRk9LtHfZ24IsOjv9fgebXchD/0aITicWSVf3sGibV7VnakmwqSzFfxDANKhUbj0fVkOVzJTweowrFl86sLtYYQxiCpvZGKuUK2VSWF/YOkhgehoZOkJLUkRdJXDiPZVnkzh2j2HcIZkeJdnTRtOUqrv3w3Vz5vrezZUs3xw/203ntTfiWbVShpUqJ7bddRbQujFUqqf5iQ8erjTHnFXSC+4DnU8rT0jU+0ibc3kXHlVerkNzgMTVu8gLYFoFgALOxg5GzQ5TOHaFy7hDVjsyxJpUHys5VFX6lXGFiIsuTz6o2K+/+0M2QU01G33TnRpgdZeWN17Dsttt4/nySRTfdxjt/5X0YbUtoW7ee+z7zIb7wlx8Gf5jb7r6OiaEJbv6599G+fDGRtduRo2ccBg9BZXKQbLYMs6M88dhxCERZedstTh2QQXDZBs4/+giPf/MhdcxB5R2V+/Zj+ALqHJXyvITZfGpQISCdOjPRvAiEoerJykXsYoHJM3388N4DKt9mW7RuvRLizbzr2sU8+/Xv8+C9+9h2zUrldSTG1PoXbwRfkNMPPFCdZPzqXz5O0/rNxBcvVR6DN8CGd76jJn8jXZh7taZKVguyUycOQjbJ9MiE6xWlZxnd9TjkUmQTc/QfPUswrI7P6/MyM5OjfyJNqWzRXB8ilSsx55SVROIRxkeTHN7Xz/FzM4wncrxwdIyzYymuu3E16+66k9Yd19c8QIb7qjW6UEUHxpobEEJQ37tUcYeOnHKNkC5U1vV74EDp5Xxgjr5fteHTheq1dGp6H7TobtPFrIt41MbIG1DADqsM5RK5iRHwBfGH/Hg8glDI64Y+a729yyCWvbDXAmQQ2CGECDlowpuBkyjn4cPOmA8D9zqf7wPeI4TwOxGy5cAeJ/SYFkLscNbzoZplFiJTQBRoxdX3/61SSwu5ekIIERFCGKgT+XjNfxfHOP/biY6B63BiIKAelIITUvT4PCpJDng8Bl6vUaX6EULlxPx+Dx6PoZpfBvzU1YeQtiSXzmNbNsXxQWbGZ2jq7VH0Qo6Salu9mulz590HWBgUC0XmZubY9aOnOXFkmMd/8DT2wHFGDhyglJpTAAZfkL1PHGTwiYdh5BQ9N93iKo/UNFhlfukPP+E+fP6weoGq19IsFo1dZI+9yOjeF4ms3c6tv/B+1r/tLqUAGrvI9R3GmhmF0TMKHm96iK/frraVnoWZEd70i+9WhdWGSTExo3R/Nk92ZICjZ2egYyWxWIAHHzpKyxU76Ts+yNmHH+b+7zzN4K6neeAnx9ly1XLGT5zgN795kJ/77S/ztb/7ec5eSLBu61IOHBhi8eJ6rrpqiVL0vhBt268m3LOc4WefAq9f9YIa6+P0Y08ppVUpkT+51zneJEz0ux2WpcQe7XPCU8INUTmGoZoLc5Sy7D8EgQjpw8+5RcChuOrt1tXLsjfczMS+58EbUN2frQpvfMs29v7gJ6y4agsb7n678vxGTsHUAKE126sABrtcZvrwPuZOHIT0LN6u5Qz2T/OxP/zF+dByLVpJa+WvFbltKQ+z0Ull6D5x04MYgSBzY+P4/MrbKpdtknMF+s/PMDiawrYlbW0RfAEfXr+X1GwKKSWT4ymOHh5hfGSWs2cmGRpNURcPIKWk8/pbVOuWi3NFev+c/CG2RSFXoFQoUalUCNXXO/Vizrmuha/rqIGG3mvWmFqYfe3vFxt3w3QnI7W5YKBKgwXONnwqJ+n1Va9/rKub5ra6KndqOBpU/198DV6DKNssF/R69XXJF1EUTweAoyhd/S+oGqxbhGKIv8X5jlQNJL8LnAB+AnzKQSYCfBLFhnEWOMdPAeqQUr4FWO/sx58I1eSyXghx2TkQ/72yEALgjwH/A8XcMSmlvN35fTPwV1LKm19h2S+hmqFNSqffjBCiAfgOiifrAvAuKWXC+e8PUH3KLOBXpZQPO79vBb4CBFGu7a8tBGgS6Volt/zmFxFCGS2/30M2q+h8gkEP5bKtQoSTCULREOFIoJocz2RKhMM+SiUV9gsEvMzNFcimcjS1xhgdnMa2bFat7+bQo7tpXbsOy7IwDINyqcyixY2cPzNBZi6DHD4Jnau4485NjE5lOLzrsFICOteg0XTtywlFQuRO7af7hjcw9OQj8w/IG4B4M8GmVoKRILP7n1Pht/Ts/KS4Vcbbs4ZysQRjfay47VbOPP5UFc5OfbtSCGN982e3pkcprynNo1dGNC9CDhzFv3IrhmGQP7XPCUWuUezujtRv2UnixCF6rrmGgVMDePx+dt6wisOHRkjs36X2s1J2e0N5FKsHwKJrr2fTmhbu++d71LmIN0N2jvYdOxk7cYq/+qO3c9/hCZ753mPKoGrRs/nOVcqIaE8GqNt2Pcl9Tt6xtVcZuloPSEsoroyaLwjRBjwNbVRKZUyvByufwwyGsGbH2XbHTvZ9917Xs2joYO01m1i+qJ6GqJ9cscK3v/aEWs/4ORcd2bJY1YPpfJAOX/oCqu6tlHdCeM6ERPdbS06oUGUhq66FVVYkvaNnXCYLX1AVsjd2YOdVjVd80WJC0RCBgKcaTQCwKhaBkJ9w2EffsQH8QT+2bdPc0cTcTArbslmzsZtCoaLQtbX1bto7nOc1OShYfxBCcUKxKJVKhdLZw+5kwTDda6TZ7C+OHsB82HxtI9PaLt/Va27PN2x63zSqUZcH6EJ0gECI9rVraGuLYBiCbLZMMpln/NABFVIECs/96Wsm5G1dtk6+968XRi342beufl0RAGtxgCTvRgE7uqWU3ZcYYwIPSynf8J+xTwspdv4ScD3KuLyx5q9xaujyhRBrL7H4V1A1CbXy+6g6h+Uor+73neVr6xxuBz7vnAxw6xyWO6+L13lJEQICfrOKNDQMgddrVPkR0+kiti0xDEOxr5cU4WqpZOH1GuRyZXLZMqm5PIVCGSEE3YsbGTw3jsfrIRAKMDQwC8UcpWIJn9/H5NFDICHtUFBF6iLgDxNvjDMxm6NYtIi0tCpD4ihDulaz7k23s2h5F/lsnoat1xAIePjDv/glRezbtQbf8s0KeFDIkD+1Txkwp1FnVcnpglXTy4p13TA9SP2mKznz4ANKIflDCihSzCp2C033Y3qUMm/ugdwcTVdc67Ca56uzxqb2RvL9J6FDARjs4VMusq5zlQJW2BYDR06xfMMSKoMneeqbD5A4uFvt59wU6++4SYFMGjpVjzWrDG1LSc6kSOVKfP8Lv05o1VawLSIrNyp04+QFfvtX/oZnvvjNKidkNbSkPaexPmfm7xinUJzk/mdchTkzolquaPqiWqWoYfvOPlZGz0E+hekx9X1NvHcZ+x55QXmrOgToC3H8yefZd3Scb/3gIN/+7h789Y286a3b1P/lojJOg8dovOL6qtFp2rBZhWozCTWpaOhwPRQdFsvOqX3MJDDal7hIvZmR+fkbp9OyPTOKEVCe+NyFcxTzRaYnkoxemKChUf2eS+cYOT9KOl2kqaNJ9QCTkJhKkpnLUC6VOdc3yYWzE25+q5p7EvNZNnSYT/N0Tl4gNzVOaXxwPviiXHRBHJoQuDafVQ0t1uSxDNPlctRGc95DbcyfjOhwo15Hbe6uUqwiH8Nhb3UR0xQqr13SbWMWFt9biPwM004BIKWclFJ+Tkp5NbDzZcZYQE4IEV/IOoUQ1zi1yAghPiCE+BshRM9C92lBwWAp5YiU8qCU7tWWUo7J+V06v36J5Z5B0Y/UyltQ9Q0472+t+f3bUsqilLIf5fpe4SQvY1LK5x3v62s1y7yqVHNfUpJKqUSy12soxK8TIjQ9qoZG58JsWwFAfD51eqQticUCNDeHKBYtSslZMskMpWKJmdFJxQ84M8fk8CTkMyxd0cL55/eSPr5X1XAVMmRTWQ48+gKRiI/MhTP4YnGQNrG2VsjMcvLwBQafeozFK7uY3beLvoce5E9///OK3y2bwOvzcuCFPuXNxFvcA5wacNuyeP3gDbDtbbeprrWNXST2P1utMwMU+i3noF5raYT8QZgdJdS9jOk9u5RnIwT1LQrWPrJ7F+1XXOUYDKOKMgv2rgZhML53dzXM1PfYE/iXrHPb2TvMCkcfeFStNzFG/wEFmKCQwevz8tS/fpN3/N53+etfuYZvfuZj3HHLardGqTbco2uLankSdX+p2lohj08Z5s5Val9zcy4cWzNHqBtE7We4zlW8+Qyl5CzYFaSUpBNpWletUvVI0Qa1XgcsMvz0Yyq0OXKKYq7A4Fi66nmsetObIBChpS2mwDTegDq300MQjBFZu53l29aq0GC8RRk3f9gNl1ll7DGn4Bvc8JdW7E5tIekZ7JlhSIwT7uwhk8zgD/pp6mhiaiKlmD8AsglSsymK+SKJqQSlqRFyY8PEGmKUxy4QjobInDmi9qMGMAS4XZh1h2Xt9YDaf3/YRTaG6937S0qXILkaVheusZoHo3eMoy8w/79a0VyO+jrr/Js2buE6BUbS50kYYFkUixamqZ7nYNAh5NbLXSaRXL5w4utBpJQDr/B3ATgqhPiiwxLyd0KIv3uZsf+IMnobgd8FBlB6fkFy+a7gpaGcl5J5dQ5AbZ3DUM04Xc/Qyb+zzkFKqiS/waCXYNBLpWLj93vw+Uy8XhOPx4NhKESilFRh9aGQF9M0sCwL02MyN1eosox7onXEG1XehOkhMEzsuWkq4wPQsphisQKVMuHVW9Us3/RQmR1n5dVb2Pfw8xBpVLVjHh+po4pFw+o/AkA+V57/YBkmV795J9kT+7AuHKuSr1a9OF8QWhaz5V1vq3oJ+779A5ZdtZUPvv8a5fn4w6SP7VGKSCvE9Ew1OS8WrVO/eQMUC0WlcD0+iDaS2LdLGZNAWClDnevQTCEnXlR5wEJGKZ66VrDKFM8dre6bW4Cad9qiqHqyuk1XwewoM3ufUQ0oA2E+95Nz/PDYJHuOjPHDL/8ePTffxhUfqGG40Zx8GkIN6r22l5juFOwLKGOjFbL2KmrrmKRU+1nbn62QhkyCrTduxho9hz1ymolTp9Q2Mgl8Xcu57mPvocrsrj2MkVN4vYYC6EjJqQcfonX71Wxc0cyKrau57j13qPPhKM9M3zH6HnlUUVNlk8pbDEZUn65a+iWPT3nc0SYX9KBF5/2cgunsqYOUUgnKxTKFbEHlbPNF8tk85FKUCiUycxmsfE4Zm2xSAUisMsP79xNdudGFwdfWeOlzrcEy1fIOBSCimMVf3+jkHJOuodGIwVqCX8dAz9t/ncvSiMNaI1dtlsn8EKWe0Fhl5a2G69Ck2GbHUpetRSruVMWHqgxNqVCafw9dJvkpIPY/6/IA8EeoViy1kPlLScVxUN4CfFZK+VkUmGRBsiDaqQXKa51eXJY6B6fe4ucBfHWtWE6hci5XxrIUYEPTzhSLFTxeE/Dj9RqUy3Y15BgO+0ini5imic+vaJEmxlNkkhkquSyJfE49QC2LaV/cztie59WDNXmB8bFOCEbIToxVWd6bl/aqVjCmBybOU5gUTudb51BaFsPMCLOTjuMqDKLrr2Dlmg4O7bsA8WbCnT1kTx1UORNd32SVoa6NAz9UuVpP73oqmTnO/uQhzr7QqsKRTp+oVbe9gVPP7VeeWLmglLxhqplhtAlGTmGlZtX/4bjr8YTjhDt7mD60j7qNO0ieOOTW5NS1KwMQjCnDWGsMKqX5BkOHyypliDeT7D9L/cYrSRzbD6U8dv8hTlw4wolgFLJJ3vbwjyEQYelH3u4oftxarNrwodc/v/5Kh67yqiMA2aTythwPwOhZj33+oJurCcdVfq5coGHTlcwOjUA2wf7H9laNo6eumYrpZdnWNZx99gWeeTinwlGRera8+WaklBz84YOqtk4Ilt7+Rs4dOEE+m+fbf/9d6tZs4syRfjZcs54j3z+nQnHBKK1XXsvEwX1OjjDrFEqXnNBuEvxhulYvY3YyoYySDs2ZXtdjq8kFqvDqWeYmL0CoTrXosW1Mj4kVCFMeOYtoWaxQlf6gy0tYUvyP6YGzVYNYNV6a+qs6abho7puahniLmuRo4xVtdEBIFdfw6GtVLs4PVVbvF8d46o7QurOzlC9tmqk/m46x94dU/jDagL+lk+L0uBPOrEDLYiZHE9Q1xYjF/EgplVHX5/ByiTNp/v8LSCm/+uqjqpJ28BAfAK5z0kgX15S9rFxOT2yh8h9a5yCl/Bdde+GL1GFZNpWKpXgQHS9MP0+BgIdySRkyXfhcLln4/R4SiTwej0FDY8h5xi2sivLKKKQxA0FCjY109HawaFFd1UOJrN7CVN9ZlddITsD0EK3Ll1LfEFYFljMjAMQ3XOkm6IUBMyMY3auUd9fUDR0rSE8nABQzSGra4bkrqxBiIExoxSai63cozwHAH1QGafKC8rLC9TR1tYEQNG66glOPP6OUV5WgtqyQjLk5Bb8PRJVnmU8pA5maruZmsgN9UMqTHHa8Lk37NDuqPufmqoXaVaWqlZd+6f5P5YIyMIapaq205xSK88t//Iv4F62Axk5C66+BQoYn/uUb7nrVjVOTq/G45zEQcQEH7cvV78kJFzjgcPbZ/YfAH+KqD73L9WLyKWjsYtWaNkiMEVq0TB2bx0dk7XYqRZXjCgTU+r1BxwAUcjTVBelpi6nv9W1gejl3rB+SE6ROHOSTv/t+kkf2YHhMjvzg3hpwg4eJF55W59OyFPgkm4TUNKbfXy1+np1MEAwHiTfGVYfoUEwZXi3agIfj8xko0tPYF47A+DmswZPqOINR1btNCLV+X1CdK9tS1z+XcrtQ61xYlXT5Ego6VKfekxPYTjRBPUhO6LD2ntCgi4tDlXqcrhOrAju8VU9K3a81gA+9P9rjrpQhEMYXq6dzcYu6vwCkTUN7M8GI6r+Wz6vcdmV84KVNTF+jSBZWI3aZqan+Q6U2FHip1ysst1wI8T0hxAkhxHn9epnh70ax139cSjmOirT95UL38XIasYXeEf9pdQ6GIao5LtMUlMuqW67Xqw7bsmynx5jANNVDJQxBsVjBsiSZTKkK/igUKhSyBWINMfAqup9gOIht2Rx88RytW66AcpHMqYMu4sz00nbNjQhDMJfMM3B6iPotV0Mggm3Z7ow6GIO6Vuzh02QH+mjqXUxTZytbdq4hmy3R0NrggigaOsAfpnntenIn96owYXoWX89qqGvHKhZpuepG5X3NTTA9PA6lPI3NURZddZUbhpQSPF5E21LlQQmhFHltvsNho6CYc5k0podeqlS01Bosab+0kDRST+v2q5XS1Iweppctd9/ldFYu8vef/ZEKRaZnyfUdns8gocEcWjQ4AIhvuVbNxnWPr+S4CotaZXVcXr/ahp7dGyaJRB68ft7zGx9S52RmmN1f/z4Ig9xsoqpQM2ePq1zi3BR9J4bBF1TXxOsHq8wj//odfvQP33B4AR1FPHqmmm/8x88/CEJgj/SpbTd2seLONylPy6pAUzdLrr3aReNJW5EoO8vnTh9i5swpIvEQQueLvAGVR6vNKaVn55+XkGPoTI+6H0t5N/RbyKhxuTlVg2h6MAIOhH1mWOXFNDjl5URKBZyINroF+Pr6a8On90eHIHXeS7/XepL6XrEtMJwQor7e5YKL5NVGQBuzShlf51II19O7soPzBxwuSKsCoRjxegVuUahkL5Zlu4COWnj+ZZB5j8ArvF5H8osoAMcoiln+YkaNl5Mvo3JdFeBGVI7rJbgJx+v6Nynl30gpdwFIKQellJcvJ+ZQjsRrvt8ohPisEOI3hRBVLhop5Y5LLPstFGnwSiHEsBDi4/wn1jloQIfHaafS2BgmEvHj85kEg140LZVtS2eGpmpIEjMZ/H7F2hGJ+KqEwKbHJBTyQD5FQ2sDsxOzFPNFWrubmdj/IkbXKqUM460QiHLVu96IaRqM736KifODGB6TFavawBcgPTIIhkls3TalZHMpJ7nfQiqRIhQJcOD793PywYeZOnJIhZcKGcx4E507rmbq8AHwBhSar20p/pCf+pYGKKQpFUpE2juhvoP6tmba1q7jzEMPMbj7OfUEpaaV0glEkIPHlMKZl6dwbotaeh8p3XDgQp/EWgULUCowcWAP4VhYhc/Gz4FV5sA997qhvcS48igcCq3wyk3qs+l1CXt148OaQti5A7sU/D4QxmxfwpV33aiMROsSZ9t5dZya3qhc5NRjT0G5yD0/2K88tvp2kDZt23dQ39HG8ltvcXJkGTa99Y0sueVWijMqcDBxpo+GdZuVcrUq3PCRuyEYoWnlKnVszYvUMcWbIZ9h/ZtvV2Od8oYz+0+6AJOpAc4/vUsZjtoWJh6fS36bnmFsYAKZm1McgYapQsCxJhcoYXpUfk3noMoFtR/hOveaVPt+SXUPaCMhJfbgCdfQ6LBwLd2UrumqRfOlZ9UkqLbrtbO+eVJbuFwL0xfCabdSdr31UEyN00z2uhSllk9R34O+oKovBEhNcvqZF1SHau3plUsEAh6isQCmaTAxkeHsKece03m1y9nZ+WcP2NGOqk+7DfggKsx3n5Tyq68SMgxKKR8HhJRyQEr5x8BNFw/6aZGMl5KFeGLfBTT8cROqlfQgsBFFy/+yIqV8r5SyXUrplVJ2SSm/KKWckVLeLKVc7rzP1oz/MynlUinlSinlQzW/75NSrnP+++WF1IiBasMSDHirhc7a67JtSamk0ErhSIBcpkC5WHYiVIKGpijpVEHR9eTKlEtlioUyuUyOiZEEnVu3EQx6ae5sJpfJMbT/AEgbe8rBpVhlKKTZ8+xpRl58Xj0oUwPYo2d58bEDDst5Pb4l60gd20d0/RVQLtC+ZhWGz0fp7GEG9+5TD7NhQiBEvK2F1W96I1apxMi5EaiUaLvyGnKJBExeoK4xhj/ox4g2kk6mEYZg6RrFfj6+5zm1X5rXLhBWCj05UdNQU7if9SzWvQAueGKhFD061OMPKcCCbanQZaVE9sQ+ZYi0Eq9N+nevVednagA8PhVKzaXUGO3hhuP4VmxTY2E+0CCTwBo8yYsPv8hv/NbdrjIGML34eteqgm6oMttbZw+AVeHGt+6k95bbGX/uSRLjU/Q9+AChVVvA9HLo4V2cf35vtU5t7TWbmD28F4RB28438NRXfwDJCaYP7VO5mdS0g+gzwDQ5fUwBgPCHCcbjfOgjN1ZzkvPOvzOmymZRKSkj7vEpMFClpPJp+lxEGuZ7NeG4ew09PnWdMwl3O7rnGzhhzIp7Dm3LNSDCUJ6cDgvWXtdadKSe4NTmt7To4uVaI1FLsaU9Ib1e5xq5IWl7Pg2WPi/SVmHbmhCzbdsqhOgPIZq61ETC44NwnMnxFGND00QiPoJBL+nRYXVP6fN0mWin9GH8LHlijr7+JynljcBHgDrguBDig6+yaMEhyOgTQvyyEOJtuCC+l4xl4UjGl8hCjFhQSqlzUB8AviSl/GtUjdh/m6rtS0mlYlMsWRSLFSIhL8WiVTVUUirUomVJbFuFFQMBk7lEDo/HqIJBKhVbkfoC9S31WJbF9NgMc4ksPr9XMY/r+Hspp8Jt00Msu/VWlqzqgnKRtW9yytqk5IqbN9N17Y0wfFLRWIVipCen6bzmesaOHce+cFQ9mKUCBCL0XHc9BGNcsb2HkwfPq7DWmOJnjMcDRJvVbHzo6ElmJ2dpX9xGIBSgUqqQzZRIHnxOKb76NuX5BGNKEWvoc7ngKpNa+PLF8u998oo5t+Oy/q7Dkk69lWIndwALwyegXOSP/t+vcucn3kHl7AG1jF7OMBXKru9AlUbLu2KbaogpZZWdwwjX8Zm/ukcpaidsSaQeJMydPFyjiJ1HQAie/OK3Wb+yGaRNS08HmB5ypw8RWrkJ8mne/XNvpvvaG2ha1MHxJ5+HYITQik2MHzuqJi7ty/H3rJzPH5iaJtjZq2qoHAWd7zvM1/7yK8pjD8fB4+OKt9+mJhX5tPLMPT41AbAtdb2EQWm036kFzKlxGpauDUkho+4PfVxSYjR2KW+tyUk3O6FV77LNrkGKt6h99QWVV6WZMTT3Za1x8odcdhh9T1yqiBxcQ6qNc21LFh2qFobrDfqCaj8KNXyNtTB7nYu1LadPm6GMlTeg6vtMD766Jlq6WlzPDfAFfETiEaRUKQJyKaqdozU68jKIlGBJuaDX602EEFuAX0fZgId45VAiztgQqifaVpQX9+GXGfvTIBlfIgtBJ9ZOr25C9bNBSmmLi2de/81E714w6CVfrOD1Kii9aaq8l/KyKhTzRRpb6xXVlCHI5yuYHpNSsUKlUqFSrhCJhVTeTML0yATFfJHZCZywTgMUcqq40qrQsHE7504MsXRNN0b3KkYGZxGdK5GFDHu+/xN0fYttq7BP29IektNzCnThNGps2riN6ZEJhs+PwdQAj/4wizfeSDnWxIodm+k7NqBydsf3El23nWA4SGo2RS6dZ92mRWSzJY7de786AfFmFaazLQiEIDNT3Yd5Xsx/lmjl5FBIIUQ1h6iN6Kd/+zMKsanF9CgQQSHtzvqFgHA95b79lGsVklVRbCIa0FHDZlJKTOHvWUlxfBBfa7eqB3P6uiEE933tIbAtJocnab/mRlpawiztjPODE3v58UPHWb6mgxODk8R6VSfv3MRINV+4/drVHD1wQeVzGjoVvD/eQj6ZdD2a2VEat1zFTH+/8jbrWll97Xb23POAW5IwesZhbZeuQTG9iKYuZMkBxXh8eOKNVC4cm9/frK7VZXApF7AzChxU9YgsBbAIx8IkhajyCxKIuuG6ckFRaY31qWVrSYrLRTUZCMWU0dX5LQ0cvzhsGG+ZP057fjqfpcOI2murRTOanvkhbI2U1AhOX1BN9rTX6g0QCAeY2P8i1fpEw2RqZIpFy9pVrlv3MZO2mnReZnmdhQpfVYQQf4JiXToJfBv4Ayll5ZWXAimlwwtHhhpSjJcZ+1WhmmsuklKe/mn3cSFTkCeEEN8VQnwWqEe1nNbIwssL77nMUrFsAn7VOyyZLFQBHtqA2bZUHWmDfspli3QiTSCoqKZs2yabzmJbNqZpYjltWqZHJqhraVSzvcwsoa5e6hcvgWJWgSSEwLZsYg0xzj63B7uQJ3niEHJ6WCmXUh4aOvEuXktnbzvMTTH+3ONkTx+qzkR3vOcuBQEePUN9cz1Nm66ATEIxzAdjnHluL4ZpMPL0o2BbpM8cY25mDq/fS1tnHSMjKY49d9hV6sWaMODFLS50S3idU9EAiP+ICUptmEjPtDU8vpR34NV+d9Y+NUjLNW9Q++LxKeOrw4+6B1hurlqbVg01NXaqY/QF1fqCETp33gCzo6y+ehPR+qgqaB7p5w9+405VL1UuKAXtC6p1T5xnbM/zxKJ+9h4dB8MkNzVOa2MYf9BPZi5DXVOdCtUFFCvL3l0nKcxOc8eH7uSt77hS7Wsxr8J/hiraDvWuJJ1I44k1qP0u5jj55HN077yO9m1OYENTPNWEuozmbuT4ObzhiMq7lotUpkdcj0Yrz1xKnQcnBEku5aJMnf3EqpCcTtJ6tZOiKKSVp66NfaWkkJkO2XLV49P3SDGnUJRtS1WIWtM+Vb1a5z3a+NI8qw4da9h8bUF7bV5NE/xqA6cBGOWC67GVCw5TvZO3s8qk+vtccE25QPOSxVTyOfL5CulUgYnTZ1TRuvYQA+HLdq9LfiYZO/4I1TJlI/DnwAEhxBEhxFEhxJGLBwshfixUm65Lvi61ASHEm4FDKCwEQohNLzf2UrIQT+zXURDIdmCnVG0BANqA/7nQDf1XiMc08HlMJzyowov5fJl0uojPZ5KeUwS+Xp+XSqlCQ0udQ09lVGdUhmlgSYtIxEc6XSIYVWi5cMSPEWtS/Z5sm+iaraRPHSK0aguhaIi5mTmnFb2FaO3FMA2kLdm+cyUvPrKX8rlDDJ7DmUVTfVCXveFmDrx4jtJIP3h8LFnWxJ77nqg+xIbHS8PK1UwffFEpiVKB6PJ1xBtj1fq2kwfPq1k+zno1Usz0uPU+DR0qdKRnxvNAGNb82fXlml1eKmyTTzvhTOe7Dv/Fm2HsLJN7nwN/mMCStRRO71cK1BfEbOzAKubZ/vbbOX54kJyUTu4HVcYQa1IGpFLk937rLfzfP/kKVEqcfPoFyKX46O98iM2dYX71l/6G+m3XIwzB7L5dMDuK2bMW0zQppRIsa4+x69sPQqXEDXddzeOPHiMQChCti5KcSiglmM8onscXn6P9ymt44omTFIfPu5yY+CEUBbOB3KkDysCUixCIULdkOcnjBxg6eV5dg9lRNxSpEyihGItXdnJ+ol/xYeoC6Jcwu0u13rpWNydXY5jarri62uV7yepupsaTDgOHxPB4sRs6oJTHjDVgTQ2p8xdvdkJ3QnlrOtRpVSA9jdHUhe3kOvGHXMMjDIy6Vuyxs25or7a2rQaJOY9KqrZli9537WnW1sVZFSdPmnO7SIdibv4UwBtQAKhKiWQ8Tn6kX0Hxq/Vntvp+WXNiry8LtQDp/SnH/9W/Yxt/jEpNPQUgpTwkfopela9qxBwQxbcv8fvBBe/if5GYhmAmmXeQiDAxkaGuLkAsFiCfL2NZFggol8p4fV5sW85ruxIIBfB4PTQ1R0km8sTiAUb3nsHqWsrczBwyNUWyUsYfDilYuNdPbjahWL37j6oHJdaELGSwMkkopNn7HC6fXMtiMExWbFxKoVBh8MlHOfuTh6pw82W33caenzyPp0UBNKzhM7R0tTB+cL9qyrh+G4kzx4k1RGlvjzI4kKD/8UfdAlZvAMJxjHgL9vh5iDVhhGLY5gS+pjZKtWEeTcCqRQgwvG6+pbYJ579XLkaB1Yaeqv8ZSlEWMi61lFWmvqWesVNOSKm+TYExDJO93/o+6956F8dmE/zab78TgM/+42O09HYz+dxjfOIPf5H/+6ffgFKewJorKaQVoOXLf/6vnPrgO7nlFz7Ao1/4FlWId2MXV+xcyYaees6MpfjyZ74NuTl+6Y9/ic//8efBFyTfuRJhCNp7Oxh74Txr7riFE488CR4/Y8eOu3Vr3WtVSNEfUgYgm1ATj0pJGeNIA8mRERAGofp6FZr0+sAfpHPzZkaefQqAcPcSZiZTCqGamcVT30KlmCO6aAnp2YtKJjWARtfNOYhLb7SO8fPDNF15A9ODI5z/yQMKyVhUITV7coD61RtInO/DSk7haVlEMBLE4/WQODTrKPyiEwZ26MT8Qexc2g0Z6u07kxV7tM8hPa5zWTW0AdSivSxbugZM3xfa2Ghj7HU8MY2U1feNNnrpGXXP67pDUKHPcoH82SMq/6pRkbUAlctoeH7WbFgttZRD3i41YfvLjH+6ZrwPWOF8PV3jAF0sFSnl3EXpqQWfyYVA7NNCiJTzStd8Twu39fR/S5FAxGGi1yCNqakc2WyJbFYZLp/fR7QuQigSQAhR7exsWRZen5do1E8+r859JlMiumwNoUgIOdEPxTyGx0ux/wTRNVsJLl4FM8NUJgeVsq1rVTU3/rAKcYVi2EOnVH4qFKNzxWLaejs58+ADDD7zJDR103XDrex4153g9XP28ScJt3dRmR6hd2VndYYpmrpAGIpct1xitH8MKSWzE7MOlZQfOlfRtEWFtGyn+Z8RimGPncXX3ElpckR5PLUzXk1JpTnlavNlOpT0WuRSXHU6dFgbjtLb1OE008vM2IxCy7UtUwYu0qD2p7FL5f5GT/PZT3+Jz/7tveDxsWx5E+//3Z8jkS2x4x23Ely1jVtvWQPJCW75hQ+AbfH8V77Fo//yTeWJLN6g1jc9xPPfupddR8Z4+vHjVQDA5//kn6B1CVvefid2ahrDMMjMqdzUiQd+Qt3qjVApEu/phVKBdbfdoIyW16+Myuyoyn+uW0/7xk3Kg7MtjGAUhFA1celZBZvPzjGy6wl1DiolsudOYJiGKrTPpajkFOAiffi5S59nXTIRrlNKPzdH+cJxGDmlIgST/QrdqQujHUOSGB2HYAx/czvRuijhWFjVM+oJRrnoUGzZyhhnEtXi/Wo9IbjhX+3haDJhbbAuVeis/9Nw+9puz7UeWQ0Qp3p/aoPm5MDm0VzpnKA3MI+TsiraUF4OWSC8/vXkrQkhFgkhvi2EmAJeBPYKISad3xa/wnI3AH3AP6BQ7GeEENe9zPBjQoj3AaZTJP05YPdC9/FVjZhUbaVrW0xHaz7HFrqh/yrJ5krk88qIBYNeTFMhEysVS+WdgHy2QLlsYZqiWhMmhMDvV7mwQr5MQ2OISrlCOB4mEA6oB6qUV2zu/iChaIj8+eNV9ByRehXSCcXcwldQ/7csVpx1iTTju58itHo7sbVbIZ8iFvPzwnfux794NaJ9Gbe/YTVUKqRTRQiEGT83wE23rqdp+7V0Xf8GCMfp6G3n2MEByqkElAuKfLdSwjQdT2ayH6TEdmiASslpQp09KgyjQzWG6SD7vK4i0O9aWVwOQ6alFmJdC7XWUqvspE3p9F6lcEZPq1l/MKLG6HMdioM3QLynl9/8+et4/45O9p+a5Pv/9D32PHuajp5mTp2f5X//7/ezc7mCpbfsvAWjd4PL4qFrp1qXcO7UCHZqBkIx1r3lTWpcapoDP9nFR37hTgzTID06oq5vpUSy7wQAc6eOEF+9kWMPP8XOu64FYbDmjbep/ZWS8XMDTAxOsPGWa6jrcEoeDEfhegPK2ElbGaD25dX8WOLg81iJCaWAddmA6XULmqvntYbNJJdSSjw7Vz2/5ZIikC4NniK6cr0Cy2gDYpg0dXfg8Xoo5oskp5IIIRBdq92Qn0YUZhIqZKvzZx6f25BVgzT09dPXUhsgPXHRgIzaiVRtWFFvU79KuflsHVUIv3Sh+TofVgv+Aaeerzyfskuzzlwm5g4JWLZc0Ot1JN8Bfgi0OWVRy1CppR9xiQhdjfw1cKuU8nop5XWoOrPPvMzYX0F1LykC30K1/fr1he7ggjWSEGI9sMr5esIpTv5vLeWyTbGoGDpKpQqWpSD1mmLK6/Mq4IZXkQGHQl4SCZUnMwy3y3MgqH7PJDPYtk1rVxOYTj1PuUBk8QomXtylEIgjDrhG1+bkUojOlUTqIqTnVMilvquDhDDIprIQrlNhpPQseAOc2HsKygWKZw+Dx8f3P3cSAlEm9u6GSolody97Xuynqa2OscEpFaYCWruamPF6EG1KMVZCESbO9KlZcNsycLbtW7KO0rkj2I0t6mEuZtWDrOtxmntg/Oz8E1mrjLSRu7h+6KeRWm9s3mdnBn+p2iRQBkMj6DIJGrdfh1WxaO+qZ+miOh55+Dj5bJ4fPXuBzo4YS7rj/MW//Cr3HJ3gG198CHIp/uRhp1+ZEEyPTfObH9/Jj57rYmIkodhPijnIpyhODUC5iOheQyzmp7O3naHzh6hft5mvfOUp3vi2K3n+RcVSkXAg8DR0QmaGueEh1t9+Ay8+ewZ8AU4cOIcRraexrZGpc/0II8TMTJ7kycNsetMbOPSCBdODhBYv5+43b+Brn/2O2o9c0mUZCcUU9FyjB01zvrejRfMOlovzlbMO0w0eU4Y6FCPd30e4dwWFXAFr7DyG10c0rtCQhqn64pUKJWSVN1FfK6cmrVJxgTaVkrrnnWei6knp0KoOcWvRHlC1I0GhBoovXCj9xS1g9H1SG5K0Sm6OTYsh3G3qiZqt0gfz1qVRjJdJXlfmaWHSJKX8Tu0PToHyt4UQn36F5by1SEMp5RkhxCWpUaSUORS+4t+FsVhIODEuhHgKRfX0PuD9wH1CiCeFEP+9PTFBlfQ3GPQipSQS8alJXaGE1+fF9JpUShU8HkEmU8I0DSpl9wEpFi0sSzIxNEEukcDj9TBwrA8CEczWRRBvJpdW5LJyergaejG617DytlvAKiNHTpMeG4Nyia1vv4PkVBJySezEhEJ5JSfoveEGME2C8bgbs7ct6FhJfMUaJ8flJz0+RnrwPBtWNtPV20JDRwsjhw4zcPgEkboI0fooXr+XriXtNCxeTKh3dfVYjHgTpalR6jddReHskfneln6oZ0fc83cpr6uqXC6DR1ZrwLQS0gYsEFFehqYzAjXjN0xad1wPjV0sXd7M9dcsYXYmx51rm/D6vaxavwjTNKiP+Hnu+X5++cv7MQzBTe+4njs//jZu/ujdasIgDOwLR/n6Q6e59YpF7NjRC7bFqje/WYXInDyMHDrB7m/ey9ALLxBccyWJYwchMcbp87MgoJArcOfPv4vb3neb2kdbQqVEoVChnMsqTsRsgkg8wtTJE5BPYc1N09oapnnTNioVW00aIvXk+o7ytb/9NhveeLNb6KxrrbJzrpdhW8qgwUvDc75gTVF7xFXeta1qHAJeo6GD7Mws/oCf6PJ17Lh+FdGoH9Nj0rO4gd6lzWTPnYDkBL7etSAE5qLVLrgin3I9oWDU9ag1i0itga3WiRnzkY4X56Vq6alq0ZLa4F086dGhw1p2mdr/a3O9epKkt629w8vaT+xnizsR2C+E+LwQ4kohRIfzulII8XnglXAR+5zi5Ruc1xd4mdqvl0E0fl0I8WtCiFedYSwEYv9pFGfWMinl26SUb0XxGu4F/mwBy/+XiYAqxZSUygtTHplE2hKvz6PySI54vQblUgUhBAi1bDjspZArUtdUR8eKXgq5gnp4TS/WzCgUMtgT/WoFJYWco64Ve+gEp/edrDIgNPQsAsNk/w9/oqieUtNKETl1QP3HzmE0drBx22I++rsfrhqWHTesYW50FJoWQUsv5FOEOnt4ctdZzu7eS7lYpnPTRq649QomhydZubyR5tYYuWyRuoYwwhC0dLdCqYA9MYBZ34rX71XeiA6naEOmEW8wP8xSi4LTSsKpZ/vpL8rLwJlrZ9Yen/IQNfu8lmAUmrpZvaqZZ/72fbTUBxmZzvJzd61i73CW7MQYR57aS98DP+a+r9xPOBYmFPJycjDByvYYew4Ms6I9yid//0MQjvOtL/4uE/ue59ToHI/e9yJ3fPIDnPrxj1nzlrvovvFWem+6WW3XgfLnxwad3lg20xNzZOey5MeHeOrpMzx87x7alvVAfRuB1i76ntuDPxqlecMm3vux20lNOB0HLFVUvv/RFzE9JqPDCRo2XanypEKA10cg4GHnB96Gp6nTNey6NYqvJu8DriHQ57WUxxNvVLmr3JxrNEyPyoECRs9a/K1dROoirLliNV29LYTjYbLZkgIQWRalUoXVi+oJLVmN0bGM0sQQeHxYs+PzwrxYFRZds9P1Er0+VXISjKp9jjfXoBDFfIYMq+JOpGq9Sn3f1dT3Ve+d2hYxQJUZRo/X4Wl9b+ucmQ4x1nImXureew2yULaO15cN40PAUeBPgIeBR5zPx1AFzC8nnwSOo4qdfw1FJ/iLLzP2PKqe7AvOKwVMoEAhX3i1HRSvlmQUQpwANlxc4CaE8ABHpZSrL73kf73EFq2Wqz/5T5RKVhXY4fEYFAtlfH4PhXyJqXP9NPQsIhQJ4vMZFAoWqdkUnT1NVCo22Yx6oAq5Apm5DIFQgFKhpNgTGjthagBv5zLKw330XnctY4NTlIol7NGz6kEJRjGbOhWLuBB0X3sDQ/v2K2gvqELpmREHkVggsmozmdOHXcogIVSIJt5CY3cHVsXCMA1mx2eI1EXJZ/MIIdhx7UpOnZqgviGMZdkkpjNE68LYtmTk/CjBcBB/0I/H52HqzBn1UGfn3G3okKIOR11qhqrvlYt/v0xK4JJSW2jr8AhueNubmZ3NY5qCQMDD2PAsXT1NJJMFRp95VC3T1A3+MGs2L2FyPEVza1SROBcqbFnfhmkIHn7kOLffupZ3bWpDCMHzQ3N87o//GQwT/7KNFE/uUQCZnk4Apvc+63pGDR30rF9JNl1g+5Yunnv+PKlj+1h1x20MX5iivbuRkYEpcskUTd1t5NI5KuWK2/24UqZh3WZmjx+GSonNb72dgz94AJp7MAKKYHj6yEF6d15N/2OPqO36gircm5xQSEHtYdmWMq46v9TUrb6nZ9W1bepWXixUwQ+BRcspFUus27IEv9/DsYMDbNi6mE29Dfzzl56ma0UPLS1hju7vJ94Yp7E5wukDZ/CFI5T6j4FtIbrXIJPjrpGqlNn+ttvY+937VN1ZYtzNbWmIvIb/XwzQqC1wrs3B1nZEqO36oJfV915taLKGU3PeNmrzaOCO9/gpPPO/90spt72WW7V+8Rp50//6+oLG/uDj217z9l4P4iAU1wIjUsrJlxnzjJM3e8lvQojjUsq1r7SNhXhipUtVaDu/vYbEyH+8KACHTSpVJBr1EY/7icX8NDSGFOtSXtXq+AI+/H5TdW0ulCiXyng8bq2YP+AhlUgRrY+SGRmkND0KlSIeryoOLg+cgEg9/S/spZgvEo6GlQdmVcBSLVxu+8Q7oaWXoV1PKbRaMILZthh/XQO3fvydUNfKWz/5HsWYrhnHdXFqpTQPUVUpV2D8LMIQSFsSrYuy++mT5DN5+vYdp1JRRdzhsJdsOkesIYZlWUgpaW2LISINCm6s2TJ0a4xaBJeGQlcRY86suQqJly9FGv60EowqgtpaiTRcdBHt+TP/SD1H7vk+U6PTDBw5xeTYHKvWdnBi1z5G975YNbTRVkW/dfroAKViiYmxOfqffpqx557kgX/+Dvf9/dcpntrLvd94jA/92cP88feP8w9f2c0f/cWnoHUJxdP7oX0ZzAwzvf95pg/vdwuGnRYhQ+dG8fg8HD4xSapPed0bVzTR2tnAhTOj5AbPUtfaxPSeXXh9XkoXTtK2YROE61l2w7XMjk1htPZAXStnTyvEKrMjxBvjTB89DNKm/9QQq+58ozJgVlnlyUzTDTXqcoTaWqtS3qHacoqQMwra33b1DarMoqWH5o5GAqEAs7N5bNtGGIJCoYxpCJauX4Lfb2Lbkkg8gtfv5eyJIVZsXkGkLuIQMnuQQyeUobQsRW/l8WLbtiLC1oz6tuV2pNbFzTpUrv+v5erUny+FYNReWy1n47x8rWd+pKDaAsaYj47UlFN6nH35JmE/a56YEKLpou8fcLgNf15cgrJJCPFPQoi1zuc4qoj5a8BBIcR7X2YzzUKIqiJwPuvtvirqZiFaKCCE2CyE2HLRayvgf9Wl/4ulUChXSX9BhQyDQS+lokpa1zfXO6wcBn6/qcKIAV/1ZovG/FQqNuu3LiExNuXU+CgUX2VuRoVRpFQzX6+faH2U9PG9DhtARCmZYpaHv/tkNfeBVYHEONZIH8VzR5lNFSA9zY++9hM8HUtp3H6dmsnqNuvShuQEyekkyckZrIpF25XXEquPYk8NKY9rdoztV/ay5qoNlErqoZyaSFPXEKGxJUZxYhiP18OxvWdUODGbcHMsNfVYKiTkd5kRahFltU/fxbPbS0ltDdhL6sFQxnxqcP74Wp5Fw1S1TB4fwbVOk4TkBAihgC/SplKpcKHf8Th0Ia7pJd13jEL/CayJQVJTs8we2E0Vyu/xEVq9XdU3heuxxs5TLFZYv3UJjxyd4O/+5xvVetKz1Y7B1733TnXtQB13ahq7YjE3Pcfo2UF1rQIRHnjkJEPnxmlsb4RyieTENNF1VzB3aDdIm/G+czA9xNlHH1Ok0OP9eKJ1pA8/z83vvhVfzyqVd4s14etaDsMnOfXwYxAI41m8zlXODR0K5t66RF0vfS00YlMXHZsePB1LIazuc0p51m9bwtCJs1hOW6JKxcbn9zE9nePQhVmCQS9er0k04uPGnUtITiW57fb1LF9cTyAUYOWOjS6cPRyHWBNvevMmbnv/HZw4PMSnPnr1/PvA6R2HVa5ev2ooWjNn1Ib8tPcF7uRJ11bqB7PWaOv7EeaHx/V3PQHUhlMXOmtDdpmsys8oOvER/UEI8YeoEOJ+VAeSv7nE+GtrQH8fBc5IKdej+BN/92W28VvAsw7O4ilgF/A7Qogw8NVX28GFGLExZ2f/+qLXXwHjC1j+v04ENDdHqK8P4vWa+HwmMzN5MpkSyemkgtGH/Hi8HvL5MomZDKVCSfEQpooUCgqaXyyUmBjPKIUWiquZpVby0sbTs4Zwz3JaV61CCKFmvKV8tauxGY45/HHq4bvuI++k6Yprq8Sr+x7bq2bLmQQ9yzuY2fuMCvV5fIhmJxcWimGNnYfpIULREB6vSWIyCfkUg7ueBtviqa/fS6FQBgk9y9qolCsIAYWCReemjZRLZdoWd6pWKFbZZTwv5asoLt+SDa4ytMrqGEPx+TDpi/NjcGlDVptfq/18KeNWO15LDb9d/uReOnbe5ObtKiWYvED61GE1+482gpS0XXUdf/AnH3NY3otq+YTTYdvrqx5Xrv8kxJr5yAcUcfDAmWEOP/Y8yWSeP/rXvRCOE1uxluCqbSBtTp6cYOdbrlfQd02RNTtKfmq86jmbkTiZmVls22ZmbAajbQmhuhg9S1uccG1RGW2d8ykXoa6NSnIKglGef+4spXNHFIkwUBo6Q/3mq2nZdhWkZ6jMjKk8YT6DCMVVTdnsqKvoNZDB61eGDCAUo3L+MMLjZfLQfrbdsZNTR4dA2pQKJWanUkxMZPAH/dTXB1naFiMc9uHzmcwmVAnKoqWtVCzJ+EyW+voAHo9B5xVXQscK2jdvJd7Wwu49g1QsydpNi3ji4KgLnjC9LsFvbelGlb8wX3NvOS9NK6VpyKxKjZGzXaNWGw3QBlD3G6uF2V/cFVqjJS+3XOY6MSFEnVCNJU8JIU4KIa4SQjQIIR4VQvQ57/U14/9ACHH2/8fef8dJkl33nej3RmRGeltZ3nVXez/eD9wQhiAIgCAlakmK0pIStRJJiTL7RO5b7ZNfrVZLSZRWEo2WouhA0YigSJgBhoPBADMY3z3T0767urt8VVZ6GxkR9/1xIjKzGj2DbqBHBPHe7U9+OjMqzA13zz3n/H6/o5Q6r5T64NDye32ZqEu+F/UWiembd2Po+yeAT/glWH4A+I6brD/sOb0fgeKjpdjlTZvW+tMIzuKn/M8BrfUfaa2bWut/9fU6eCs8sfe+3efrbf8n3RqNLiO5GIV8jG7XJZuN0mzapLIpMoUM4bBJJGLiOKLSYUUtwlZIlvUc1q6to5RiY8mfQdptmYXmJknkc1i7jmAYBs2tTcqbZabnRiRvNTJFoNDtXntTtp3cB902X/rV/yr5lcoGsYUjAl5QBozt4vKzz0vH2zWolwQEsrnIkfc8iDG+G0ZmaNaabK5siUcVwJObVWYefRfl7Qb1Sp2N1QqpbIJatc3YWIKVk6dQShGLhykvr37tjDUcFVX2VHxn8rzb9AECaiBGe+MMOPDKbhXocTPj9lbrBer647tZff5ZcGxy9z0uffeVTYrP/zHedeHoObbDv/rPL/Kuv/B9MHNItu915P9o0leePyEGZPks/+nXnye+5zC5sRy4Pc4/+RTVq5fBilFbXmL/kWnu+dDjbK9tY/ck9PW9P/UXmXjsCQnr+QZs8q67iUQjnHjkME55k0whg1fdpFUqc/ncKtbeExz7xMd8XccQ04+9h9iBe/zcZwsyY7QqFTLHHxT1F7sFyRzlzRL3npjyH2bfew5H0Gt+znV8QUKHidzAO4n4yhThSD9qoDevQq/DxXPrwhVzbApTBerlOmj6yN1W16HRkAncxnqNl95Yx/M05y5t02z2qFa71Os2hqE48cBeUqkItVKN+d15XnrpKqGQwV37Rrnnu58YaCcGoc9wdBCaHtZUDFTxh58Jrf26aaHBcxVA7gMoPuwEjATfh0EvMCB1Dyv+91G5Q0buDrQ7rJ34r4HPaq0PItqFZ4GfBp7SWu8DnvJ/o5Q6DPw5JP/0IeDfKSk4CVKc8scQQ7HP//uttpgfibsXMLXWTQBffcO9yfoVpdRHlFJ3A48y0EMMAbGbHUApFQf+Z+AntNYngVml1EdutYO3lNRQSo0ppf6BPyv4bf/72K0e5E+quY7ISNUaXeyeRyoV6Vd7jsQiRCKhfvHL6nYV13FpN2T22e26dNtd8mN5GpWGzJ7C0QGisL6N9jTKUMSSMpja2+uc+cNPs/XKVwmFQhIStKQC74nv+QgH79nHu77/gxz9yIf4yz/zoxBPc+DojAxOyZyohjfLEupKjYghG5mByX2ceW0Rr7TKzP559h6cYnJujOqFMxLGGpkhf++jUtDz7GmRCtosUa80SaVjLC+V2f/o/VROfZWJiRTJ0VHIjAv6LeDIOLYgLh13Z0inL9waHgwCN6LDhkOKw4nzb6aZIUG2uQ65+99NLF8Au82Bj36MsBUezLr7ZFfJhxRffIb22Zf40n/8DalYHMy4fRFclZ+mdf3SoNTJ9gpzC+OihlErwug84ZFJCgsLsHWNN16+wqu//SniqThvnloCz+V3/91vsf7M58QrimchHMHpObSKm1x4c4X5e45TPHcWPJcjDx6i3WxjXznNG198ie/7ofeBGWbt2jrtcy/D+iVGjhyX610vkswkBpB6z4W1izz31UUhyAeTi8CzcaTysjW9W7xqKybnmBmTcCOIMkhQWHN8gerqKu//4DHiE9OigqKgul3F7thcu1bh1PlNEbrerGGaJo1ai4svvcH1l19h5VqR9esbtJodDEOhlGLfrhyFqQJXr2xTO/0yVtjk9/7wdRamfPaNFQczTGj2wEB5PnhuAgFop7vTw+9LQ3mD74H3Ooxu7HtWQzm2YJ3hNrzvYd5ZH9Z/h9CJgL7Ff1+v+fSldwH/EUBrbWutK8DHGITYfgX4uP/9Y8AntdZdrfUiUkD4ASVC7Wmt9fO+hOB/HtrmVloQifsXQMnfH0qpEaRq843trwA/gVR2/qkhD+wJpOTKzdovIx7cw/7vZeAf32oHb4Un9igCpwe5AL/mf3/R/9u3bLPCcnqtVg/X02STFqGQQThs9tU5lJK6YZ7r4bouZsgkFhPjZkUtrKiF3bVlkOs2+3JBRBMks0nm9kxQvXoZqzAhkkNmGDW5F3v5oswwEzkmjhzm6uUtNtYqfOlXfofTf/Qkv/57r0G7zpmT16Sz2QmZUVsxWkuX5AWdOiDew/JZEukEsendWJbB9naLa6fOwMg0Y8fugmiSWqlGpdyCTh2n5xCOWNQrdbLZKJlsnEbDZvyhd9PtOuJtbS4SS8awZvYI4k170G2JlFKQDI8mxZAAfbX0qQMDwxEMHsNgD9iJCvtGWoBoqxVBKcrXl2gvCrrz/B98is2vPuPLH2kZlFIFMkfvG8z2I/GBF9dXQ/c49uhx9NVT7Hn0IYgmeOD7PgzAuedeFXUTZYDT5aHH91N85TmYPoi3vQxWjJ7dkwlOz5bnwAzJ/S2J9uHWqVehVqS9skiv5zF2+Ahz993L2kqFdD7NPd/7Eahu8ju//kVyx+/DW7vCfX/uE2DFOX58qk92X3nheQl7Bt6FFaP6xksSjg4QeM2KfPcln+xGQ67DyIyEtPw6a32FdtMPra1dJF4Ypdq0+b7vPs7Y7BiGYdDtdLE7Nt12l0wmysR4krGJDKGwKdqhexZIzC7QqDYwTINWrcW1195geanMdq3Dn/nAAQ4fmWD8wcd58blLZEYy/M4nv8LBh+/yJyI9nOULwh8L8q59jUQ9CC/uAHsMAT20NzDENyqBBM9L8PwFoKQdEy3/+XR7g+MPb/fNApSG2m0AOwpKqZeHPj92w64WgC3gl5VSrymlfsnPEY1rrdfkWHqNQaHJaWBpaPtlf9m0//3G5bd4Pl8TfVvz/1RBjOyN61/QWn9Ia32X1vo/DS3/nNb6b7/FYfZorf850PPXbbMzjPm27VbiP/8X8PEbBH8/pZT6r8DPAw/e6sH+ezdXa6LRMLZfGNO2HdbWGv24tFR71lSLVSnHYveIxCJ4nvZDbwLq0FrjdTsyaHWb0G0yfvgInVaHi2fPgN3FbrXFQ4jE0J6HObnA/L4pVq9tsf76KejZxHcdILTrKM7mdVqXT4PdFiNphthzeI7Lnz0t5S02r8qL16yC2yO85y4yI2nKWxWuvHIawlGOPHoXixdkkvPge46yeGWbXrdH+tgD5AppttZKtBttFi9tkUjHaVQbjIxlePUrZ6FeRE3swYpYQsIur4kn2GmiA15WfkryLZ2GIAi3V6RP117fGTa8MRcWGMAgeT6MCPt6LWQNwkzBwOO5osgfGEwzNNhvIidoPbtN9dVnB7WmhmpJCa9LBso3fv8PIZrk8mc/DWaIF3/1t8AM8YEf+jAb2002JvfB1jWe/c+/C65DYW6K4qk1MEy6V8+KcWyWZTDu+BOadl2ukd2mcN8jbK9ts3phESuVQinF2HSBVCrC2deXmHz0vXSaHbot8aDOnFqCUIinf/OzELbI7lqgcvaUr59YllpZEd9zyYyJfFgANW+W5XqtXZTJT3Yc7BbG/BG8zSUpOhqOir7n5ALxZJxOq0Pr4ht8tVSmeNc+8vk469ckvOdFLCKxCJubTebnsiQSIojt9FycnkMsEcMMmWitaVRERLn40gaR6PvYM5EmZBqk0hEKo1OYpsH62RaNhk1hdopieW0AONEa8AZqHoEBgwE6FnYSvXdQO4bJzn5ebZgEHTwjw/8HFRmM8GA/QV4sHAXrzuHTbgO0Ufw6EPsQcA/wk1rrF5SUwvrpt1n/ZoO+fpvlt9WUUuFhAV+tteuHAVtvs9mtNltJPTHtH2sPt4F8v5UpSPpmivV+7DJ1qwcabkqpA0qpk0OfmlLqp5RSf18ptTK0/MND29w0afl2LWwa1OtdQiGDWq1Ds9kL+o7nevR6Lo16F8eRIpiu48qMHJGsMgypDebZtoT2HBs6DVKzuyltlDBMY6BQUF6nee41MMNEEzH++l98hGsXVzl+7y72PfoAKIPWxVM4V07x3u//YL+4oOfKy3T58z4IaP1yPyGupg9AdpzsaJZ6pcHcwjiPf/cjFOamWV0uMzlXIJON0WzabF5fo9VoUVvfoFZu0rp+ifHZcWbmR9hY2kR7mmajS7qQg1iaqd2TogU5Ng6j80zcdY/M5DevgmHKLDqALG9d35lneCtkGAyUIfoyP8ZOQ/dWSEYYDGqwc5YeDGLB92hSDEdje6f357ns/sB3ym+7PShBM5wzCWgDvS7EUmTueoQnf/7XOfWZZ2BzkbEHHuNf/OyPw8i05C3bdTEgji0ekPakNInrDHJUPVF3L770ZSla2SyTLWQpTI7wZ967wLlTV2lfeI1MJkp5s0SmkOH9P/pnaVVrfOTPf0ieH62xu0LQPfrgIabuulsMWGD8m2WRGAvCcYYpkHw/zxcYcG/1EiSzO66pt7lE49Kb3P3gXsmhrV3k0heewjB8RGe7htNzJKzYdajWOqSTEfL5GDOzGcJWmEQqihkyUUoRjUelH8kcKy88z3qlzXg2RjIp4fprV7aIj09TLdUormwMweh7A7BHANoIlnfqO4E+IWswERnWbIRBLquvszgUehzmjrnOkAEcGreHc2JBzu4ONO3nFu8QsGMZWNZav+D//h3EqG0MhfQmgc2h9WeHtp8BVv3lMzdZfktNKfVepdQysKqUelLtFP198i02u93295Hc2axS6teRXN/fvdWNb8WIqWEEzNDC/C1u/zVNa33edzfvQqCXLURkEuBfBn/zUStfL2n5lq1ru77gLzTqNvV6l0RC4MPRmEU4LIZrZGKEbrtLPBkHBYahME35dFqdwcDaLINhkhvNEIlFKJ98QV6gWlHi+uEIdFt06g3+5S98EXfpHJVKB9t2McZmwbEJ77mLp3/l90B73Ptd76F15sVBwlopGZR6XciMopfOkJrdjWM71NbWKG03uXhxm/JWmfLKOuvL29i2y9lTV8lN+LQKR8JC5ugsqXSE4laT8dkxRiezbF66IhyzeolEQtT75UI1Ka2XBMCRymPMHqa4Wefwhz/I9OPv89FiNybTjYHSwlBOqo8Og8FgBf7gFboBjajkmgX6e/JwyCdIxt8gBAyIYYEBMTv49DqiJzlsZIO8XuARDhdebNepvvIl0B65Q0dhch+bzz/N3/kb/1o8z2Bwq6xjzB7uyzX1KQidhgyUEZ9zF47ywPtOEJ9ZYPPNN1g5eYqf/befFWWMj3yYvfNZWHqTtatrfP7TrzGxMMPqVhMq6xCJ09reBtNk+do20ahJam63HNM05ZwjMQk1Bt5HvTQwyo1tCXVmxyVikJ+S9Qqz4DnEdh1kdbUmnms8A70up//gj6SopGPjtFt4riAWez2PlbU6tVqXVqtHMmWRzUru1HVc2sUNuQb1EvS6lKptXE9LBfV2j3QuyYfef4jZXaMcuW8fkV2Hdk5KgmdjmMsVeJj+M9znRva6OzlkQQhxGGofhAiD+zz8vATfhydPfZCHv23vzhix4W59szwxP5e0pJQ64C96AlG9+APgL/jL/gIiB4i//M8ppSJKanHtA170w391pdRDPirxh4e2uZX2z4EPaq1HgV8APq+U8vkutx7ye7umtX4SQT7+RUQA+D6t9dO3uv2tGKF/CTyplHq3Uirlf94DfIa3ViW+nfYEcFkP1a25Sbtp0vLr7Vgp1Z8dTU2n+2HCXs8lHg8TChkYptEX/FV+sto0DTxPi/GrNmSWOBQ3LxerNK5dIn30PogkWHjsIX74b/4AD32fgH4e+Y7jGKEwD37/R9lYLXPtmafxrgl6rnf5JHguYw+/l1d+189zBlVqA2OhFJTXsfacYGwqR7fTZf99R9i8vkbYMnE3rkOnTiQW4drpi7ildWbm8pimSXJymlatjhWxWFvaJp4Is3JpCcfR0GnQaXaI79pHpdxi+fXTNC+8DqVV7KtvSnguZJEdzVJ8/RXO/PGXWTm/OABQ3EznLlAGH06U98moQyFB2Bk6gp15q+Ftg3BgMEgNz6aHk/1Bbakh8ElfE/LGfgQD5c2aYVJ+6RkBgozOD6pGGybxIw9Au4535bXBJCOoeByETOvbYjxSeV78/adoLZ4lv/+QhBztNrFEDNt2WN9uMfrwe2H9Mk98591Utio0Gjb3f88HoVbk/vfdzfjxu6ksXuLKC69Sv3J+gDAMrpUVk/s0eMhlWVBWpyKeT2J8Us6lXiK1/yiJdIJu2+YTP/Qd9PUGA5UWnw/YqfkeWbWD53mUSi2q1S6tliOkaNejuXIN6iWs8TkBLsXTvPbF16g2babycbLZGJ22jetpNtaqjBUSxBKxwT0IvO1IbBDqHfbUhtU7gmenr6eoBgZo+P4GbVhO6sYQ443/95GM+s4Akfx2h7UTfxL4dSUVlO8C/inwz4D3K6UuIhD2fwbgc7P+C2LoPgv8uC/UCyIB9UvIuHkZGbtvtVkB70tr/TsIKORXlFLfw9uEJZVS40q0Ez/j/z6slPrRt1j3Ka31tg+r/0OtdVEp9dStdvDr5sS01r+glFpFNBQD+Y83gX+stf5vt3qgt2l/DrG+QfsJpdQPI3qNf1tLAbZp4KtD69xiclLTbvdIpSS3FYuFiEZDuK6F47gyLhsGnuf5HpiBaRr0ei6xWJhu158BhqPQE95WanY3nWYHIz/F6ESW2uJFihtVfuu/bjKze5z0gWM898k/ZPrhx3jl+YtS+0lriKVJ7TlI/foVUnMLbF5eHHTTc2H6oBRQHKrGm8qlWF/epnX2FS6sjZOYmsVxxGtoN9pSiVgZ7P6OD3D18ibze8e5enG9H5pyr12lWZtjdv8cq1fXic8u0Fq9jpHaxebiUn/ASB1/iL0HJnjtv30BAMM0mHnoEbTWrF1bx3sronPQhv++wwMaQg4OnyvI4BzMxIMZcSACfGN5jGEDFOx3WNQVdnqGvc7OxyBAYN6IWgtawEPSnuSSgrDj3FFaVy/S15UMciyt6qBfkQR0Gizcf4IrL7zaL/xYOn+GzKETVK8t0rN71Koa0zRwHZfcsftY3ajTqZTZNXOAV0+tcOK7P8CrX72Iu351IHibGZOBPtQbeCZ+odV+7m90HhWOEIlF6NjtPqev3WxLqNBQ1FeWqfvk7c1D4+x9z+NceukNISEHSi1OFxVN4rqCyu20OqSzCXo9D8/ziMUsyfk2q6QP3y1qN60aoak9ONVt1rYaHDgxSc+VMPzqdot8IUnMMtl7YJyT1UM4184w8dC7WH/xKzsJyEHua7hy87DcWP+58w25YpAfCyDyfaCIt7O80I2w+2A/wXHuoAGDW/Oybn1f+iRws7zZE2+x/j/hJnq2WuuXgaPfYDd6SqmJAGWotX5TKfUE8IfAnrfZ7j8hqMNAmf4CUtblPwYrKBH3jSMglxwDzy4NTN1qB2+J2KO1/kO/03e0KdHV+ijwM/6if48YS+3//38BP8JtJCd9lM+PAViZcQLpqfW1Gj1bCM3ReFQGFFeMV71cJ56KY5gGlmUQCpl0uw7lYh2llKhI+Orq9XJNgAaAcXhWCMIRi9q1KywD3Y1lyIyxcuEqlNdI7T9Kw4qiW1VR8tCaerkguadAUgr6uag+j2Z8N1prmstXYfogE7smqWxVSKcjMshceI2Z93yA0kaZxVdeZ/e9x7l8boVQKERucpTR8QwXul1m904TCimO3L2Ler3Lcs+hsXxVjtERlF0oFOLcG9LvsYV5Ni9dIT8/R6PawDRNPM8doBRTBQm1tSo3Xnj/rgzlrwCMISRZEBYKRwZ/9zR4vZ3bBsYv2I8bJO+D8OIQkRUGhjDInQTXVXviOYUjRCbn6V48ubO/wyNOH2TAYFCFgXJKaXUANgi2j/jyYmaYK6++CdVN2adfLqZZa7LngbsIhQwunVni7uOTnP/MZyGRpfxmh4Pvfy9P/oZMiouvtnfmEj1XADeGKbnKdm1wboHQtM9/iyViWFELY3ySdqNNOB6ToqdAfHYvrZXF/r348n/5LAuPP8JD3/kQGxsNFs8tSW6XKF67Sct1GBnP4bqaVCpCpdIhk4lRqYh3hmFSu3xOQCexFE5xhQ//4Af59C/+Nm98dZ4jDxxkejzFtZUqE+NJrq7UyGSi5MZybF0TybS+TqTnSrXm4PnohxcD1KveCc6IJeWZDTQigzacSwsmQEqBVuzw4m7km7nenUUm8qer4OUttp8GxhkSttBaLyul3o1A6d+qFbTW/0Up9TP+No5S6sZZ5F9ByM1TiApIMM7XkGKat9S+rhFTSv3c2/1da/3Xb/VgN2nfCbyqtd7w97UxdNxfZGA43yppebP+/AISuyU+fUB7nqZUahONWZghk0a14YcZ/dCiLQOo8gdb0xTNxE7HoVFtCG/KMCE/jQqFBb0XS5Ka3c3FV85ALE3x9Vc48V1PcOqZV5m95y5+5EP7+Pe/f4bNzavUz78hg01qRF6ewqygzMLRHci5vvegFMauY3hrVyi9WZIXd+0i5p5pDhyd4dRX3gTPwZg7Qr3SoLV6jUPveoBqtUskGqG+XcbzkpRMk9zkKPF4mGg0xMk/+JwcKzMqhqi60Teadtemfe0CE/fez+xsls2lDZyeQzqfFpX/kWlSk9PUt4o+wCAOoZDkRIZnzYYJQQQjWDYsh+Sfn+S8hgivcgMGnliQHxkONd4stwEiS+V0B/kpGIQZg/1WNugGEPXx3QJUGc7BBPsN+pyf6pdjKSzsovjyZelrfkrynyFLDMrIDKyex5g/hnf9TUILJ3CunvZVM6I49QqXX97u5+G+8CRS221TQrTnPv80JHNY+VE818PZXsMam8a+dEqMv/bAtAZyWoEKzLBqSXGJVjiKFRWjGwqHsKtlMaiZMVrlMiRHMCMR3F6aVC7NlTcuU54aZ27XCIfu2s3y1SKe5+FGLDrVKo1qC9d1yeWiRCImjYaQm+2O7V+bZVGRKV6HdIGNUovIwlG6V8/Sau3hyvUyh/cWuHC1LNvZjmyrFPVKHeZzWLuPYl8+NeC+9e/rEAF/+N5oLejGfh7WG/LM3sKbunFSFDwfw8/SW3nn30jT9OXtvl2a1voLb7G8yttXMWn6XLIAcfgQUL1hH/8a+NdKqZ/UWv+bb7SPtzIN+Z+AxxCj8TJiMYc/30z7HxgKJQaoG799DyL3D2+RtPx6O3cdeRnazQ627aA9TTwZF1QWkqS2OzYhS2x5NGZhGIp226FRaWAYhq/S7UFpBd2uC1E4OSK8sUZFEurZCTodB6Iplk6f5x/8o99g8/qazJpHZuRFqfogouKSvEyBtl000EfU/cHJW70kOQN/YC7c9wgrl1dYWa701cu98hrV5SVo1VhfrVCv1Hnvu/fxnR+9j87KFVzXpTCW5vzrV2m1enzXX/peogt+NLhdY/TwUcbvfRBSeZrrq6jROeLxMC99+RyRuAyKxUuXicajGMmsDD7dJqHsqBB8240BiCCR2RliDAAewSARTcq5+WTcHcjFILc0zP0JjEsf7DE0yw4MYjDoNbblOgVGaHhgMsyBFmPIkv1uLMr+pvYPcirhiPQxOIfKhvzuNmnVWv2/P/7xd7Pn/R8gd+xeOZfidblfa5cgO45z+SRHP/pd0sdkbnAurhs83wMDEPS/18FevizGr76NfeX04FwD8ENQViQcgXCUcDI9ADP0Ov3IgOd6AtwJPMmQhRGJQacuKNjSKq7rYkSiBHqhoZDB7n0SsYjGoxCyKG+VAdjebuE4Xv99iSaiJPI56cvKOeh1mdi3h2O7Rzh+727u+fiHiMXCRCIh2l2HvfNZqtUOhWyM6lZJqApr11hZrmI36v33NHv8gUE+LAgp9p8lY+f3YZHqYRj9jfnY4FkK/jaMaAyAQ1oPQo93qN0pYMe3QfvbyLi9Ryn1FYRj/JM3W1Fr/W+UUo8opX5AKfXDwedWD3QrRmwS8Ww+iIg/hoE/0Fr/iq+h9Q01n2PwfuD3hhb/cyUaX68D7wX+JnzdpOVbtrBlEo2GicQiuI7wXcyQKHQ4PTFgpmkStsKErTDxuHBj7G4PwzRw/cGHno0xsRu0R6MoJVCi8Sj3fOS9YHeYPrAb0zQ4fM8eRnbNC9pp44q8KCvnyN37mCTZrRiFB94Njo2aPyb7Hg5RGabkxqIJqZqrFLP33IUVsXj8O45SfOEZ0tMzjO/fB3aH0b17GL33IZyeQzKT5M2LRV59fY3YzB527xnFdT2++6N3E4+HWSs2yY3lSE1Nk5ubJ52JkUpHGD94EEIWurbF4rll4qk42tOUN8sU9u4hM5Jh/9F58uN54pMzeJ5HOGKJQUzkxEgH7cbS8cFsudPYiSwbBonsCAsFAA5vMDgZ5pD6ubdz2+E2DAQIwlL9emjqa2HUS2+CMph41wdk20SG3N0Pw+wRyTmFLMKjM7QunpJw5K5DPPsrv8PlUxcpv/LlPul9/n3vl1BzaRWy45z+PR9kW9nAyo36BjAOrRrO4htSescM9Sty93NcgRBudryvydmnArg98YAjQl7ubS3LxCG4fr0OlcVLAt9evywlUKIJgdx329CqScHWZJZWtY7nuDRrTRYvb9HreUQiIZKZpBhA7ZHKptCeplaq+TX4XGKxEPFEFCtiYU7t6d+D40fG2ay2WVurk4iHmZkQflyp1qHddVFK8dIrS3KNHRsjP8XEZHpAZtaayrk3xOgPe2A3SkEFea3Q0PJhjljgrQ3zEW/cX2BBhhGxN3p932S7gxD7P9VNa/0K8G7gESRseERr/frN1lVK/SqiCPIYcL//eTsO3Y52K8CObeA/AP9BKTWNeE9vKqX+rtb6V2/1QDfZbwsYuWHZn3+b9W+atHy7ZihFLBZifbWDFbHouT1fscOgUeuJcKxhEIlFME0Dw1C0Wi6e59FutHHrZYilGT08J3moUIjcWA6n57B+bU1CbeEIMzMZLpxbp3z2tLycvvAvAJE4SilG9+xm6/mr1Eo1iKWkjEUsNRDfDV4wuyVhk14XlCKRsChu1Xn2V34HzDAjYxk2lrfBCLG9tk0inaBeqhBLxKiUbOn75irXryY4dmySZ58TYEFjc0O8QGVAdpyePU2n1ZFyMiELI5pgbGaMRrVBOBImEUlgd2yUUlQqbbrtLmErTCwRE0NmSdkNe2tV+FIgHsbaxSFEIANjNgy7DwxUP1yIP7MOoNLmwPvoI8r863mzOmew0xMMjKdpfq3iQ0AB8Pu4/uWniOy/h+7Fk5S1FkNRL/HwD30vz3/xTB9W3z37ooAmNheZePQJ1l96DjW1n1wuxjW3J+jAnsDsCUeg08C++KrA7yNx3v8j38czT5/DvvI6jEXEKIFA5uNZ8sfvw4pYrL/03E5PNZYc5Ia6zYFBj6WFDB+Eoc0w3VpNwtY+wCOUEEPptKL+pMifszbLZCb3yXPRsGm3e+RHEmxeutJXJ3F6DuOzY9TKdbIjaVotR0KOrkskGqHln+Mrry2TzsZ56K5Jqk2bWssmHDYYz8d5/ewW8XiY0maZ/NQYxswEqUyMKxfW5fySOXnWY0nh3lmxAQUieGaCuWr//eiI0a+XhtCuQznToN3oXQVhy2BCcyMN4w40eYy/PQ2UUmpBa33lNtY/hQA5fktrffnrrH4fcFh/gxfvlrOaSql7kCTcDyEQzW82lPiON8/TNBq2oKqAcCTcjygE6gMhK0QsJra8VGr1w45OzwdYtGtEYxa1xYvY7TZbK1vUSjWS2RSj08LNOnt6hWatyeyDD4hnkswx974P9kEapddfFp06w8ReuTzwTBxbZuTBvXN7kovpdWXwy08RjYaYnPJn3SGLWqVF6/yrGKOzeK5LfizDzL45yptlnJ6DYRjMHD/KieNTVOtd7r9vjsxImvd85EGOfey7iO07weThgyhDEbbCaK2Jp1OErBC1Ug2lJPdR3ioTS8R8LUXQnu7TELqtLp7nkRnJDOpGgXifARnXDA+Iz8O6d0HILwiPTR8cgkwbN3CBhozV8PdYWvY7XLJ+B3pySMkhIM0mMr6WZUwmD8FyoFutiDhzdZN9d+/n4R/6XmIRk/HZcX7x5/+27Gf2iOQzDZP1556Gbgu9cp5ez4V4hoV3P857/twH5RhBiZRoUoAfSnH+cknuvetAp07y2ENyHXJTROJRShfOyjOXm2T3e98nHlksOZgEBN5nMMj3Ov6+DTmnQLXeB6SEEik81yMUDmGNz8r5222SuQz0OmyffYN2o02n3aVRaxMOG6hYCpRBKBwikU7QaXVxHZdGrYXneYRCIkNlhkzITYJhsv3iM8TjYbbrXRodh3a7R7fr8sa5LfL5GOVSU0QEQibFixdYPHOVxsp1KK8zesSPRlS36MuDBTyvYSM0rFTf6xCfmhs8R8PPRV8d/4aYXYAuHV7vxhDknWi3GEr8U2rn/pNS6rJS6pNKqb+mlDr2ddb/KKKt+F+UUi8ppf6OGqoZdkM7DUx8ox27lcrO/wD4CKKg/ElEVfkdqGNw51tkfJ+e/sF/3UciSqFLcPxcmGEIiCOejOK6ul93rNVoUy/XcVYvQ3aC1FiBbruLvblCan6B+soymdk5wpEwxZefg4k9jM1NsvnVZ0geuZ/Gmy8NOD2eK+KtaxcFMl3ZkEE0IOwCKIW5+zjulVODlzJkcff3fje1WpfLL7wKzSq5Y/cRS8Zo1Vu0GqL2ov1EsvIT7wdP7Oby2WWS2SQPPzDPF5+5QCgcYmHfOErBa198DRVLEQqHxLNKxqiX60TiEZRS1Da2wOmSGJ9Ea006l+5rSva6ojEZskI0a02siEVlcxvWL2PMHMRbPrcTOj2xR4yZr6Dez0sNIw8DlF08K4jH4dBqkMsIfg8TXf3r5p+8v9zb+TsIPQbHjKXkdywl3CvPJyoHYI2gtWtigHKTFHbvIpaIsPTKq6R37+PgkSle/PXfofDQeyi+8vygn4H37bkwf9wPJ/slUoIQYXGpX6Wb0sogXJgdZ+zwETZPvgLaw5rdh712VTy/VtUPL0o4DrsjoUIzJMa8XhQjEE3K8sAItBsQT2Om87jtFngO4VSWXq0s59oQrpfdFsMWTURp1VsCrc+lZYIXDhGOhEmnoxQ3ZYITjoRp1ppoT9NYXZJj5yY49vjdbG02SWeiuK5HtdyiXqljRS3q1xfBFqmtvp5joyyGfsOf3GfHdxbSHL6fwT31J0TW3rux61W5ngHfbRieH6wfeGc3IhCH+WH+fjvP/dNvutJycuagPvaTv3BL6371p9/9p66ys48mvx94DxIiTGqt87ew3T7g7wE/qLX+mlyAUupphAf3IkNyU1rrj95Kv24FYv/3gCtIKYATwD8V4rewNbTWx2/lQH8SzbJMRkcTFIstQiEDpRSu62H5QA6lpDJyr+fi2A7xZBSloNvq4tQrkBohns9R39gkOzVJOn+I4soWocwI9UqddC4taK1Wlc0XLoJhMjVX4MJpP3cTJKu3rsmsv1GWQaZdl5cvHO1LI2lPD0q6+9I5p1+9yuT8ODTKhOYOUT5zknK6QGp8gtxojup2FSNk0Npa7wMkzv3xlyGRwRrP0+o6mKbJrj1jmKZifb3BxP69GKZBp9WhVqphRS1mFsbJZmNcPLdGsiClZLKFDD3bASWIt267K4a8Y5PMJtE+cTwgy3qNsvR7bJeg/8JhkdDKjovHlcoLPDozJuTgYFDuNqXvzfLA6PSnrDdBqQ0bObmJO0EiwbLA0AUAk5AlJW9A5KMMc1CrKjB0AVgikpC6YRtXKG5eFSPSbVJ7vcSLVwswvlskqWAnyjKohr16Adwe9//gn+Wl3/20TFxSI6iZQ1ISpSkDeBC+dXqOiAunC9BtYm9vUDh8nEa1IdyvQP09CI3aHamOUC/K8tyEeGKt2oBL5it5uIGsUqdJL7imfrjRrpUJp7I0tktonaPdaKN8BGE8GYewgEVc18P0vbBaqUYqmyKXj3G+0cLrtKC6xeXza7QunKI4d0gQkl0br7TGwrsf4nKri71xHRyFkZ/CC0BOW9cErbl1jX0P3sXFp54eIiIbA0MzLEWWLmCvLhKf30ervObnwQK5Mp87Ji/UwEgF+wueDWXQ55ppT8LXd6R9++a7lFKPAY/7nyyCHH/262yzC/izwPcjZVv+X2+x6t//Zvp2K0Zs9zdzgD/J5vr6iJL7MgGNYSi6nR7RWJhez0MrTbfdJRQO0Wp2aNVbdDt+Mj2epdOUQbqyugb1EpGZBakqPDpPZGqUD3zPozzzxXNM33+CK09/ka316hBAYQhs4HZlkApm/fG0fAeBaF97w9/GfxFH5+gtX+SeDx/n+pfAWVuU7cNR6qvLtNJ5qfA8N0FhMs/4eJLTr10jVBihWW+yceZNNq6PMLN3hisX1mlcvcDh9z2GaSrOv7Ek6MXJAu1mm2q5xZVnnoV4mvyevZQ3y5Q3K0zvGmXx/ApWxOrPzHt2DzNkSr0sV4ilxtg83uY1P9zTlRBhqyK/W3VJxmstxjs3Kf+36z5oI9LP/30NIm04XBT8DgagYP1gzBjmigW/Pb1Tbir4HgBQuq1BWCrgFkUS4olVNiR8GNAIlIExdwQUZAtZsncdFCL6JYHUf/jH/iyf/qXfHRgbM8RLv/3fZN9TB6B4XQxYMicFNEMmla0KAPb2OnY0OZD2cmyKly9Ln80QRm6S8blx1s6eHxixni0w/EDENuZD0AM0o9ayfUCcTmQFGRlNiQdqhCCWpNdsQLOMm04zMjFCcWmVkZlJaqUazVqTdD5Ndi5LaatOMhWlFQ5JlYSwSSqboqHmcJcvSHkbwNm8jjG5C299kdS+o5RLbSbnx1hyHLxmTd7F7BhepynXaXMRUiNcfOHkIMQXTGRuJLh7br9ETafVkWepuLQTRBQkT4dtSWDIbpRNC0q83NGc2B3Z1bdiewZBp//vwKe11m+r1aWUegEBAf428GfeLp+mtX7mm+nYrQA7rn0zB/iTbJ4Hxa0GhdEk3a5Dp+P2B+Fmo0MkakmeRykMw6BVb+E6LqlsijqSpPU6bSb37WLt5GuQHWdkYoTVywap8TE2XnmBJ8/nwDC5sroIvQ7l154bzB4zYySmZmmeeblfwBGQF8c3YBgmXrs+FCILZpICA+72XAnBdJpkpqYwTINuK0XP7hGKhSiuFXFK61yPZzEsi3ajRW4sT90w2H90Ds/TTE7O0Ng9ilIibGxvrTB7z110Oz201oyMppj76PspFlssPfcVjIkFup0ul88skc6nMUyjny8rTEkesLxZJp6Mkx4rSCXsWIT21XPiZQGELMb2LvDAPdP88R+fF9V+MyRhVcMUzyyomZWbGIAUAnHfYY09GHi1/XaDfNWw19b3zBgABIZVRQLvrA86GUrwB2oceOIVuz0ZLKubeIsniR95iEwuwZXnXhDPOpoEu82n/8NvitErLkn+qVklduAe2iuLRFNJuqE9ghz0++Fur+L27EGYNehLrSj9sGwxQokM3vYyaz17YJA8V2D7jgdOTyYJAcqxVZN9BuuCTJgiCQlPbi/LNe02B5WuWzU6V8/Rm9pDLJNhe3mtj5qtAaVSikgsQnGjwuFjM1w4u872dotkJkG70Sa6/zhOz6Fb3gbtkUgn2P3Euzn/x89iHjyGYcYZnx1n7XydVDZFPBVno9MWioIZZmTvPrZff8W/j0OQeP/92JFIMkwwQ3irF7F2HcLeXh54n8Ph5hs5YMMTI/znwmMAQroTTX/7AjsQEN6jSPmVv66U8oDntdZ/7y3W/wta63Nvt0OlVB1uKloRRPnSt9KxW1LsGDroL2itf+ytfn+rNcNQWJFw34AFGomu4xIKhzAMRactE4oA+prMCG8rEo1ISEQpv3igYnLPLKsnX4NYklgixkd/8vv59V/8QxmcG4JkxO1Bt0Vk7wm6F0/SLK3K4FZa7Ydx+gOlUhQeeJzii89KnsZzIV1g4uB+PNdj87zHCy9fh0aZ5NEH6XXFAMdTflmNRov7Hz2A4yzwyh99ETU6CwiA5aHHD/QLgDZbNtcubZAdzaK1ZvzIUeyuI0AC4PLZJcZnxylvlskcOkG33cUwDVqlMrUyoCE/kRfCKtCoNMgWsoyOJSmXJQTVXrsuXkZ1q69Y0ag0eOZLl+Q43dYghBrkdoL8TWnVB4EYg1xhMPN2bxhghmflN4IAhr21Hfkxb+dAFayTGRVD9VaE2SBMWPZLKJlhWmdeZPFiZAD9D3JW+SmZpESTkm/THu2LpyTfsnRZvCYrKsCd0XmfwBwWBKXrivEyQ1JEEmR/jW05RjSJMkPoRM6XkjLFy1SGGKPAk01kxWBV2nIvmv5zpj3R/zTDfk0vPwTaqsn6hVnodXBtG8cwhFsXz0DIwrM7lIt1ZuZHyOVjbG01iMQjtJsdovEosWRswE9zxCg3Kg3K15dgRCgZPbtHtVhlYv8etvyK5FYqhd1KQ7ctElnDqhuGCZg770HfKJl9w+b0HDmfypBSvhkWQ9j/7u00iv0JztAzdAdh9t+uNkxrXVFKXUFEJ2YQ6Hz4xvWUUj+ktf414MPDVUiG9vOzQ99Td6Jvt6u58vNf5/e3VNNoGcQbAj1XhiISDWOaJqGQ2WfXh8Ih2k0ZjD3Xo9vu4vQcnOo24XiCibkxqcZ74Ur/Jdh89UV+/T9+RgaCkOWXiU/2kXjdiyf98F9EvBMzJCCC/kwf0iceltxKyJLwjmNDKML6s1+gWWtCZUNyZYZJq94CJQCO4lqRxtYWnutxdbFEryfhESticddD+7EiYb7y9Blilkk+FSGVjHD4xCyZTETCo4DdsaluV9mzf4KZhUla9RZKKapr63Q2V3Edl5mDC32jvr22LYCSeov8eJ7yVpmrlzY4enCUVMrCzE8MQCw9GxplWpUKrutiX31TeHG5yYGx6Pi6fYFh154gBCPxgcBtkOfa8QnAHGowQN1slt1/CIbyITseDm+QfwyOFZCLh1vALwIfPOCJ0ei2+sr1OLaAVyobpPYelt+x9EAfslWRSU7gcXXqfVBHbGbPoGRMNCF/C8RxQ5bk7zoN4Xm1qgOvxFASFoynB5Weg5xfIBqcyMj1DDyTZkX61q/rheQp6yXotDDCYeFGhn0KgF+zLFdI0W73CIdNul0XwzDI5hN4ntc3YKFwiInDh4nN7KHX6Uj/3R61KxfYuraCFbVYP3+J/Hie3XsK2OvX5dplx2nVW4Rm9stErn9fvQECdfj+gxhhx8ZbuUh01Bc6Hn4Ogu0SmQGP8caSQMPiwHfQ8ny78sSUUpcRGcA8Qrk6oLV+901WTfj/p27ySb4TfbstI+YT2FBKGUqpdPD7W7UFRsnpCWxexH89QmGz/yCFrXBfeipkhbCiIk9ld22s/Cizeya4/trrTB07Kh5DNNmveJzdtcD0I49z6MGjgrJqNwYvUSQOyfyAtxN8ghZLsf/Q5ADg0KnL/2sXIRKneVbCK2ZIZvzexiLa03SaHQFUeC5W1MLzhKxqjEzR3t7izMlrjI7GiSVj5JMRzi+WuHylxPJyVcKmptzyZq2J26hSKrWpVZrieW2uyUy/22Z0qsDy2UvsOzghEwClCIVDRGIRmrUm8WScnt3jqc+/yfnXr8n1dB2o+XBpPxzVqjUhnkYvn5VQVjDQKkOuR8ANCpQTOg1RJUmNYC6ckAF1uBDmjSr4waC3o6bUDYPe1wA/bkSrGQMgzo3HuJFvNAwQCOSPIv57G45QX12W3JlpynkFoa6QJYbM7YnR8FGG7cWzcn5uT65fQbxpikuyfSzle1sdMUzdtoQQlSETH7sz8DpA9lOY83llbflbcM0j8cH5BOVOHFuudywpOatqUZCiKcm/4rl4nmZtqcj2dgu72yORCHNgYYRGpUEymySeipMby7Fv3wh21xYYf7MqwJ5wBIpLNM68DJ0G22vbeJ4mt/8Q1LeJZnPgCSl6x+RF653Xvs8p9Ccoqbx4uVfeJDc9tfMZCc6vUUZF4oN9BIZuOIR4p+D1SFzM8/Qtff4Utn1a6w9rrf+p1vrZt8qJaa0Dx+YLWut/MPxB6oTd8XY7PLHfUEqllZTIPgOcV0r9z+9Ep+5U81wtuaNwSHJJXRfX8eh27H5ZFqcnCL5ILELIT1r3ugLXtRsNlq9skN+zl+p2VWZ13RZTh/ZDR0q1N6pNzn7hS8EBZQYOEhZbPusXUvRfntF5+ZthQrfFy78pQAA1e5i+pA4MBly3R/Hki/JCZsaIJaW67sETu0iMjZMZydCoNFhernL4rt3MHTvI3sMzffTlC2+ssbZcolauiybiRo1sPkEyFcEwDXbfdYhuRwx46frSjpnq8nPPsnBiPydfvAzNMvGUGK1aqUY4Eu4TpXftn8LrNAXkEY4MYOxuT9Bn65dk5m/FBoN+MMs2w4N6WN2mGLlgIOu2cGslCZENq3Dc6GUNq4MEbXhgeiuDFawX7DdQjR8eOINw5eReOc7csZ1hqbiPTk3lZXvf4HjX3hjcw6CkTDSxM7cTT8v3eLqv/kGvC60qRqYwIIS364M+2r4xMgPumBpcx0A+K4D7F+b6RiiYKIULU+IlBzzF4LpFE3KPaj7asV0TeSk/hNftOmRGMhQKcUYKSTKZKKV6l2atydriKmMT8sw7ruaJ9x8VYn3wLJXXxSMKR0nO72V6YZJzbyxz4NAEkw8+SmdTJFB7laIcP5oYGKPgegU55mGvuOm/jxN7aDfbxPceHUyEgnvoOpKHTEsety9vdiNZ6//PE7uVtlcp9ZRS6jSAUuq4Uup/fZv1/80tLvum2+14Yoe11jWknsyngTlEhupbukViEalY27ElDO6rTbiO65dfd0T8d+jBchwHKxZhdH66X5rCcz2OP3IEInFWX3gOum1cxxXjZg2V+nB7Ax0+GMyCzRBWNi8vVDJH8sj9fSSavvZGPxm/8MHvJHPohGxjmP2w2/ieXXRaHWLJGOffuEZhIsfW0jrxVJzyZpnL51aplRucefJpXvijZ2lVahzaW+AD793PsbtmWVurMzefJ5OJMjISJ5lNsnjyLBtXrqM9jZXOSR9iaabvvx+UwZWnnsJtVEUkuGOTzCSlGOhmmbAVJhQOUSo2SBQKTMxPEB+dYHRhl4QNM2Nyrtlx/7o48vaGo4O6aWZooKkYlKsH8UA8VzzfQBkexOMJDH2A5Bs2ZIHhCHIgO3IsQy2YVMBgnV7XP5Y3uHfBgBh4FL5UVd/za1Zg8ypWTu6pkJszEM8Sn1kgdeReckfvluvQsyUHl/GlqDpN8aLCEdnXxF7pg6fxats+irHji/62hkApXdmX4xdzHEYj7jhHT447sVfC3J5Lr16R+xFNDnJMyhCDEHCtfERjc21ZrkOzzPqla6wtrlKpdAiHpdZeq2WL2svmIlfOr7JrV46VlRrzo0ne+90PieEa5t5lx2lcu8Ty5VVC4RAbGw2OHRqTaIVhEhkZk9s6OjvUNzXI9fURiGrwf70ItS06LcnP9Scjw95ykC8MrkkwMQmeixuJ8t9k+3YNJwK/iFQb6QH4ElJ/7saVlFIPK6X+NjCqlPpbQ5+/Tz/ReWfb7RixsFIqjBixT2mte9wcWfIt1TqtDol0glhCBr9INNx/iOyOjfY0ruNimEafBwMSZtxe28b1VTCiiSjn3rjOoYdPyOzb7VF94yXxtgJEXq8jL027jrn7+CBXAeC52KUtQqMzzN53L40r53eGd5QBhVmuPPlZqq99pV9mI3jJorEw8VScSlEkpq69+josn2X7zdfplIq0ly8zMZ0jufcI1EvMHpjnc599g6e/ssjaWp3i2jau69Fo2GxsNBifSHPggaPEslkqVy6SHkljFaYwognKmxViuw8R3Xt8wG1TEp5NZpJMzI3jOi6RWIRet0ezVPbDRB5b1wUEES5Mcff7H5YBIiA5B+VRgpc4kZVBNTB2yZx4GcqQ6xgMgtGkbNcsyz7imQHJNRiUAmLxsJ7esBc2bJyGw46BQRsOQ8Lg2MOIxmDf/v0MjId99SzhkUmMmOgVRmf3kM6nqZfrwquanSe+cJjE5AwqPYo1s0/OOZoglMz4YdS6LOvUUcn8wFMKFFACwnNgoAONwOGwmD2EdAyuR6cusPqej4h1exgTC4NyOEEF7WRWnuvgeO2GVACfXWD/PQeY2DXJ1FSaaDRMMmHhuppMQXJuhmGwsdHg+psXObW4zdO/9TmswhREYhjzR8CKEcvlye07xP2PHRCPvtLi2kqV6YUpphemJGyenxJjlBnzydwpP6dYkzzhcNNaJgKeS7aQpVaqEd93Yie4B+R7dWsIAaoH93bYa7tD7dvYE4trrW8UXb+Z6IWF5L5C7MyH1YDveyc6djtG7OeBq0ji7ktKqXmkY9+yTWuNaZpkcnHCYYNIxEQpRTQq0jmu4xL1RU211lSLVbTW2K22KHqYBtnRHM16k+p2lfm9k5x95qs+wTc+iMMHYcTCLJghDn/so7grFweQ+iAc0m2itWblyhpjJ+4eQL3NkAzMwQx02KvwY/rXzlyhtF4iFA7R3Fhj7u7jjD/6BJ/4Sx+VwaknpT0aV85DusDSH38Op7TO9uIi4bDJrn2TnD11neJmDduWF/f65Q2md42SmltAexq7KvtvrS8LNDweJTy1ANrDLhdxXZd6uU4yaRFLxthcXKK+tgLlNXorl+isXZNzcWx6zQaXL2xw9PF7JC8YSw88gF6HPt9pOE8YzwhSLxBnDaShAm3CsV0DgEI4OoBVD3OK+mKwNyDOgqT/DkV8b+esfDhUGBCMg1xNcD8MU34HShx+Pqt37QyxRIzI2DTJTFLCrlYYwzBoVpt0O12a2yV0ryvgCWUQyo1hhkwikxJmNrOjkj8srYBhYk4uCIIxmpD/81M7z1Ee8kE4MpmDcBQzniSey4lRjSR8bzfaBxZ5qxcH1yyYYDQq8gF5nsLCZex1e6xeL9KoNFhfrxOLhrh4aZv5qTSZbByzMM3EbIG161tMH9xDtSq8yvRIGpyeAJPCUSZmC0zN5giFDGZ2j1Gv1Fm6skkmE2VuLku2kCWeSkgo3/TPuVlh9O775Xs8O7AAgaQZQLNCZatMNB4V1ZnJvV8bHhwWHrhRGHqYTP1Nt1vzwv6UemJFpdQe6JdW+T5g7caVtNbP+Pmvh27Iif2s1vriO9GxWzZiWuuf01pP+8k97fPH3vtOdOpOtlhiIO6rlKLV7NDpOGitfS1F1a9ka4ZFlcCKichtAA/ec2iWVDbFxVfPkZhd6EvtfPyv/JmdVYOLS9DrcuYP/huEhryw4KHt2biNKlbUYvOVr4qRS+YgmmLfex4bKJkHsOJ0QUJJ4QhsXsUrrWIYBvHRCcJhg/JmmQvXKzC2i3s+9gESe49AMkth337J03Tb0Chz4eQlqtUOh07M0etKpWvDUOTHc2gNyWySA4fGQSkJrfqKCoXxNL2uTSg/AVac+maR9tY65188zfbKBkYkhpHIQn6a3JG7IDMu3pIZxowJDWDx4jrRwjihiXmsuf2CQEwXxDswfS9qWEvSikr4q19vzR90YknxLoKyLs2yGMNhbyzIdw0PYoFhulGSavj7sIc1vLwPyCj5y/39tv25W604mM0bJs3NDbrnXqLVaGF37b60VyKdwIpYRDMZclPjuI0qsWwWp7KF9jSpXIr0vEwkxDALSMatlaReWqc5yH1N7JHzTebAimJMLojH4g/6GDJR01oTjUVJ5bOkcmmsiTmfwuF7OZHY4HkLWT6CclvymEpBzyY2OgEKGtWGFN00FIlIiOOHx2jbDnMzGfYcmiUeD9PZWqNZa2GaBgcevpvpmSwjx+4hEotAq0qv57FdbLG11SSRsNCeJplNcvXSOq++cJnqdpVWrd4HHsk5G2y9+YY8/+W1gcFxe5IPNMOSU3QEfVzZqohHF+TRht+/AHg0/D72/78zEHvNt3U48ccRR+agUmoF0dH9q2+z/i8ppbLBD6VUTin1uXeiY7cD7Ij49V7+F6XU/6aU+t+A/+Wd6NSdar48Fp6nsSyTdtshErX6kklaa+rlOihER9HPkXmeRywR6xOgL59dkgfPseWlHNsF5XV+/9/9JqTyhBZODBBiQcgiUCkPmq8asXD3IUlmuw6k8hx8/AH+0k/9GWan06RGR3bqxgUvruvI4BWO0NlaIz2SplJqYrfbVKsd9h6Z49XPfUUGwQCuXS9Bp8F9H/8Au4/sZu3KMrYtGogXXjjFG59+ilq5jmEopqfTnH1zDZRw6AhZkJ3g0utXYOualN+IREiNFoiMjBFKZQXA4PTE6Bkm5UsXBJkYz0K7hlstYteqdFodPNfzq2nLJCE8OkNqz8FBPsx1JWwZzJCTIzIoB2K9VkzCWy2fWxV4dXKTB4Zkx/chJOIwzP6tvu+AXPuDWrs+8KZhMGOPJAahyMBr7jQEoWqGaV04JaoWEYGsB3nXUDhE+foSyfEJrKhFfmEPjiOSU1bUIjOSITE9DyPThEZn6JOfYym5JgFYJp4mnC1AIofX65GamMDITfZlq1zHxe7aOI5DtyOcv7AVxhiZgtrmgAitPYkeDAsiu46EeXOTtNeXCIVCjEyMkEzHcRyPertHud5lY6tJsdRiZCQuFI9Ymp7dY/laEaUUtVqXdDYu70ujzPLrp3ng7ikunrpMKhlh7+EZWvWWEKP3T1GYyPmX3yM3NSEhRaWgXSc+Pg3RBIkDd8n1zk/JMzM6LyhKt0drbRntecIBnT0g5xIgNt/O27qTBkV/+6ITtdZXtNbfAYwCB7XWj2mtr77NJgWtdWVo+zIw9k707XbCiZ8CPobEQZtDn2/ZFsx4HMejXrdJpSwymSiGaeD0BKwQS8YImPbtpoA1rKhFOBLGadbRm1fxWnVqfoXmylYFtpdJ7T0oXkW7gdPtSlhsOAcWtGBGmB2HRIYrX30Zeh3U9AFolOl2HX73c2fZ2m5RX13Zue3QixfPpGRAq2ywfuYs7354FyiDWrnBxmoZakU+8ZFj5PYdZH53XgaomUOcObXEyuIGODa5XEyS8Y7N/ifeQywRY3urzupqnfJ6kcMPHmF69wTxvUfF48umUeO75Vp6mmatSXdjGack/KrUSBa3vDGoidbzqQLhiBgzK4Zr29itFs1ak3ZdKmX3yps0qg2MzBjKF9rtI8sicfEKgmupPfHO0gXxLoNlw7wwGIT7bpoLM4aS+jfxxIbXG76Hff09NfAII3HxgoKw4o2Do9sTw7f0JrWtEmErjN3169ZFwqQmJyUXqzWteouZhSma1YZIn1khAuV5z/OkAGnYglgaw7L8fNZuEfV1XOK5HDTLJNIJ8hN5eQYjCXS3hdY+aMmPNITCIRIpP7wYEKoDsrQZEsOVzA2AH9vLALS2t9i+fIlauUGz3qFcaRONhNguNqlUOjQaXUZG4kzsmqa5uoQVsUgkwpS2aliWKZ5RugCNMp/5zBtM7pllabmK62oisQja0xS36qxe3SCWSmKYBol0HMww1q4joESkOzY5N9CXDEfFA6tu9CeH6bld8l4ZCqe0jhqdG+TBgnv5Vu/mHQV2fHvlxJRSP+T//7eUUn8LEf79y0O/36p5w6r1fvrpHTnz21HsmNFaf+id6MQ72RxHOE7tZhvLStJuS0jBMATI4bleP4ShlJQncXoO3XaXkbkZKsUk6Xya8jWX5MQUja0tiCaYXxjj9OmXyJ54iMqbrw4OOByWmj0Cy2fEk/DDI7QbMDKNLi5j7j7Oxso2raUrlJdSfr0vHyk57CEoRev8SX9Aj0E4yu/958+B3aVwZJ5w2KRVeD+f+uwZ6qUKr7zxinhu109z9Ae/D9t2Obo7z6/93G+RPXwXP/iXP8LJi4Lqmp4bYeX6NrnxAu12D9fVWBGLTrNDr9tD17ZQqXmi8SiO49DLjKFdB5pl6lfOy4DS60jYM5aSMKqvTZgtZKksL0suECAcRcfS0G6g7bYsCwR3c5OivDCs7p/ICmjGdQSNZ4QkBBnkEgOisZ9v7HtRxlBIKXhtbpbADwAQwUx9ONEfjg5AKME+Axh8dXMQgkvmxOsNZMWCHJPnwup5GqtynHrIIrJLxHGtqNXXJWzW24zPCRcvErWIT49Q2a7jeV5ft5NmGa9VgUSOUEi4eol0gma9CakC3VaX7EiS0JGjFNeKGKYUNg0MWTwZ76uzGKkcnlKDelwAyREM08Rr1fqGEHdtoI4fT1PZ3CaaTBCyQnS7DvmRBNvFBo2QgWkapNIROHKYjesbYoDDIc4/+wIqO8H00UOsnLlAr15h7VyZsb0LbK2WSOfTzM1nKRab1Mt1sqNZ2o02nqcZmZ2Sen35KdoXXiOy9wRerSj9qW5IyFV7QgC3O9SWlzDTeTzXIz45R2tzjfDUAr3rvvJR4DUPPwd32JpouKNellLKRPQKV7TWH1FK5ZEaXbsQfMKf9T0clFI/A/woIrT717XWn/OX3wv8JyCGoMr/hr69eGZAtEvdZvf/38CXlVLP+L/fBbwj6k63Y8SeU0od01q/8U505J1owb0KhQymZnKUSm2Rmmp1cB0XrWXADlthSpslITqbJq1GC7e4QtXXVOx1e37hxyl5+ds1Tn/5NSjMUilWZHYeqDgMt8a2ryguJNr4wgE6zQ7exiLEUuw+MM2RvQU+81kH+/o5H0JuDSSIgoE6gO4nhBj6wBN3c/LFK9ilDS6/eoa733M3SkGt7EPyxxeIp+JM3HWQky9dwV6/TvmB+0jtP0Y0HuXMtZKg3a0wW5t1ZncVePPVK7SbbTpX3pQ+RxN4jg3RJM3tEtFMBrvZEq5SEGJLj4nxaFYGoZtWBTpNjMm9ojIS8UEH7QYqm0UHRQ0919cJ9OSaBlBzF7B8CLpj+wCasE8cbgxyYIEaRqD6EWglDk+4h9/VoH/DIcQgBBnwrJQhocrG9gCNCAPDFOSQgkKmhimTkgDKHXhrSoEaGjD9fEz3/Ct0g/uaHafcaRPPZUmkE5Q2Sri2zez+uf5zaUUs2laYcGSaVr3Vn2B5nke72SZshcmN5oinYnieJhQ2yY3l6DSFw6e1iFs3a02ZhPQc4fMFnCvPkXPpdfG0h5GfRMdS6CCM6oN0sNsQTdJptim5Ht2MFEwdGc9Rr7Vpt3pEoiFSqQi98TyljRLJbBJrbBa7tMHaVcXs0QP0bFeqP2Si/dp0ly5sMjWTY3ZhnHpNKiUUxtP9d9eMJ0kce4DamdcAyO/ZS+nkNblXAYy/04RaETeWhl4HI50gOzcvXn/AgQtCzQFP7J1od97L+htICSyffMpPA09prf+ZUuqn/d9/Vyl1GIG7HwGmgC8opfZrrV3g3yPG46uIEfsQUg/yVltaKTXrgzVuuWmtP+vXoHwIeTP/pta6eDv7uNV2O+HEx4BXlFLnlVKvK6XeUEq9/k506k41M2T4CEUlXobj4voKHnbHJpFOEAqHCPmADsMwqC8tEolGULlJnLYUA2ycP8XoXfeJFFRuAtIFUpPThJIZYomYeA8j0/I3wxzwxMrrMgiML4Bj890fOiIQ4mgCqptceupp3riwhRNU3Q2ACoGHESSi42kmH34X1vgshSPHefHJF7GrJUb37yc+Osb0WJJUKsK7Hl0QY7d2kYX9k9RrHY7evYuP/YUPc3DvCPFUHK0129ttdk2nCVthWvUWb756BVyHzupV/8L5yXOf+EqrQrfdFY6SFZeB3oqJQQsGhWBAsWIQT+O169jFVSliOD4J7Rra83YY9T7CL13wDZMlxwjkn0KW7+X5AI+gyCaIsQ4AFgHCs88jGoJR97lkQ7yxG5U9AoRjYVaMcBDaDKSo/OrO9LoDZGVA0g44WsH+4pnBPgOP8EZtxl5XvM7KBq3zJ2lUGkRiETKjeeyuw8hYhlgiilKK7GiWcCSMGTKFBmKF+nW+QuEQ3U7Xr9bgkctFGSkkSWQSpLKJ/naBsosyFPFUnMzUFNb0bvEig3sGeI2KeHlj4+LJpwsCAImlCEUihCMWdqNOq95iZDyHaar+pK+0VWXx/Ar1Sp1YItaXScvM7cKKWqxd22B+V47p+VEq5RapdATLMvt5615P7o3riqxVOGxSmCqgPU06l2L8/kcwpvZROvmCXMOgtFFQVRz6OUl5zyUtYI3PSRg6CKEGVmYH4f0OqnbcIWCHUmoG+C7gl4YWfwz4Ff/7ryB0p2D5J7XWXa31InAJeEApNQmktdbP+97Xfx7a5lbbNOLAfEkp9VeVUoVb2UjJjf0QcI/W+r8BcaXUA7d57Ftqt2PEvhPYB3wA+G6kUOZ3f6MHVkpd9Q3hSaXUy/6yvFLq80qpi/7/uaH1f0Ypdck3oh+8lWN4riYWCxMOm/5Y4omIrmn2hUsN02BrVZLRjXJVpJJK24TCIUZmJnFXL5M+fDdbK1vkx/MiC6UU0UQUZ+WSDO5BKKy06nNzGjt5Ko6NOXeI1VKLdrPN2KHD7P/Qh6DX4cqXvoy3+PqgqF99e1A+HSCaIDY+zdqXPo9hGBS/+kVwbFKTk2y99BXe/a79vPDKMo7j8fQzF3n84+9m4sHH+eiDM4yOpdjaanLhWpmzF7fZOP067390F/cfm+D1s1soH7FJvSgGKcg1BbJIZqjvwehGScJ5nosRjUkVYF/DjrA1gGtHUwPisk+gdR1XBpJ6EbaXiRXGBbRihn3Pti4Daq3YRyDG5veT2HNYch+5yYFhD1ni3UUSQhwe9naCHEg4Isun9u/Mew0ejOChGixze6J/GJTnCIxigBQN8mI3CsjeOAi2azsNWICcDIzZ1IH+M0GrCokM7avnaJ19heqVC2y8eZqVxQ2a9RaRmIXnepimKWCjZIxoPOoTexnkz1wPrTWVSgfTVITDJo4jNcCyhQyhcIhOrdYXcHZ6Dul8msT4ZL9KtpGbFFJ7V9ZRkbjPz0oQyeYxQ6ZUSFeKbmmLtWsbmKaAo5RStBttnHYLx69BNzk/0aepdBqi6HL9eoVatUNxeYN6vUtxvYwyhPIyNZXGdVxGJkaoVtqEQopUOkqmkKFSrBK2QlKHLAiB+iLTfY/Zvx+xdIp2vYEVkUmM3bVJzy8ImjFow1zFO9puDdRxiyHHf4XU3xqOLYxrrdcA/P8DoMQ0sDS03rK/bNr/fuPyWz8jrf8mImzx94DjwOtKqc8opX5YKfV2IcZ/BzwM/A/+7zrwf9/OsW+13Q7E/poPq2/jo0n55hN179Va36UHFU4Dd3kforP10wA3uMsfAv6dHy9++6ag3e4Jub/WptPq0G60McN+whl5oc2QKUrajVIfeRaJRdheEfmc2uJFaJSkRMXUAebvvYut5U0YnSccCQ+IyX0ey5BX4DrQrOIuvs6VxTK6VeVj79tHq9Xjnj/7PdLPkDUY5LSW8GQQrqpu0l69CrEUnUpZ9t2qUT//BqnD9/KZX/gkWy98ieWlCt/3kaNcWSwzUojz0pUyhqHo9USXbmQkxuOfeB+/9nO/xee/eAHX9chkojQvn5E+dltEpnazQ/UgqLRrdwZFI90eXnkD7fQI5cYEHRbPDHklPqKuWRWDXNmgu3RJBkvPFb3AekPyXQHgwr9G5Kf6YcKe3RMlholZ4mOTAjAZmRZjF1QIdmxflWLPwGgEze3JpCIwOoGRHc6JBOc0HGIMEJI3yk8Nc9F2SF/pnWCSYTL0DlK1/zwsvblz352mGPFEpm+InZ5DefEKK89/mfXL19hYXMKulmnVWximIEjjySghK0Q0HqXb7vZn993ugH/q2A52t0cyk8RKCJqztb5Cs1KjVZPQd2F6nOTYOF63Lar13Q52xxaDNbYblcgSjUdJZVMYpkE8l8XKFTBDJtVKm7AlEYz8eB4jEsXrNHFsB8dxmdo9RSQWITdewKtu4rkehdEEuYkC61eWyYxkaDfarK836HadvnyVFQkRiYQwTYPcSJJkJkmn3WXmrhMip5XMDa5xH2kq3nD7+iVMy2J7aZWe3SNshaktL6Hy0zf3uG4EAn0TTTMYAm4B2FFQSr089BmuDvIRYFPfujbtzVxJ/TbLb6v5lKpntNZ/FVGx/1fA3wQ23mazB7XWPw50/H2UESL0HW+3nBNTSn0UUTGeAjaBeSRee+QO9udjSOlrEHf5i8DfZchdBhaVUpeAB4Dn33ZvGpJJi3bb6RNP2802hmEImENDq9Hqr0vI8sVoe2RGdtNYX4VkDjOZEfmlzatgmDh7pqHbJDk+QWNpUUIaY7vFS4PBIBXkUvyqxY1qk+PvuodXLm4RjZq8+pWzROcP0Fm5As0q2Xseo3L6FelDP+zhg0HcHmY8iZsZE68vZIlwcWYMqptsnn6dX17ehHqR1sI+2u0eExMpyuU2tu2QSFisrNbY+953cemrr9LMjdOzc3zghz/Kk//xt6V2WbMyACgEJGTPFUMRzIIDj6dexLHjhNJ5Iukxmlubsk11QwAew5p/nYb8rTArRqO4JLyveEpCruCrnXQkvNip43QASwAKchkU2ooPZtEJQebRbuzk6rm9waDUru0c5AIaRJD/6uvzDYUaYfB3kNCw2/PV4qOC2gu2CVrgrcEAAelxc0TcMPAEBmHJ6pZIMLkuXnHJJ9CnJEQWS6MKMzS3Nmk3pB4XQM/u0aq3+lJgobC8zqlsCtQgJwwQT8VpN9vY5NHtOp1WGM/z+pW6MUNQWoFoAics2pr0OmjPBdL98jzxVBy7Y+P0HKrFKnZ5i9z8Lsm1aaQytd1my5XSR+FIWFRejhxla3ULp+cwt2uEZq3J3FyGU5tlIhGTtbU60WgIpXw+Z6tHOGwIEEtBJOqPf41tX70k8Ka8G66rh9vtgt2idvkcRmEGrBi6VfWfR3doUmEMJpp3oumd1/zrtOLQ5P3G9ijwUb+USRTJS/0asKGUmtRar/mhwk1//WXEuARtBlj1l8/cZPk31JRSxxBn4vuBbd6eYtXzHQ3tbzvKTq/yjrXbAXb8IyRJ9wWt9d1KqfcycBW/kaaBJ5VSGvh5rfUvcIO7rJQadpe/OrTtLbnFhqGIREJUyjUJIcYlPGMYRt+guT3h8UTjUTrk8GpFzEyBVr0tcXS3h7txXfJdfnkHu9sjnM7RuHjaz5FolBVFB2GjIHE+Oo8RtvCWzzHz+HtZvrTM62++CvE0qbkF8Fw6V8/JAJmAymtfGRQ37DQFKJKbgOoW4YXjUoW3UQbtkTt+H+ULIjA8++4nqJVFkLgVi0i9p7bDpYtF6uU6SikuvbZNemKc2vIShKO4Kxcp1gs8ubI1mKEGPCHLLwUSeB7dppxXEM7zlTeMeBpnbRHHJ5ySKkihQ08PxGgNCwzf2Lo9QS/GknJ+IVvWcx3xrBplMXiuK7kYu43X8wnQQY6r2xRASavSl58yogm88QWpEhxo7QWgkSDsF+S5AoSaHuLj9Z9Iv9+BhxYQz7PjsHV9p1fV3+aG7YP9B9Wj7TYwRAcIEJAB0GRYsSQo0xNMggKkpqGIxCJ02nW8Rhk3Funz7yKxCI1KHXodup4LVqxflSGWiCEi1Q3MkNmvQtAwBLBk+UVhtaflOQaBtHdbmKkMbsiCbpOe3aPb7pLOpUWCLR4VHlrPYeLQAbZWtrAiwnMrezJpcTeuk1w4IAowvqENSh4tXxdD2273MHwhgpGROMmkxeVLRVzHIGyFsO0e2azkBjudHlrD4594H89/6TxOMPkB1NR+UTlpN+T5KV7vn0soHCKcyNG8dlG83UZ54D0H0mV3sN0JIrPW+mcQnUKUUu8B/o7W+oeUUv8n8BeAf+b//yl/kz8AfkMp9bOIk7EPeFFr7Sql6kqph4AXgB/mNkV4lVL7EMP1PyCwq08CH9BvU6nZbz8H/FdgTCn1TxDJqbcTDP6G2+3cwZ7WehswlFKG1vpp4K5v4tiPaq3vQXJtP66UetfbrHvLbrFS6scCF73XrFAqtQmFQriuS7PRIWSJon2lWMF1XIGN2z1QCIRXKdxO2yc3d8GxMUZnmd47C+kCo/v3s/XCl4TE2W1COErhgcd9vpnfpWCgWjmHt3aJyJ5jLD/zBQkl9ToQiVM/LTJk+594D2MHDw5OoNcdCOYC1qjoNPauvC4z5V4Hc/dx5naN8MN/7eMwdYCVxTWqq6tYEYt/+FcfxbJC7FnIs3nuHO1mm2giysTe3URiEVLTM3zwE4+SP34fFJdIZlMy4x+Z8XlaQ1p9AOkC1tgsjMxgTezaEZ7zymt+8cWKLG9si7GK+fJSkZiQk3OT/t/Lg5xRMicE3lhqJwqwVZPBvFWTMGZgiCob4gVZMeGihax+BWjP8z2p/PRALDb4BANW4C0Ne02wM5yk1JAkkTGA1BeXBir8wd9gcL/7IUU1uP/DwJzhZyJofmh2B9jkZlp+hgmNsoBufNBQe2u9zzWzohaxZJxw0gew1baw63Xstas0a01a9RaNikxkmsUita0SoZCAQ5QSoIdhGuTnZuX6+dfAbjZI5jJER8bAR7J22yKZZXdt2o22cClth1RWKj+D7wW2axCJ0dhY71cEr5Vq5Mfz9Lo9rKjFA/fOsrJc4cCRaRzHIxSSCuvNWpPSRolux6bb7tJo2H3qRzYb5fWTy+KJWjExQtlxUarv+ojRII9bmJPzKBclVWCY8kwF1zq4b8H9vlNN3+LnG2v/DHi/Uuoi8H7/N1rrN4H/glQX+Szw4z4yEURV45cQsMdlbg+ZCPA5xBv8fq31Ma31P7kFA4bW+teRnN7/jshTfVxr/du3eexbarfjiVWUUkngS8CvK6U2ubkA5C01rfWq//+mUuq/IuHB23WXb7bfXwB+ASBc2KM91yMaC5MMW2ytV/uJ8HgqDhrajTbJTJL64nnC4/PEkjFqq6vCbwpHoVHBa5QpxSKgFFsnXwbDpFH1wRthi+ILz/i5NDUABgTggF6Xd7/nIE9ePDnopN1m6vEnWL+2zoUvPSfxeisG2s9B1Usy+69uYl853fciIrsO0d1YJhKNcOp3P8WpaBLSBQqzuymM7qJS6fDy9ToLu7J86akz5PfsZc++Me7fV+DcapU//uTnmHvgARxXs3tPgenZj3L10qZ4Pp4rg3RyBDyHD3z8EZ790gUyIxnWF5ehXcPu+tz2xrbMen1DkT10gsrmtgz2gTSU9iCaJJTM4HT8WX487ddV6wgxGsTLSuYkZ5bIiaEK1PutGH2V9VRelpdWB/mtdKEPr1eROFoZso3nA0nszkDBBEOAIK3aAA4/HE4MWl+7Ug39Xe+E3A+r4w+FsfqK8sF+uAk37aYP7dB+h/N2w8jGyoZw5Szhr9mbSwLGQBB9vU5n4H1G4hBN4hRXUKMz5MbylNe3SBQKdFod7E6XkBUmloyhDIUVtui0OowvzNFtd6lX6ri23UfShawQ9XJdUI5+JCORSVBcvEbdbhMemaTXtbGiEex61ZfN8vUulYQ9g2rqVtSivFnmjGUyN59nJBOl03FYX6uzf3+BqbkCVy+ssnX+PFPHjhIOG7RaPbLZGCdfuMSuAzNUSg0SCwdpbqz1xX2NsXlfE9KnOVQ2+uK/XsinY4T8iWcwCQlCz3dMO/HOeGI37O+LSFoF34l44i3W+yfAP7nJ8peBo9/E8RduZ32fyxa0TeA3h/+mdTDI3bl2O0bsYwio428CPwhkgH/4jRxUSU0yQ2td979/wN/XH3Ab7vLXO45hCkDAdeUFisYld+K6Lo7t4DouylDiiXmiIFBbWxsqjqggliQzO0f12iKZ+d1US5In6w+OAcQ3XYBie6CyHngcVownP3PK90ziMui2G6yeOScvYCovpViCelTt+oAcHdRBqpcI7bmL7vYm0YlZWmdfYt93fpjrl9fpXniVzVqRTd+7+WOfF/Tj/+MjfO7FZZaXq2xsNJibzbD74QfZPZ/lqV/+HcK7jtBbuST7D0JasSRmLI7ruHz5yxfptrusn78wKHMfTQzyhqm8GAMrRt0PZ5GbFNRhUDjUDOPYPVQojLZbMqgF6MI+adX1q18XB+hCD997cgZGolYULyuelb44vocUSUCzik5kIJHDSOYEpNCqyIDvOoOcWWUoDz0MxOiLB6uB13YjMda5CaIxIFPfaAS/mTaMTA1Codrvb1CixqcjeHYHNxwimU1S9zQ9KyqGbnhCgmgfZscLVDa3iaWShJJxUbbwqSajExma9Wa/mkNuNEckZlEr14lHJf+WzCSpV+okM0l6dg/P80iOjdNtd+nZPUxfZSQzOYExPUV5ZVWkydwe8dFRYskYpY0SmZEMpQtncSdHaLd75GcypGJhnt2ss77RoFYVjpujPYprRQ4cnaXX81i+ukU8FcfzNNF4lHwhRTURo/jalmgnbiwO8mSGErRtOCrXrFWR6xdL+ihcPbh3d+Ke+U1rLVGB/99ur7ATVBJcZeV/vy2jeCvtdsKJY4CltXa01r+C1Jd5O4jl27VxhM19CjFGf6S1/izfmLv8lk17Em5BQ7fVFYKzr48YzAwBOtUqaKkzFqgt5HftIpnLEBkRxW2iSaqLl3ygw6jUBgtHBoUug2S8UmLAJvxCiiER743sOQZGiML9j8mL1awOyLKZUfooPe3JbDEI6/kis86VUyQnp+mcfRG05uLnPodp+oNvNMHRD78fmlXazTa5sRzFuk293mXt5Gtcf+llvvyrv8viG5f44//0e5DKc98j+0jtOzrIN/U6qGSeXfun2Xtkjtal0xJerZckJAgSWk2PiDFq1aWv5XXc9auEU1nx0FJ5Ob9tX0KrWUYpRSidJxz19ewiUrKkD4dvlH1CqjEIs6UL8rdochDaq27KtQ2MTAC71x7YXWjXpM+dugzgIUvAJGFrUGE5ELyFISi8NwjnBUYTduZLbsYnunHwC0Kw32wLwmLD4J7chE9M7ohH26pBaRW7XqV07TrZ0SypXfv8fGPLVzcJ0WvU6HVtaqUasVQSrXU/x9Xr9qhX6qwvl3wko02j2qBSrNCsCbm6vLRMZatCyBIx4/KWTNrsjo0ZMsmMZIjGo+TGcpJnbggKWEXicm+qmzQqdakkbtsyYbRiLD//FRzHo9ywiVkhdu0WaH1hNMnIRB4jK2HMc69fp9O2aTVajE3liUSEVO04HoWxFOnDdw9I2YW5AZ0hyGcmMr73bQ/ylME6wyHgO9S+jQWAb7X9ed97O6S13q21XvA/u2/Xq7vVdjue2G8Djwz9dv1l99/uQf2Y6ombLL9td/ntWihs0m11+3ps3Y4t4ZOI1efMoJGHPT9Fs9YknBujVylSunBWBtdIQgbmdr0fYjpwfBfnTy3KYFL2qxEEA1ogZbR6Xl6SVoXCg+9m1+4RXr50SuqVjS+Qm56gHBA3O40BCTiQcapuiWyV1n4BxI6UeI/5vKnV87TOvAhK8ed/7CP86s/9Fvd+/APMjCZ59qtX+dSnTzM+MwKJHO/7iICg8skIr184wIXXLvD8b/w+P/G//gg//2tSb63VaGF3bC4/+zxkx7HmD4pCR30bup54XZE4XqvuF7Q0h0JvBr1rZ/wKwXUxwPF0v6Cn12niDYvudqpSJHRsFrtSHBJNrkhOrVmRgSe4HiDXMluQ5e3aABhhmALA6TYHXKBIQoRuAx6RGZbBzLYkdzIEYui3YX1FeeAGM/s+MdYY5M1uHADThZ2e3jfThnNjQR8rG8J763V8pXlD+ubLbW1dXUZZUeLj0/TsHtF4lHazjWcm8Ho9oolEXxc0UKHpNpqoULjvlQX/e70e7aYpRP6QADKq21UKkwWq21U81yNbyNKoNtBakx/Ps3plBSsWwW40UOEIqVwKNyW1xuob65ihNPF0SgS3tYZkjsXzKxQKCZbX68xMpLjUtSluaZKpCOlcWsKk3R71cp1EKkG365JIWMTjYcrlNhtrFdK5FLVQWN650soAwKM9P3zYHhg0Zch9qvnCEUH4P3iW7kT7trZPt9T+NXAv8Bxwz3+PA96OJxbSWvezoP73dwT3f6ea49cLy+QkDBG2wnSanT5ir14RjboAseT0HOKpOFNHDmGNz0rYUHsUds8PchUjM5x//jVGJgvQrDL+wGODulPDIaghMdlGpUGl0mbk3kexr56F9UvsWigQ3nVkSDxXUI79ly0YIJN5MRj5KRjbLaU3lJKcmRWDeJZf/X+eZOK+B3nlCy/xqU9+kenZHLv3T+B5mg9+7AEOT2eoN3ucvybcsdzUOBMPvYsnX1rm+H27GZ/KcvjEvMC5IzEoXsdefFP6Mrbbh3unUWO7MAIgRrOCyk8Tmt4rUPncpOTWchNi+JoVGSwCMEenTijuK9P74UF7/aoYx9TIAM3o9iSsGksOyskbpnirzaqs30cYenLdWhU/vGlLGDYAbwT8OxiEFSMx6WsQLgYG3DxjkIcaLjYZ7OtGZGGw/5AvFXaHkW79/UXi0vf1ywMvIzDQ5XXJ/VU30c0KWktY3PM80vk0oZDMU1vb2xiGgd2xaTfbhKwQZiRCNB4V3lkqTqfZIRKNEE+nsDviNRlhy9d1jPS9fM/z6LQ6/fzy6oVFDFPq84FUU68Vy+w5MCl8zEiC+vJ1gfKvnMPKjRIfm8SpbFGvd7l7/yhXrpeZnM6xubTB6rUtEuk40Xi0L5/Vs3u0G20iEZNOxyEeDzM5LXyx0aMnBhOOIBoS1K0bznc1y6Sm53YWPL1DZViC9u3qiSmlHvUFKC4opa4opRaVUjcDePSUUr8MzCilfu7GzzvRt9t567Z8rhgASqmPAe+IFtadakopLMskHDbxXKkPFo6EMcNCbjZMY/BAtSp47TrVpeu4jiuhxZ4N3RbFq0tMHz8qg4XbIz07j92xiS4cYePVF/3iiGEf0ODvzzBlwI1n6WytcekrL7K9VqRwz4O850e+n9d+97/RqxRh7ugQt8jnZPWllerQaQgq0A8PebY9ADdkx+VF3V6huFqU5aVV3vjDJ/uk1yvXK3zys+eoVNp0uy7RaIgPv3c/tXKNSMSk23VZXylTKrX5zh/5BPseupvJBx+F8QUimSyhaNQ3UD1iiRje+hUZUP18XSKdIDs7JwYmmiCaTMjfxnb7OYi2eE/dNs7WMqxekIEjnobs5GCwsaIS+guMQnJE5Lr8CsjYkn9jdE6uVXCtg4G+UfbDho6EQFs18V66rQHIptsW0EGtODBawaDXaQzCijseoiESdN/oeYOQVF814s4PiH3PsNsaEOrLazupAoHn77nQqtHe3qJRrtLcLtHr9ojEI2THRggn07Rrdbq1Gna1LDlhX4cRpAJ6OBIWgd9OF92u01y8IMVjGxKmblaFyBxLiNpNp9UhN5ohWRjBc13cehkVjkhx1O1lVpbKRBNRqBdRSdFUJBzFviylauLj07RaNmevl7n70DiVSof8xAidzVUqxSrJVJRYMsaxe3aRzCRJpOOsrTXodBzq9a6vTmKwvbYtz0pfXkzLMxPct+BaORI+tWb2DcLD+WmIxt/mJtzmLfs2NWLAfwR+FpEfvB+4j5tH4T6CIBrbSH7sxs8db7cTTvyfEFTiv0WSdEsI7+BbtpmmIQ95sUEkauF5WpTZPRFYDVkh6qUaZMdR4QhKKcyQydbqluyg24RYmsL8LCvPPSsw9PIatWXNwr1HyefjvFxv+IOwrzNYmPUJ0yFwHeKzC7TOvSpGrn2JWizCs0+X5aUzTMkdDcvgVLfY86EPc/lzn4FGmej8AUGERWM8+p5DPPsHXxaj0qljZfPYm1dBeziXT+6AgV96Y1H2Vy9y9wcfY/HSFqMTGXKZKOVml9ndY2xtNQmHTY7fNcOzv/sUodD9LF/ZIBQOEc+kcHoOew7NUKuNsnE9Tau4KcfWHkZ2jMxIhm67y/j0CN32XpShRHndVxqxZvZgryEGrjAGlXU/H9YVkd9AILle8nliJTFOnkth9y6KSz4ANeUDXEorYqh9ZXXyU4JmDISC6yWfvOoJACQSE4/QLxZJPD3gcAVGaRhZeKMR0hohxw55bMOhxcDju0PAgJu24TA1+OVgfCRsqiCAGLfn5w7DfbFeOo2+YQJEJq3noDtdrHROBlK7hZlKEEsI6CKeig90DyMJqBUF/JPMSb7RitNtd0nlUihDEUvGaFRbjE7m6Nk9rFy6nz/GBzmsL66A3UX5YtrE5P7atTKhkVHGx1OcPrlEKGSQz8co7M1z2jAoXl+hnU3hOi7lspRICoeFU3b98jrZQhYAyzKJxqO0tiqD+wLyjEUTO+vBuQ70uiTGctjRhHjtdkvy0nei3R7Z+U9bq2qtvy48X4vI7yeVUme11qf+O/TrtmSnLmutHwIOA4e11o9orS+9c1375pvnaTodl0jUotux0Z7uS/Qk0gm6rS6pXBozGsMMSSmKeCqOt7nE1K7JfnXhfQfGmHv83T6R1wW3x5XnXuDqle0BkCNQUi8uiVfgewPJTHIQLrTb2FdO415+TdQ9ikv8+Z/43p0hD6XYuysnA3S7TufiSexqCa/d5Nnf+iyHH7uXow8dZuGBu5ldmOD9P/YD7P7gd6Hmj8k2yRyZA0dlsOs0GDtyjDOnrhNLxiiXmly9XuHzT77J5lqV0kaJWrlBcbvFE9//AeJxi2giyuzCGO1GG7tS4vzzr7F2eUkUHHzjZITDeMvnKW+W6bQ6rF7bpL21Tuv6JbztZcxUDnKTUv4jkesb+NS+o74XlhLDFiDuAhkhkAG53aB44dzAk6psyDUOCmQG2/k1r4imZDAKQn2uI4N7cUm2d52BsezZAxh84EkNG7Bhr3g45zVswGCw/jtpwILjBLDxoL/dpo8MjcDk3gEloVOX/rRrEM+I6K+PwtOeRnseZiKN3enS7QgfsXXtIo1qow/MMAyDdD49AEXADlSk03NoN9s4tkPYColyR1nKygQ5t1i+AHaHarHqK5x4eFtLpPNpxg8fQU3uJTUxQc/uUSq12H94kpWVGp1Oj63tFtF4hIk98xTXRNN06fI63XaXZNJCa6nI3qw3RbOx7ZAfzxHOjJA7/sBQ+DdE/sDhwWQj8LxKK6CR6IYvrRab339nbhXav85f//OnpSml7vHV6J9WSv2fSqmHg2X+8rdqbaXUU0qp0/5+jiul/mTJzkqpv6GUSiOFMP+lUupVpdQH3olO3cnmOK54ZD5ZMxKLYEUtIW1WitQrdVLZFE55cxAr73VIJMJ9xfKXvnKBfD42AAi0akSnFyieeR0jFObw+x7D2n2U+KF7dxokt8f2+rZ8D2ZogVL9xF7IjvOHT52XQVip/vE/99tflAE3lhLvIQAi5Kc489kvcPpTfwhAo97lldeWabd6TC9MYaVFkaBerstAZsWIxS1SuRRbK1uYpuQT7n14L2OTGeb2SIXh7WKTp37rSU7/8XNorVm9vo12HfbdJ8ASI2zhtJqkxsYoHLsbr+Jfq7WLeEvn6K5dY+7EEb98iggsh2Mx+pWm81OERiapr1yXASXIA7o9cJxBuC+alAKQo7M7E/RBDbEgJ9WuyUTBn1njDsHK3Z7sK8inBbmsVnVw7ECgGAbeWADvD8KCwzXJbmyBMRmedd9BrtFNm2EOzhPk+/aKSKFZMak2Ho4OygF1mxK6GqpWnilkRZLJsfEcFxXPQCxJt7jery5dK9ckL5bLDoqA+tfQDIdwHZdOs4PTc2j5hOdet4fneriuSzqfJlPIEJreK5PChUNM3HM/xFMUL5xj49w5zJCARlzHZenKJrbtMjaWYGws2dc6bdabfSM8MjlCOBLmja+epdfzGJ3IYkUsmk2bUEjRsx0S6QSdVofUAT8/1m1TeuNVMVDKkImSzxVrN9tkR7OM3vsQGCadVueO3aZvw3Di/+V/HkRCiP90aNm/eJvtfhFRHekBaK1fR5Q/7ni7nZzYj2itawinawz4H/Eh8N/KLRQy6fXc/oMaSPKUN0qgDMyQSSQWIZwfB2VQvSZhuPNf+qoMHDlJTtfrXQmFNKvg2HSWLoOnOXTXLvbOZbEXT9PaXO+L/47c8zBkx3FL618L2TZMWL/Euz58P9VilcLRE4MZYzgqx4glZRBplCV5v3mV1EgWa/4gH/lrP8CVp7/IxqsvUnrzFOuLy5Q2ysQSMRYef4S/9Zce4xN/8cPMHNjN2jXhi5shk41z56iVamxuNhgtJBgZSbB33yjNWpO9jz7An/nRj+DYDvWlRaxYjOKGGItkNsn4whz11WUyuTj7H7lvoIwRkdzD9kZZcnShMPb1c7iui/almvbdtU84es2qDPz1Erg9VHYCPEfyV42yzNrXL+OtnBdwiJ/HwPW5ZNoTGPX0wb76OlZMrlXYJ03Hs9KnoPpyrzOozaa1z9OrDwxkYBgDUMBwG9ZQHA4jBvsKZIvuNKDjZm1Y7DZoAS2jXR9QHmIpmTj0unjbq7Rqdeyujeu4VLdK4q05XYyQiXZ6WHmpBNDeXKVWqon48FaZeCpOan7v4NmNJHB7om6j9YCmorXuhyqzhWwfPDUxN05ubpZWqUytXOPh73xIwnaNMk51m82zZwhHwiQyCUqlNom4xf17RpiYSOE4HtmRNNlClnazTc/ukcmn2HN8L1ur2xQ3qoxNpKlsVSTPGwuTK6SIJqRq++zj7+lz6dpb6xC2iBQm5DnpdehcF+/Tcz1mHn6U8dnxO3abvt2MmNb6vVrr9wI/GnwfWvaX3mbTuNb6Ri7vHRKp3Nlu5+0LpqQfBn7Zj3feWZLFHW6e5+H5M1HDMAZiv0NNe5pGtUFve01QbrE0GCbx2QWJqZfXSOfTVEpN6LY5/J3vh/wU0dk9YEW4cHqJV09v8Pf+yY+Rm5+XbfJTgtRShngnww+tXydr4rEn2C61uPeR/czM5Zh6/AkZgIOCkYF0kQ/0MOaPEAqHWDgwzcWrZfY+8V4KJ+7lf/3//BAYJg88vMDxu2ZYubrJv/uNl3njYpHl02dJj6TZvVCg22xx8JF7JI/VdVldq3Hpghi4PQcmiURCPP2VRWZ2j4HWzO2doHzuNOP3P0Kr3mJsPMnciSPYtoth+B5OIivnVN+muXKNiYP7xZgEA1+7hjU2y/pKSa5HIsPkQ4+JGn1mTIovtuv9woxoLSjDkCXw6Igv5WW3xAB6roj+BsohsZQAQgIia6/b11zsk9CDopywMwd240AyjC4dNhY3Qt1vJDYHYap3Oqx447GHl2lPKAUdX1sz8GKjSagXcWsluq0OuA5mRlROvGoRnK7QKOJZMARdaNfruI5Lbbsm9yyZh1gaK5UBt0coHBKkYL2BYzvUSjVa9Zb/rkmtvmgiSmmjLOFk7eG5Hi9++TyFE/cx9dBjEE1ijU5hd2xS6Shbq0WK2y0urtfJJixmZzMopdizb4wHH16gvFnu10yb3jWGFbFwXU0ykyQSMYlGQ/R6Hgkf0r96dZ3RE36ky49idK+dH6CIc5MSDo2ECYcNItHbgQa83f359jNiQ+13brLs7WSkikqpPdAXAP4+RH7qjrfbuXuvKKWeBHYDP+PXkvnWpqdrqGxVUIbqx+vRQtTEsYnkRuh1e2RGMtidSZlhrlyCsV2MT4+wWG9Bt83W6VOCbMuMcubJpyGepuPLSPViacpbFf7z5y9RGEtjd/bR3Nygsr4pSLLxBUHDZcZEoNZ1wG6zfukatVKOydkC25s1enaP3KGjOLbDwQ88yEu//3nCe+6it/gGxLOEQiHKa1vCLZvaL2oXWvOPL17kvd/zLl55+RoL+8aZXRhndDTJ9naLxPgkrXqL1164xMSuac499yrEs5jhkA+ljrO6WqOyXccwDbrtLsXrK9CzWV8uMXZC6qhFE1EqlQ6FQpzpsSQXr5ah02Dy+HGatSa1FclNrZ89L9c9P41XLTLzng9QrwjAwDAMQtlRypuSLwxPLYgeZCw1FF70vbL8tHhlSsnfe0EZGFfQhVZM8kHKkPviNAWZmBqRQTzI5QRKI19TSoWB4QmMU6+70yAFntfNwoT9cCP/fYzX12t9yoEeyG5lJ+ScHAeULdfTbuNmx2X9RE5koqolIrkR7E5YlE7sFq4VxWlsoQoTsn+tUYbCsKL0ugKIMcJhWlvrhNJ52g1RfInEIgLeALKjWSkiG47SaQiXLZ2dAuA7v/tePvNfn2dsYZ715W0c2+HK+RW/bBBYVohMJkKzaeN5Hifu30OtJsaoWmlTGEsJP62QZGujSiqTIJEIU6/bRGIRIu2IGGArJs9TQIT2HMKzB+hdfRNv/rAolBgW4fAdDAX/qbRPb92UUgeRSiUZpdQnhv6URjQV36r9OCL/d1AptQIsIkpPd7zdjhH7UUTw94rWuqWUGkFCit+6TUkYLeDOdNvdfh0xgG69TjybZfX8ZSb27qZWruH4M3rT9EmtkVh/MAxnRuiVVqHbIn38QSmZrgxGxnO4rmZ9pYRhGnzs+9/Fp37/FRksiksyALeqfT1EtIbKOi0zxFLPwa6WiY+MksokuP76GbYns5AuCIF4ZEaETK+f48D734fjLLC2VCQ2cZh2s02ruMXTv/J7YJicvBghNreX8naT7ZUNknkJx5imSbPWJDY2RfviKVzPpWWGaIWjFIPcVGYMeh3u/uBjXDq3Tn1thcnZY2y+sUxrqUZu9H2cfvUqr10/R/rw3Rx5z4O8+dIFpvfNMTpxlFq1TTYXxzQNzr10Blo1qts16ttlrHicmT1jXHz5TczcCLH5/VhRi2qgYA+C6ty6LgNvuzZQVwjEhQ1T1FHqRfHEHGeAKux1+oCQvoyVERoU2pw7KrmjQI1/mNjsOgMvbFjAN2hvBZu/Wfjxv2cb9gyH+9Eo9ZVQIoUJujBQAAlbApLxkbO2m8dIpOmWtwmlsjiehRGN4XU7YIbplrfFq2tV6AKRZIJupQ5GCI8IZiqH02piRGOEwiHcnksoFhLjhVBcktmUKIRcOsWVygaH3/9uNkotKK1STqYJR8JEYhHaa9dZNU1yY0KCXjg4QzJpUat1yWSiRCIhbNslnYmhFHS7roQd80k8T9Nsij5jq96ideEkLTNEfM9RWsWwTCa3rkEsSc+xIT+F027RbcfpRMKY5p0JB2u+LWWnDiCw+Sw7iyDXgb/8Vhv5ghbfEUgMIpD77weu3ekO3rIR01p7SqkN4LBS6g753+9s056gEIP4dyBe6jiOvOjNMq16UTyPyxLmi0/NMT0/ysrVLcxojPTUESl50igTS8bo+TWJauu+7t/6JUr5LMpXi1BKsVFpk8qnqXNAvK/8lAzMlQ2fX+RJGG31AnY4AlaUVmmV62s59j9yH6apuPtdx4HjvPaFFyCWJrtrgfN/9Ec+V2qe73jfQVxP87nP2ji+hNP9H3yYo7ty/PK/+DXwXBpbJtGFI3ieVLBuLy3BxB5GpsbYXlolNzVB+dI5sJV4MOkCi5e2mNlV4OzpF7n4XFcGSzPM2rV1vO1VITMDbz71ZUiOUN6q0NoW8Eo2d1DsQL3ExP0PMTqa4M16k5HJES6fFVmubqsDlTXaPRvsNukTD2OGTDrNDu1uS7wu7YlR1Z4MotUtjNFZ8RRuLIPSBzo4gzChMoT702kNckQR30MJBGADI2CGdipkDOfPAi7YjlpjxmD5n2Qb7lMAXhnuU3GJbiRBKJ6Qys5bzYHxdmyMqb141SKe28NIpCWnNZoTRZmgDp4V8/lzGmqbdI1JrEwOu9nCMAxcW0rzeI6L54frzZBA3pu1pqzjuKK3OHsYr13nzPOvy6SjMCuKHNs1JvcvSMHa1atkChlGJkaoVTuMj4mBajRsLMtEKQ/TlEKv8XiYdrtHq9UjFDJJJMKopEUiaVG/KhqdrusOSgoZpnjx8azQNMIW7UaCZCZJLHbnhrM/paHCt2xa608ppf4Q+Lta63/69db3wX8/jpTK+hTwBf/33wFOAb9+p/uobvWiK6X+D8SSnmEgz6211h99663+ZJs1tlePfPz/6KtzRGIRnJ5Dt1aDbhMjXcBbuyR5lZ4tM1VlEJ3aRadWw4zGMAyDsZlRtlZ8hQkrJrP7kMX4PQ+wcfEyODap2Xl27x0nmbRYWqqSTFqsLpVoVBsYhkE4EpYaUFff2ImAC5Q9ElnM7ChH79nN6kqVdkNKqPzwdx3iK+eLvPTl8xSmCtx7YortWgfP06STFq++skTlta8QO3gf7QuvgWEyet8jbH31i3Kc3ASp2d2MT+fIZKJ0uy7nXr+Gs35NXnB/Vg70BYux24zc9xjbZ98Q7yaeFqPrD+5qci+6uilIuJEZ7n7kIEopf8Dpcv3SOqFwiOxolk6rQ76QJBQyqVSE71Mv1yXEtL0snldeys3QaUEoJPciniY1PUP90rlB6LBdl3vVqu0stRIM6EEZmxvPaWRa1oulBdhQXt/JDRuG2N8s97Ujp6kG638rhBJh0OegFlo0KffG/23MH+tPZDzH97ztNlZ+FNeR4pXa7pAeH6VRaWBFLTrlbYx4Cq/mc/mMkC/CnBlcAx/laVhRpHBlhHBEis9GE1HWF1cIR6UemF0pEkrncbbXBuFavy5cKDuKGTLpLp4BpcgeuYdYUtCLs3NZmk0pkFmrdbEss1+xvN12BLLuK3rkC0kadZv1V1+SZ9ax5VkJRKuDSVF2HBpl1Ogco9OjZHNxXv+H3/GKfusilbfUQiMLOvNdt6aMV/rVH/imj/ffsymlnvbBHF9vvU8BZaRg8RNADlF2+hta65PvRN9uZwryceCAlurKfyqa1hrXcUW1vtPpw3pxuhCOEE/Fabi7JdQQwKzrJTpX3gQzhJvI4pohylthwpEwtjJQyTza5x0pQxHNF+hsLNOsNrl0bpXDx2eJxcJ0u4LkOnBsnmuXN2heu4g5OtsnooIxINP2BPYcCoc49YXnZRBvVWjvPs7P/vPfgniGaG6ESrHCZ375RazZ/djlLQp79jA1m0cZj4m3mB0H16G8Webf/t8/xU/8s8+D51J//Xnqb/ghMzPs1w5zBmThG5UrgO1XvuLnVsYHA4EVhW6b8dlx1u0OpEdRSrG93eb6Sy+TmNvDwv4J7FaLkT2zrF66zr4Te6hVO8zMZlhbLonUV3nDh8iLGCz1bZ/A3fIHx6hIFa37xqbd8CXAtF9M0/IBMmGBgFe3BmLAiZwvENwbeGelVf/ebg8AD8EMPSA9qyHJsGGDNqynGPztTitz3KkW0AY6jQG4I5nD21gkc/A41WKFRCZJ88o5yE9hl4uYqRxW1KLbrlPblrB5p1LGTKRxyxvEp+boNDt4nebAcAf6nn65Fc91CVnhPmihVW/RaXXIjOapXrkg70oyj1PZIjm7m8a1S4NSPnYXZ+k8jlJieIDKtUXs8Wmm5guUy22pexYPMz2dZm2t3i92m8vFuHJxC9d1UUqhtVSooDALta0BbcLynw0CYrsCt4eubeGM5XCcOzcZ+XbzxIbac77QxW8hNCsAtNav3rDegtb6GIBS6pcQVac5rXX9nerY7RixK0AY+NNlxFyXVk0GrEZVqh9jxTEsa2f8Osh/aQ+0kge/tAqpPK2luqgjaA/daZDbs59mvcn6+UuE0znS8wuEwiFKy2tcXYxjRSwO7BshFDLZWKvS3NwguWs/ruPSdh1y9z5Gq94SmPKVU+C5GCNTWBGLmYfuJRw2Ofe5L+BePyv9qhXpaC15ndwE9vVzoAwM0+DMyxek/0pBs8pf/js/yC/+o3/PT/zUeUFKGibT7/kAB/aN8Mf/z2/7ebrrfeQlMMg/aU9AI+uX2f3E+1m5uoG9sSS5qI0rkC5g5CZloND+zL68wfXXqxQOHaUwluLCm8uoUJh4PMy7PngXMctkq9xmZblGLBnj7ntmWduYo1xqEYmGWXruK2JUN6/6oApHjFPNr3MGwoEq+1JbytctdHtg+/mv7LgPDnFkgjIM4kjlB1D9gCTt1zqTfJgxoE4Y7Kzlhfe1ntkwgtHga8ONf5ItCIFasQEFotMEx6Z6/jRkx4klYvSm92AvniZx8G6alRpuvUx8dIJWaVsMlBXDbdbILewTBY6gWdHBBCBQPfEnPU7PxLFifWk3WeYQHp2ht3Re8A7RFI0r58keOELlnO/lW1Ho+tfc7si9j2fotDpsrJRJZBIYhkGn0yCRsDBNRbMpXLLNTZvCeJpKuUUun6BW66C1Znx2nI1rruSjzfCgGKZS4o2X10WLs7pFaXmNkdE7Q3aWW/Bta8QC8fd/OLRMA++7Yb1+1VktlaUX30kDBrdnxFrASaXUUwwZMq31X7/jvbqDLeCHxZJxzJBJY2uLkbkZti+eZ/7Y/Vy7vEGrnpAHPZ6Feglj5gDeykUfouxLIQXSUo5NpVghW8iSzqcprmxJGYx0lEY1RbfdxYpYbG23GBmJ0+061NI5lKHYd3iai0D5+hIA0XwBc989oOCBR/YxW0jwlddWufzUUzKYBOXqleGLFHvidSRz0GmyueTn2DauyMuqPX7xP3xaBvV2QwbuZJKVyyusPPN5Mnc9QiwRY/3Uq/I3raUy9Yn7KL78ZSFdr11k5j0fIBQyQENidoHm6pL0Z/MqRz/xMWzbZetSD6/TZu7euzmwJ8+rJ1dYvrpFLBEjkU7QbNhsbDao1bqYpkGj2iCZTXLytWVq5RrH7l1gbbUGmVHmD85zrbwu1zhdkH61a33QhmEaePGMAD+iSb+sSkQMVADs6PgqFpHEgBTsuYJeDGq/hSMDQnQkLsazVZXrmsr72oruAC0JgxCUG4QdA0DHt0Ao8UbeWKDK3uvKBGXumJ//iQhhvLxGLZHEbrWI7DlGc+mKH2ZN0Vq9RnxqXkLeTo9wKkt5o0g8k6JVrWOlM9iB4LLnisyXr2hDKCKTh5YNkdF+XbLW5joAxuRevFoRFQpjTsxTuXIRa2YPYStMc+kK3/eTP8Dv/NvflP3Wa9Cu4yWy1Ltp6pfPQWaUwtwUrUZbQp9a024YJDMJTNOgVW/1wSSmabKwfxwzNMvq9jL0Oljzh7CXLsj1adUExdptiSFubLO9defG2G9XI3YroUS/nVBK+bMGFBDzfyvZjU7f6b7dDiznD4B/hEjsv8I7KOh4x5oGr9cTrorn0W2L7VVKEZuYZbvYlGV2Rwa38hpEpHRFZPfhAR+p15FQlOuAGZb6WH6128KUhNRKW3Uc2yESi7D6+uuUy22qVYGl3/PQXjzX4/UXBIIeGxll772HyY/n0Vpjl4t8+ZN/xG/+m09y/dWT4Lm87wc/3AdRAKjR/2977x0myXmd9/6+quqcZ3py2DC72AQsMgiCEEWJFElTFGn5ES3Jkq1gPZKDdGX72gpXVzJlXVvBkmzZkgOtRCuQSpREScwUM0BkYAN2F7s7u7OTZ3qmc6ruqu/+caq6egcLYEEssLtwv8/Tz/RUV1d/XVX9ne+c8573zApdPxyTppuxpHgrS6dk7M0K4V0HJW/hdfg1RndBq0YkHmXonq+jvLompJZmTfJLXvFncdMrVK5tgTJY+twnOfvJT2KvX5LQU2mde977NsiOcexvPsP86WXu/Ia7Gd0zg+O4PHNijT1zeQ4cmSQ/lmZiKssDd0/RbHb5trfOEY2a1LZLrJ29QGl5GXd9gWceOQtAamychceeYPq++2R1bFhkp6fF821WQCnctQsyXl+eKp2XsbfrhBJJmZwyo17IUzpw9zwwpyOTeLiP2OF7Tz4LMpWXBYwn29VT/PBJHk4nyIv5eomvRYHzi+FKBgwCiSUrDJsLRA7cLUatLTR4e3OZvbfuQWvN6JHbpDdeJgfapVEqEY1HMawQnWoJZVqBqn2jKR0M/NxooyTGPhQVA+adJ7tSpGN3aBRL4vWYIdziKvHxabQX+bCGJ7DLUsc3deednF8uc8fffZd4/JGEp4O5xfi+XfLb27hI4dRJxiezTM0Ok8omKV04RyYTIRazsEIWpmlie62W1telRQxxqfnUfv2hz3KtlyASxxjbA4kc2/Pnr8kl8RVSXk+yU/1QSn2zUurHlFI/4z927qO1NrXWae+R0lpbfc+vuQGDqzRiSqmjWhphPqm1/mD/49UY1LWC1rpniHyFASMq8jR+Yaazcj7ofRWJYYzOQHmd9FAaY/awTKxdO1i5mSGskEWtVMPpOnQ7XcbGU70mm4WVAqnZPSw/+kiv71GhIBJAE3uncboizWMYBhMTSalda1RlnHYTQlGm3/xWlle9EOb4HNGD96AXnxV6fjgqLEe7FRT0NsoQz2Bfei4oFk5kRflCKdqVinik5Q0Kjz8E2iV68B6ZgIYm+eHvfSBoGJkZIXvXg4y/8S1QKTB25z2Qn2FpSZRKSOaw549RKrUIhS3WFzcIhS0e/6O/4IlPPkStanP22SU+8icPs7a4wScfXWJxfp3hqTHQLtmpKfEKmhU2jj9NdX2N3L6DVIpVmfScDqVjj0ooCIjuORyQNOIZMT61Yk+VvlMXLyucTIkBSuQgMypFvX7Oy6fPax0Yp7bXmLS6LaHM0poUUpuWTKK9rsrehOMTSfz+UzdKCLG/WaevJuIjFJYJc2hSiEzje6DdYP5LD2G3bIobRcLxGEopQiPToqVYlXvVTKQxLZPi/Fm63S6RRBx3c1Hqz3wCkM+KVBKi9wvLnXoFIxIVLcZoArSmsbaEFQ7RbUoYnU6b+qXztJs2hqGYHksGzVANRXjuqIgNH7zDM5oVTn3iMyxe2MRudyCaYmNdWirdcmhCOlKP5ujaQvYIhUzGDx0Cw6SzviC/7/5WSdVt3I4tC9dr1QeO12+xs1LqfyDEvh9BvKr3Abuu66A8XO1y8vuVUvuRWrGbCqHMMJFEXNhzjsjk2G0b1xHPLHXgNqL5sV6tkOu44DhsPvOkMLOcbjAJdtpgWthtm2atwczcBO1mm6WFbUxLalwor9Npd4jO7ufxP/5LVhY2KW7V6Ha6rJ58VuSYtGZqIoVlmdQ3N8R78Jh2ybFxVi6uUtxuiFRTo0zr/HHxwkDCgLmJIFyWGvIS5E2Pyl/rtU4hmiB/8Ai3vfGwFKHWS71JvbU8LxO23eTXfvlPYP2CHK+0Tumxz7H28OcBWP/yp2HtPGsPfV6Mh9fB+sJXvsrylz/PLbfO8q4H9xDae5S/+w/fwdrpM4QjYWjXsRdO89zDT6Jdzdb5c+SmpynNn5Xv4E8clQKu60r9nl8jlhqSBcWuI7RWLso4O+2gZ5cyiOdHiO85wMT+3VLztHxeQkXldagUcBo18c78c2M3A+3EZtULKXqdmCMxCS9GEr3SCz/U2pOWAvFWfeNlhq6PN7ZT5qp/QvRLDCIJ+Z5WGPu5x9lzz+0QTeJeelZYhlYI1s4TS8awG03p8lxYIZrNkcyKQr1TLco9Y4Vln3JJrsvWsoSdnS60atLBORQVzywknbtVNIlblQVWjxDSbopyjkeyiIxMQHqEwolnWF6u8PCjl8hNjJEYHQPHwa6UKS6vceDIJPd/+7slh2taVJcvEY2FSQwPEY6EOP/cOgsXtxmfylEulHEcRwSKuy7tVlsiGB1b6PX95y4cFQMWTxOeO3rNLs/r1YgBD2it/xFQ1Fr/LPBGYOY6jwm4CiOmlPq33n5fBYwruZA3KrTj0Gm1CEfDdD3NRNMysSxpte46Lu1GW4xFJCETXWWT9C1HAAgPj8mE298EsVqATptQJMzmalHIGnWvJbtSJGb20u10sUIWTB2kVVgXbwug1cBZPM3W2haf+5PP8MzjFyRnUSnICtS0qJ14BHd1ng1PKJWwJ720ueD15iqLR2aGYGJ/TyYL15HcmC+E66noF554iON//lFqxx4KatTsJtgtEmMT/MAPfysH3ny/TND+ij6SCJh9hgm7jnL43e/i+37yB2DyFpK3vgGSWUjnWTi/zp9+4lk6i2f4i794Qjo2R8NeuxADSuvYW2tQ3aY4f5aRQ4fBddj71rfKGNsNyhfOUXzmUZlUWnXyBw5Cu4m7eFoMDkjoJ5qAUJip+95Ao1ylsXKJ1Yurcj58rcmO3fvcnnBybkL+Th0MQkqGKQZfqV6fOMobMhFbYa8n2m5PmzEVsBv98y0306t8B/fhhTQaL+s67b3ersu4t5YhlubCZz7FLW/7RrkmzQrG0CSh2YNU5p8TD6VexMiN0apLzsktbRAdHsUKWRjJrPSIA8x4kuEjRzFCskghkkD7ZQ3xbE/cWrdqEpZvVHqejzE6QzgSxq0VMaMx2lsbRBJxsBusnX7OYxdqDt02za4H3kg0K4Xq6+s1vvrHfyO/Q9eBWpHFU/NYIYtGtdljQi5e2GBsZkSEiLsOdssmP+pFr3wNzUQG5av+A5GZfdCoYFfK1+wyvY6NWNP721BKTSIEjj3XcTw9vKQR86zuZxBq5We01v/uJd7yklBKzSilPqeUOqWUOqmU+lFv+/uVUstKqae9x7v63vOTSqlzSqkzSql3XN0nSRK+ul2BygZRr5kfeFRcYHx2FMdxiMzsIzIp4ZZmTVrY2xdP9Rh+PXS7ULhEt9OlXqmz/8g0HbuDUoqN5Q1cx+uoG7LI5rMM793L2oVl0rl0L5/i2DbG0ASthTPCIoumxItIZMUweRNTLOHRz1NDnhfgic42pc6NmhcKy4zKBBZPy2ubCx6NuBuo5ntCvf5qmXCU+tY2v/krf8iZj32c+7/lzWTvfBP5N3w95Gc4/N73BNT7xZM8+5cf5elzBWhWSKQTmAkpwK6feoJILEL2yF3iLYWibD/xFRlHNCH5qNI6RGLc+pY3EI0JVX/+M5/ueb/R8Rn57tkxiKUonPNyFL4yeyyFW1zteRfLx0965yIk3sC0hI18D64XAo6lPXWUdfn+6/OBtmOnHSwKDCvoGu2HFBsV6aTsOj0PvMduhMtDU682Xo7H53UTx+nC2B7Cs7dAaojnvvRVzPHdMLEf0zKJp+Lk9h+Crk1sdBK3XoFGCTNkEhufoVUu01iax7IsWmuLmPEk0XiUrcUVXF+U2c+L2Q2U57X54zVC4YCSn8rjFtfp2B1iI+OyaNQu7bVL7HvbW6G4RuHYE1hhi8e/9CyZTJRWtcaRb/o6Fk9f4Oi73y4LET9calokMwkqxQrpoTSxRAzTNHEczZ4DU2itqZaqrC1tM7NvShYkVhiiKTG6sZSU0HQdjIl9soi8Jrg6A3Y1RuxF5sghr8PyWe9vru89V5wjlVJ3K6WOe6/9F6Wu1JrhJfHXSqks8B+BJ4GLwIe/huNcc1xVsbNS6t9rrX9KKfVzWuuffsUfqtQEMKG1ftLTYHwCqUP7+0BNa/3LO/Y/DHwIuA+YRIzqLVrrF51FjMyMjtzzT2Uya1ZELy6RBMAKWT2PKZPPYBhKdP7qLey2Lf2+Yimm776bpS9+NuhVZXmrUJ+inRmRfEBNVulGLEEqm6K8skJqfJxQOIR2NeXtMkNjQ0xMZjh/ZpXG0gWZYOslYUtVvOaG04fF26sUMPYcFYWRxTOB0gQI4WN7JaCSR+IBA6+/5qu/mNfflsgxee8buP+OCT7ygY9gjO9h9y1TzD/0iDAffVKAX4sViYnH1LVlgvTzU74XEo7J9kic4T172HrudM9YT99zL0tffUiMxNCkjHloUo5VWvPEjQ3YuIix64hMpMVVMcoeLVqNzKL9UgC/OWa7HhBxwp46fmZEwp3+RGpYYsAjMcl/GaZ4a2YoqEtbO395sbOvPeiTN3wmop9P88+N76X65/W1yo/1GzMvPyt9xvpq2fxx9nqrdYgfuZ9WsyWebSxJdr9Ilg2PD1Mtisp9u1bHCEk/uVa9RSKdAAXVlWWvIN8jcFiRwNvfuOC1C8oEzTgh6D+2E66DlRslHA3jOi52y8Zt1Tl032FOPfQ0dFrk9h9kKJ/i/BMnmDx8ELtlMzqeZtdkmk9+4hhuS0okYrkhZvaOUdyuY5omlWJFFn3A5HSW7e0muVyMC2fXyAxnWL24ii6uYgxNyoIoPQqVDdJ79lO5eJ7WZ3/yFRcfm7ndOvrWf3tV+zb+7Ptf9PNeZI78XmBba/0LSqmfAHJa6x9/sTlSKfUo8KNINO1jwH/RV9Hg8kXGFgGiWutr58K+AlzVEk9r/VPe31dswLzjrPpFcl4NwSlEpuSF8F7gw1rrttb6AnAOuVgvCsMKkZydQ0XiDB84TDiZpGN3yI5kaRSL2BuLKENRLVapVyThPDKVZ3x2XCaA9AhLZy8xfPebyNzxQNDccnS31+6iJat87UpbkY2LuIUlkdyJpaieOU55q4zWIn+FhudOLgm5Y89+kn6ri2hSJvSRXWI8I3FI5HCXztA99+TlBswv3u3JH7mBAfNf73Ui7ptcfXUQZbDy+U/wkT/8HLgO2tXMf+oTYkRDEY+0oAMvpVKQid1Xx/ANnNbgdBm+7S7IjJGdmWXrsS8CkDtwhKGDt9Jqet5OswILx+R7bK/I/04XtlfYf9dBCEUkX+Pl2/bcdSuYJtbEHlEGSeW9/F0jmKw7LUIzB2RsY3sD9XZlBD3GIMhzgRynuCpisNsr4vlB4L34RJBoMlC/V0omcF9fsdMOaPf9pIpXC/65D3laq/5nah0wL/3C5t5ixRDDohREEjTOPiOT/9AkZMawWzamabKxtIHjOGTzWYxQGLdVl8Lm7RUyw2mq6xtCOurvqqBduf6NknjarXpQCtK1sSIROX9WuK9o3NNujGfoVrZpbBeD76ddTv3Nx0Vabe4Ale2KCPI6Xaan0xw6PEatZnNuoch3/f37OHjPQcbmdjO9Z5SN1RLtZptut0tjfbUX1j/+5Wfo2F22t5tk8xkKK9JcE6WYnpskMbNXDLDdorJREKX+awANPTX/l3q85LFeeI58L+AT6j6IGDZ4gTnSM4ZprfXDWjyW/933npeEUurH+p6/zxtPW2tdVkq9pAzVa4GryYlllFK/oJQ6rZTa8h6nvG3ZVzoApdRu4E7gEW/TDyuljimlfrvPVZ4CFvvetsSLGz1A4tOu46KdLnbbJhwJozcuSsLay4k4XUf6LTkOja0tNpY2qRQrIkG1elYaCHpMxt4Kd3slCM91bVg7TzzlNQ+sSQsK124Rmt6Ps9PRx1YAAEiqSURBVHyWaqmK3bJpVBs9Nf1QOITdtonO3QauQ3h0SgxiMifHjKdkcvKNDwSr//7nfn5neFoMIQQ5PD9v1m/YHCn6VfEMjO5h7vDM5RJOPuvMMCGewdp7OwxPE77lLu7+++8lf/cDAcEhmhRlj/V57LZN6uj9GLkxunaX7dVNLMsKJnvfQ2qUiE/uInPkLoinOfupTwekinAMMqNc+PJDYJjEkjHiU7sCo2FFxJB5skmdSlG84OKqeASjuwlPz0nBdteWSXZrKaDWr56V71i4JGMpb+BrQwY931QwYfvbvHPWe93v/eZHMV4tgodvkOH5yvq9sXUl0uArlUwf6hUhp269N6iZq4tCyuTcDI1qnUaxSCgckoXbqOdBhWMSKmxUWHrqacLpDCo/DbUioURSenLVtiV0GEnIIxQWr9lT8Og2G0Ls6bRkHE6nRwLphbYNk9bmKq7jyPZ0XuSrTININEK12mb8yGGUUsxfKHLf0XFCIZOO4zIxlmRsPMX6SpGhkRS1Uo3CSgHqJbSrqW+sg91k48Qx7JZNIhEmk8/I98qMYbclDdA7f+064Xjs2l0zra/u8TKwY44c01qvykfpVaS3I7zwHDnlPd+5/WrR38jyJ3e89s6XcZxXDVfz6/tjRAvrLVrrYa31MPAN3rYX6yfzklBKJYE/A/6Floab/x2YQ9TyV5HuocAV+5Zd8U5QSv2gUupxpdTj2DUicalzadaaxJIxJu97I67rMjQ5CtkxWtUadrNNtVCEtnSTdR03qPJv1bBbNvXzz8LUQaIH7g4EUrNjvVBUff50UMd06QSUN+nUKpCbEKkroFET4dRqscrWxQXpkrsqhA27sCZhwlZdPruwKD9636D44SPDxJy7MwiB+avkrSVJfo/sEtkdkAlk9axMEtGkrNqbFVEeWToFmwuce/QZZr7+rUJ6gGCy9Cb+7vwzsHgS+8JJnvjzT4hA7LannhFP94xeo1iievoZ3KUzVI89zD1fd5i1Y09LvV0v/CYGoPHso5RX15i4/Q6sXYchMyZsxIm9MkZPdLa6vESjUhdGWyQhihxOF+x2T80jMz4KQ5OEx2aJJWLYVaFdkxuX8xhJ0CsC1jrwvmJJGfvEfuJzh4N8o9YS3vVrxPoJE76Xs1NX8dUgePif6Rv/cEzGHo6JV+bLP3lsyujsfnle3pT9kzmqp58hdeReCc9Wt6DTZuWxR4TB2a7TPHcMe/Esp48t4DoOQ2NDpIazZG67F8JyLnWnjTk5hzKU0PVTeQnv+tJW/v3pj6dVo2N3iI9NCdnDr8lLeIuzZkUehpRZ9H5LxVW2VzZQhmL57CVa9RZnnl1l754cx88WGB6KsVFu4riadCrCxPQQ9ZqN26gwPTcFnTbN4jbh7BD5A4fI3XJIhKVbXZRSjMyMy2+vVIVOGzW6WxZPXVt+e9cC/ne9mgfk/XnKe/zgFW+D58+RL4QXmiOveu68iuPuPNarHIa4OlyNEduttf5FrXXvSmut17TWvwjMfq0frJQKIRfnD7TWH/GOu661drTWLtLe2g8ZLnE5nXMaWLnScbXWH9Ba36O1vkdFU15DPVEQME2zZ1BajZZM7PWit/Jug932egwZQrYAiKWpFwryo108SWt9SUgIriMTpJ9LadVkZe97Q/WiGJZGGZoV2purYqxabZlkWzWc7TWpz/FaZxjJrKdr6LG9nG7Q5yocI7T3qNThXDgmk/ROD6BRDjQBfYztFcKK0w209SAIDXXaLH7+M9CsMP6mbwCnI0XTfn7Da+IpquZR7HqNfe94BwxNkp7dDVoTnpqDagE1PsfYfQ9i7r2dC+cLYFq0zz4t7586yPCd98PwFBNv/iYimSyrTz9Ft1oiNzokVPtG1SsotyAtHYeVYWCFLcLxOKFUFiszTGrfQSFxRJMyKZU3sZfO0lw6D80KevmMhDEzI7KfT8zwQ1zpvFy7dkNa4izOS6jNn5C3ljxD6gY5L5+hGIpc7h3vNGDX2ivzr5lSEtrtsQEzssjptAjfcpd0GldGUK5RL5M5fCfVk4+Jhz+21zNkLTmOn3u0m7JQ0VJy0m60ZaFSKUjt3fYKTr2CXdqWQnlfHcUwRUzZCsviw27JeTOl+LixuRaEEX3PtV4Ww+erqPhlK12vPmzjAlbIIjWco7S2gd22OXlilVrNprDVYLvUouu4xMImlmUQjYV44O/cR7fj9HKtdrMtdW6WSavRotW0MS0TpRSZfIZ60WP3+ue0JULg1wxX74kV/HnKe3xg56GuNEcC616I0M+beV/mBefIJe/5zu1X/Y1e4PmV/r8uuJpf3IJXpT3mb1BKjSmlfpzL3derhseO+S3glNb6V/u2T/Tt9q3ACe/5R4HvUEpFlFJ7gP3Aoy/1OdrVQozodElmklLc7NWR9BoahmOBxFE0LnI5S/OyDeSG93NQ0GMypY++IRDPhSCR3V84aYXlx729Io9OC2pb6ILnNdVL0lE6mgStcTsdYtmshABNz/vyW9C3atIgs9c1uQbZMZJHHyB795uDEGI4Jg/oTR7tRksm9XRejGR+Ribx0T0yDi/vsnZCTrddLEB+lum3vF1WqyOzvOuffhf5I0dBa8597K9h8xLTu/KM3HkvdnGT1N4D6E6barEqVGrHhViaPW97O6P3Pcj47im2TjzN3N23srW2Rbu4RXafeH/dTle8H98IRxO91bqubmEX1oSmD3TtDtVLF2Ty67Sl99XQJMTTqKEpodhbYZloK4WAfKMMjPG9ck7Km15huXQP6E1qyRyk8+Jtj88RO3hPUOLQqnkepb6czNHvEfl5ylerhiyalM9LZOQ8je6GSAL7uSclR5UZ8bzPOETiknvxuxn7NXb9LWuqW8QP3CVeeLNC/dnHSeVSZPNZ4nsPYzebWFP7iA3JJO9Wi716xHDO+6xwnEg0QmL/bTLGSkHCvABOByM9LJ/fKAsJx+mAocST7rTFGFshMXBaU750kXZL6gUbW1s0a02KGyWqVZtGo0O1KovAaNQiErH46hdP47ouKpZi6tZDzB3ZRSIVo7hRJBKLkEhGRGEnZJHKJBjbPQW5CULhUE8c2LVb1+4aXb0n9qJ4oTkSmQu/x3v+PUi7E3/78+ZIL+RYVUrd7x3zH/W952pwu1KqopSqAke95/7/t72M47xqeEl2opeX+gkkcejHX9eRk/YLWuviC733RY75IPAl4DhBd+j/B/hOJJSoEQrnD/nxX6XUTwHfD3QR1/ol2TXW8F6de8/Po7UmPZSm0+4InT4awW7bbF9alHYT26tibFxHJtB62dPnCwcr4Z76PL3c0fgb3sTaY18NpIx85l11K8gv+Z5ARTwTyXl5QrVOVz5zZJbk6Bh228beWsdID4s8TcNTlOhXVfc9BGUEIqyJXNDw0J/oRnahQhH0+oVArcCRmjdj9giJdILqZoFkfpjMcJrlU2fls0yPaLLtLdb8vMdOGrKvBh9LMXbkVtYvLjO+Z5psLsbGWpntxWWP6m9g7TrM5O5xXFfjOC6rF1ZQhoHutAnFE3Q7XXS9JIY5EusVl4dzebSr6TS8cgLHCYx7v5q6n9PyWYfK8NrlWBKq7NpSitDnNZlT+4kn41SffQJiScLju7HrNVRIJj13Y0G86XAsyEv1Xwf/fPr/+8/9//v3/1rQbwR9ckmnJZN+oxyMoaft2IFQlNjcrTSXL8j2eEbOQ7MqBi4UlYWXFQ4UaIanZd/SuiyeqgVoNwnP3EIoEqJRbQCQyqXotKWUpLF6CWpFonO30SqsY6aHSGVTNOtN2qXtgPwSjsnvq1bytD+1hHFbdbn3rXBP8NcvwwCg3WTXgw+y8NgTvZDl6L69HDgwQqvtUKm0OLhniI1yi4c/9QSU1hm5814mJjN0Og6VSttrhbTF0EgG01Q06h1c1yWbi3Pu2UtEY1EapRIzB/eweGaB1kf/yStmJxrZWR158Mdeekeg9Tc/8lLsxBeaIx9BUjyzwCXgfVrrbe89V5wjlVL3AL8LxICPAz+ib9JitSvhqvuJXfHNSn2f1vp3ruF4rilC+Tmde8/Pk8wmsSzjstDC9vo27UaLeCpBY/GcGDFf+HVn3gOCiQICmrVS8sNfPh0w97yC0t5qNxQJmGS+hpvvKbhOoLQRipIaHaW6eAGSw0GhbteWiSc7BslhcqNDFB//Qq/vFyBCr4sngzEPTwfFuY2yrNg95h9Dk1hD43TPPy0r8OJqQKMPx0jfcoTKsUdk0it6EeSZI3J8w2Tu7e/g/Kc+6Z0Ti9i+o1ghi2Q2SThsUinVKZ49LQZJu5AaJjIyQW4kx8hogmazw7mHn+gVrvrNF9XUAXRtWyYzL98WHpuRQtRQVAgdEBhy8Lwk7zu3auKFeYuP3JE7KJ582rsG4d73Y2QXlNaJ79qP3bbpFjeEGLHuhRQ3LqJ23YZuN8SI+f3UqlsyDr9Y3B9Ljwmqg0VFP738SvfSi+GFNBH9sK5PMvH/+t6X3ZTFTKsmnpqf0/Xr5fzw8egeKQdpeTJnM0dkEVZalwWcMiR06nRleyhKOD/eCxw5jtNrfFm5eB4Mk+TULLXVZTBMUhMTVFeWpXfY0nPifaXyci7tlkdESQbPQe5tMyThya4dfNdWXRYlXlfmmbvvIhQyCIctMpkoiZjF+QtFLMvg/KNPM3rwIHvnhpk/v4VhGGRzMdaWiyTScen+XKmTzqVYubCKFbZIZVOEwiHWzjxH6xP/6pUbscysjjz4r69q39bHfvSm6id2I+OVxjx+9pqM4lVEIp1Au5papYHW0l9MKUU2n2V0Zoxut8vwIc8r1jqYdHZOJr5nlsxhzR6SnJTryETvh/L83Fo/tdif3Hylh1ZdJm9PnJRYWv7fuEj1oucNNSsBbXp7JagHWp8XZtXkAei0SR59QAzUpePBOKcPi9FbnxcD5ifUlcHwG74BKgWpO5s5ghX1aNuGKcY4I472oXe/K1jpR+JiwDyyx/lPfCygeYfjUlj67BOsPvZVNle2aTfa8h1SQ0Jlj6U9ZiecP73K4vy6TGqNirfPDCiFXj0H0RTR/XdIaLFexr5wMmgtXylArSTnJhQJFOm7tqz8W3UJl+ZnQWuKxx6HdgM1tkc+Lzsmag2erFWjsBGw6JZPyzXaXID8DLrb8Vhzo4R2H5Gx9tiJRl9Nlp8z80KMnkD0ZbgWNWT+8TsterWBY3uDXmq+91nbhmiS6NReuZ7j++Sa52c89mBX7gtlyHnLjBKKRomPjsu1r5chEieeHyE1NY05MkNm1x7s5QviLWuN02oSiUaoV+qYQ+OgXTp2ByOVI5IbpnrxHKHMsISTh6Yu9xzjaYlE2C2p4zO9R60I9SJjh49AdsIzeiVvcVXovWfx2LOEw+JNV6ttxjIxZqYzxOMhcnvnqJVr2LbDvv0S/sxkouzam6e4UaJRbWCa0lDTtVvYzbbIx9WbhDLDr/wa9V+ra8xOHODFcTUU+2Mv8DgOjL3U+68nfJ3ERs1T4dCyzTQVpmViWqb0KmqIF5Y4fI9MjldaPU8d7NXFdOefCcJtzYqsfGOpwPvq0bWNnj6hhP0yGNNigKgVgxoqP0RY3ZL9q1tSx1Ir9sgc1IoQTWA/9zhsL8PQJLXjX5UwmYfk0Qdg6Vn5J+ExJZM5eW9mhK2nviohnsn9cOk43XNPEtt1i3hp6/OwuUBlZYVTn/gMtJvED9192aQ5+fVv57t/7B/D+D45dmqI1pknepR3K2zROH8iYDcWV3sKH6lUhEalSsfuMDozBuNzjB+9ndjYFHd+67s49M63cfCu/dgtOyhO7tqBZ+N7EnZLQmGtWlBvBmLAOi2MaAy6Nub0LZAZEQmkRhlMSwxlIgdmiMToGOmhNOO330Xu7q+TmjO/Bq62JQYCKYonngbXITZ3q3zGrtuez1zsp+O/opt2x33nFy/71H4Qg7Q+H3zvzQXxqJSCRIbW6cdl4WFact8vn4bhaRF9BgnLhqKSk714klQ2JeNO5mBrmcb6KtWlSyTSCe/7i55iKBzCCEepLkuJglP38pauxl2dp92QYmXXFdUa2nVPD7MqC4FWI/Agjb7v4zrQbrB+7CnMkEV+xiMtJSWfdu87HyC+9xDE0j21C9vucmG9SrHUZP9MllhCurBbloFlihemtSaVjDC9Z5ShkTStRotGrUV+dpJ4OkF1YZ5ILCL5sWuCl8VOHOAa4Wq4wWPAOxBKfT8U0pblhoVSCsM0CClpmQ4QjUVwHDFkdtuh3WxL7gmon3oCY/awFN72d/oFmQhAJjlffUI+hOzcAUoLFwKJIl8hRLsyGbYbPYahu3i6rwml7ttXw+ytUhTs12w5XTrnngq8jmhSDNzYXrh0AnPv7TgXT3ihSlFAAIJuzCBGLhSR1W1NmJhuowLRJOHZg5I/yY6RnJ2jtl2C7WWSB26n3WzTePYxiKU59M638Z1v3s3/94Gv8Pu/+IlAvXxzgdRt91PdFCZb5cJZYnuP0Lx4mqF9t2C3bOYOjHP21AoLZ1cJRaNorcnm4qQze5gYT9GaybKyUqGwukV75YIYsNw4VjJDt7QJTpfYxCzNwrp4Hb7Gox9yapSlWLXThtoWbqeDmjpAKpui4mrpyN1KSm7QdaC0Cqk8Silq5RqNagMrbInSeX93aK2hWaFZ8WrJEjmaxW2wwrgLxwPjsjN0CIFB+1pkqa4UCfBX7oYKwtq+sHG7Idf30nEZ9+alIBxYXqex6OUyQxGROYvEJVoQTxPKT0rrkq98VkKtuXG5T1bPglJUOu2eMU9mklSLVUzLxA3HpWFrPE1kYhftWl3CtMunKbamiAxJT7Fwfhy70QxEl+0GtLUnUNynitLL+dkopSgcf0YWhpsLEE/z2B/9BUN3PcDwWI7lhQJzB8ZZOLcmaYFCjUwmyshInGatyeZmndHRJPnhOMsrFQ7tG2bLVIRCITLDGUxLDF1lq4I1PEHH7vSaeF4TDLys1xxXQ+z4LeB3tNZfvsJrf6i1/gev1uBeKcKj+3T+7/0SqUwC2+5it+xegWcoHKJWrhGJCcmjeu60rBxHdhFOpghFQtTPPC0/wP58GMgPfnhafmReiJGtZXqqDr6MlM9iG5qUsGMoEjRi9CYfMz8l3Z19yrSvmu9L+3iTg/T7Kvbkn6Jzt4kX5IcrcxNiWCf2B94YyPZQJAhTeo09jV23yWRshWXSqxRI3PoGCVeunoXUMJO33crKw1+S7+UJ8TLsFWUrQwprt5YxRmZwvbHtuudOwmGpz1n8wmdlwmqU5TO6NgxPkxodJRKPsL2+TSQaobm+jJkdYXx2jOVjJ3pU+Fh+jGa9STgSxnEcnLJHMY8mgw7NypDv1K573ZlNGJ8jm89SWl6GdoPkzB5c1xWpr3hWip3H9kqexqd7j8zKODu2hLG6HosvmRP2ot2Uc1YviYpFpxXkxnbC6RON9j2Pl7P67i+R6HlifWQSPxfnK3SEY0Ehsa+oEY4LCcbxCr2djtx75Q15rVnxOh0ksaZvkQVDIkc8Ge9R1GtrK4Fgsi8KDWCFCUXC3lAN2vUGkUSccDRMp92RrgvZsUC70nXknHdtOU6r9vyIh9/kdHuF1ME7aDfb2EtnvUVFVhZv6TzxyVlyI1mWj59k5vZbSSbDWJbB6HCCSt1Ga832doPZ6Qzlalv4VWGTWs0mHDaJRi02N+vUqm3iiTDNRofhfJwnfvobr0FObEZH7v/Rq9q39al/M8iJXSO8ZDhRa/2Pr2TAvNduWAPmw+k6OI6LYRgopXC6Dq7jUq/WsdvSU6larHoMQ1cKfLtdyeN4E0Ro9xHMPUcD6R+7Catnydx6j8T2fQbh2N6AneiHgELRwGvza418j63bwdlclNVuKBxM0H4Izel4NH4loTnXIX//W0BrWs89JRNlNOkl49NizJaeDQpkzZC8b+OiTFq+Un92TMIyHouRWhEMk/rZ4xI+spuwvcLKmfMysaSGyT/w1oC+739utUBsdh9uxxapqEqBhc//La1Wl82VLUjmGL71DtJ3PED6wG0wPI2VkO7XhYVl3O1VmueOER4ex2m3WT5zASs3CpEEkaERCfM2ytjVshTa+vJP7brUkXnhJkJRMU6xpOR/WjVPZsggMiYCzaZl9rxH0nnJtfQXECsj6FjQrIlKv2eMQjMHMPccxV04jpUeEgJCLHmF0J8XKurPmX2txI5e/sQNCtov+xwdkD7g8gJor0kq8YwYZL8I3y+z8JtYeoXfQ2NiPELhEI2leZqFdenKEM8E929lE6ww4VSK9HCGUCREp16TUKQyiMQiVItVWpurhHYdhq4sGNlekXs4MxqQkQwzqFvsLdgsaFYwp2+heuEM9uYy1uSc51FuyHeqFGhcOkejKtqMi8+eY225BECj3aVcblEqNbnr8BiLyxVqNZuV5TLRiEU2G6XV6lKttqnXbGZ35aiWm2yvb1/9tXkp+L+pq3kMcM3wKhSz3EDQ4DourUYbu2VjhSw6XksWv+gZhazIfSmfeEaUH1reqnFsL5l8BqfrEN17JJj0tKb81FdksvNXxV4jx95NGvVyDfGs/F9aFzJBrRi0KnG1TCzxbC+vI8K4nlfXrstrnkp74eG/lfeOz8mxs2Pyvy+p5E8QPoPNMGW8kweCMGZpXTQJ/fqnWFq8qmROWIuTB2Sl3CiLYbXCtBtt1NQBMYjpPLgOialdNGsNRmYn2FjxDHksyfZGiWQmyaGvv5+pmRyV7Yok+g2T7tqCrLBrW5DKM/Wmr5d6pmaFaCYjLXPK67TLJbTT7cl7uV7yn8wYxLNyHhslMExCsZjkwsyQnL9QVKTDzBDhaBi7ZTM+NURi134wLUK5UcZvux2sCENT42LIu7act2Yl8IjNEDQrdLZWxYgqg+7agrzme6Mvlefo96peCj5l3vfg+yn92g2IHRCQhpQSw+DVuPVa0igVFCbH0pLTtcKBWn9uvKfusfHMUzBzhM75p+X8FhaFyFFYEqOfm5DjVQvYTanT6tpdUqN5auUalFZFg7BeBCtMp1oCj0QFyD3qE2D88oh4OujMALJwiCalD1wqL2LdkXCwwGh77NRakeKpY3L+Nxcozp+l03FxXU251MS2XT7zhXNks1HabYe5fXlSsRCxsEWl0sZ1NfFEiEbD5s3372Ji1yjtdvfqr9FLYUDseM3xujZivthmuylKHFprOu2OKA9oKep1i1KXRSxJ9rZ7iSQktq5dF+JpDt2xh8KllZ4+YGJql0wa8Yx4I1vLEmrz6fLKkJu005YcQDovky2AUtgLpwJqeKsq4blGVYyQX5zrT1BeaxNAJji/Vqu2JSHGeFbeVy/21BtEvdwKlCVcR8JIK2cu725bWg8Mpc/QM0xI5EiN5AOKc1tEd9vNNt/0zqP8s5/5IXbddRRyEzTrTfKTI2w+8VUhEMTSMom1OxROn2T+zAqnj1+CZoVaqUo0nRa1DWUQntjN0MQI5a0KqWyKyMgErXpTzlU8A4ZJJBEXBqUfzoqlodMmls1Kz7JwDCM1TKfZJBQOoTKjskBoVnC210jkMlS3K2iny9mHn5AxJrJ0SgWKm0XCiTilzZIYrkpBFgyxtISDuzbx3Qfk/1BUugA7HTn3/R0C+tFP9Oj3yPxu0C9VAP1CK/Sdxmznij8S99RhhEVpzR6SEFxpXRpQpr28q+/da1dyZ75sWrVAMpNk+N43yz0ZzwpxJBonvPcooWxevktyCLRLtVglmoiSSCck15zKE89m5XcUSZAYGcXIjeFWCuLJN8py/eJpCRualoQ5uzaRXQfkfPtGzm72JvnG9tbzNS39djj+fawMOh2HVqvDcF4WPGOTWcJhi927skRCBg89cpF2x2F8XHJlhqHQGr769CqVUp12+1p5RgNix/XAqyD6duNAKUU8Fcdu2dL+wTNq3WZXPANlgN1Cu5r49B4q25WeYkGpUKJd2eDUlx6Depnb3v12Ll0oEAqHqEeTMuH5k87wVNAaxQ8hxVJi3IprMLZH/vqGxqeG5yZEZzGRC+R5uh47zy9OLSwGBdf9k5wZkgkV5Hh+XZl/jHAs2H/tvExYfg0WBLkTvxFkZqRHCqiWqhL+8ViR8VyWxukn+azj8Kl6RQxbeQN3dDeR2Dhj9z7A+skTpPYdZmQiSzodZXMzT2F1i/GZUdypEVYX1khmkxQuLhKeniMSi5AbTmKaBs89fU76T5VWhWLtice2F89JPrEqahPhsVmssAVadCixIkTjUZp1TbvegK7N0K134joupUsL1LeL4m3Ekpi5MZxmg9DQGJ1mk3ZhjfDQGO72ihhr7/wbIzO4dotwIkmjXJHQ2+al4Nz6lPH+ImMfV2IW9hszwwTnFUxg/vG1C2aYXklIuxHUAhZX6WpXjPnYXvGil+YDObRGBTV7K3rtfKAuY1rUnjtGzW5i7jmK07UhGodmDbueADNEZFT6dNnFAq4TobLtdeNWcv816010bZv0zC4qW2XCsQid1DC60yY6uZtWcUvuc8MUgoon2ZYbybFWqcBIoo+w0ujJj+WP3knhsS+DEQoMsON6LXO6UCtSr9uYpkGj0SGXi+I4mpBloLXm7HyRiakcp0+vM7dvhBPHV0hnE1iWploUtmy72f7ar8nzrtHAy3qt8bo2Yq7rUtosEY6GRUet0RLVAY8uHB0bpzuUJxKLSG+xsPQYazVakjNSBrm9+6lX6hz/wuPyI1w+Da6DueeoUIvX5oOcl2EGBanhqBixcCygwfvJeTMkRrDpFe3WixLuWT4tK1fHkcnXU67wE/BoV0Jf6/NemNKbUH0D5o/BcS8nHfiTmu8JJHIB7b/fg0zkRD1/c4Hxe95ArVSjEU+zZ/84a4k3sXVxQRLvh++mWhohlogxOprAMBRO9xDVUpUHbp+k47gce/w8ruf9rl1aZ3rvBIvnRH7LrhdJHznK4vk15g5NMTI7QavRoh3aLd0GUhns5fO9hqRGfrrX+8owDEKREN1uF7sj1zKVS4l3kEpSKpREPX97JSAPKEV6KE04IqzEtWefJTIyQSqbonDJMwBaQ6sqaudaY9drWLE4XV/x3ocvR7ZTpcPfBoHX4C9o+gvofeap//xryY/4oW//WF1bDJLfQyyRY+TwrWw+e4LJO+5kpXApIHLkZ9CFJaJ7DtPaXBXvbXi6R9l3Vs6Lx1QXQ50aGaY6f4Z2CcyRGRJjE8RTcTbnL1I8uw7xLHO376fZ7LKxZNK1u0TiUdqbqxiZPNrz4lEG4WgE2xFikZUZxuk6rD35mCywOi25RzttCY2GIhBNUThzOvie8ax4iv5CTRkQTbC2sEY1nUAphVIwPBwnZBoMpSJ0HU2n47B3Ls/iYpnp2SFs26G43UAZUmozNJrlmmTGNAMv6zrgFSl23OgIjczp5Dv+Xa+2RHuU63qpQnZ0GLtl02q0eooThmFQWF4nPz1G4eIiw7PTbB17guGjd7P1+JchmiQ0uZfOheOE9x7Fbtvcef9+nvrLT8qPz6d/+0xFP2fhFytDTzm7J3Q7sd8zSl2ZZEZ2yYq6X1LIb0jpT1hX+qFcKYzlT5B+OxQIvDRfGsgzXio/jb50gvD+O0XAdXEesuNEYhHaqwtBh+bJA4RjEXbtmyAeDzGci9FsO3S7LqGQwakTqxy5bZJKtU2x2MQwFKlUhDPHL9GxO4zPjlMpVmiUKqAUqaGsqECYphR7e/RwIyVkhGg8SqvRIhwJkxnO0Kg1qJfr4kEpBd0uxsgMyhDSTiwRo1mtweYCoZkD0kkgHJOwqxWWCbrV8DzRkNSdDU9DZQNjeBp39VygotKoBKxMHzvJGv3swSuFF/tDgf494ee9vhb0q9v7xwlFg5YrnoqHlZ+iu3IesuMy8RfXxNvuePdPNCEev2kKMQmIH76PxikpqyAq4VtlheT3Uy2I91RYJHXkbuLJOMWNIrnRnEQtqlVCcakra65ekvu8WYXMGIlMkvrWNrmp8Z5iTmW7QjgaproqtYSRyT3iTZfXA7mssNDue2FQKwzRBPHJWbk/m9VeDZ85MsPI1AjJZJjxsZRo+7ZlERUKye9BKahU2uSHYmwVm6yvVdlc3iSWjLH9v//BK2cnpiZ15M4ritE/D60v/eyAnXiN8Lr2xBSKaDyKMhS1Uk3owM02yVwGK2zhOI54ZRGh3bebbZRpUXjqUciMsvXkw2CYbD35MObuW7FCFrNz4yTu3M3p44uweJKnOm35wVsRr+HiTDBZ+SxB15FwTqUgE2QkAboZKHKM7YWlU7Kvpzcoq3kdrPZTw/LjXj0b0PB9KnevE7EbfJ7vWTXKQZimH9OH5DOtMLSqEl4KRfE7l6vcBLrdoOPlPLAbqOlD6HaDmSO7WDi7SjQRZTOTJJeLUq2KkY7EI5w9W6Db6UoftXKR/J5dTO4ew7IMCutl8XztOJF4hOr8Ga+JYkRkryYmSGaS2C2bwuIKtscq9T3kdkNUyntG3lCMzY6xeuYcKpqkWWsQz6Roh/fTadTJTk5Qmj8bEGAaZQlXJbJBI9DVs1LDd/GYeGUbF2UhsVO/EILVdn8Rcv+570e/AYNrE2rq9+78536OKJ2XSd9u0a2WIJbCiiewMhlakURQLtL2vPTcRKC3GQqL8HVqGOwW+f23sL2xLTWT4/tITO2ivrFOdN9Rqh5RJ5aMSRjR1SSGclghS4gesbTk6EZ3Q2UDnU5gxuK0m21MyySZSZJIJ2TfjnSTaNfqhONxnPAMju0t8nyDq11vceOQ3rWXcDTM5JvuI5eLs7oqi4zNlQKGYVApt6jXO+zfN4xpKgqFBhPjKeyO2xM6ePbUBtMzWVLpKIY5Jioz1woDT+w1x+vaiGmtxVh1HSKxCLXlS8QnplGGrAR92n0kFumFGnVpDWIpwtkhbCsshikUxSkXcEJRzn7quGgG7j3i6R3mqR47B+P7yNxymHgqzuqXl0E7Xv+uqnhcjYoXNrGFTuwnsL1WLcDl3lTXDjQLY2nJXUUSXkFuBWI5TxGhFbzHDAWrc5+KHk0KY61e7lGvw7uPYJ97KlDFyIxALM3o3l1sLm8SioREkBdw2wapkTwze27h4O4cZxdL3H1glL/arpPOxhkejnP+7AbZoSSF9RIzu0fYPZXm4nKFWCJKeM8Y01MZ2rbDykqFWDKGUopwJMzIaBLrlnEqlRaJRJhw2GR5qYLTdeh2uoSTSS9EJIaivOTpP4bjQauYSoHVZ56GeJZULoVSivLF8wBERqdo1BpExqZpry8F6vWmJddVGYG4b7vet10BhjBA187Ldr8ljtxYz/e+dlLe/evZP6ldqwnOJ+S43nOfKJTKy8LEr+sbmaW7uYQanSE1NipNWdteK5fyJio9gk5m5ZyUN6FrEz5wL/b8MQpLa8SzaRrj+8BuEI6OwOgY9ZVFEpMz0tIEsKJRuo066aEpCpeWhSXaKEE6z/ieKdYuGriO5M8i0QjtZptyoYwyRFne9qj28dFxGssLcq5bDSkN8BdzHZvQ6AzJTBIrbGG3bIpbdWpVG78zezgSJp+Pc+7UCkNjOeoNm3gsRCoVIR0PUyi3sCyDYrFDKGzhuhrTNLAsk671MhikLwbNICd2HfC6NmJAj2bvOi6JyRnCkTDFzaIoeYRDmJZJqVDCXV8Q9t7QJEST2PMnAtX5RA7WzpM8cDv7vu4otVqbcycvwfA01YV5kWFaO0d5fZ6yP7nGM16LFyWU9cWTl7dp6Uc0GUySqWExWK4TqIT4Rm71bDAR+myzzGjQSsRfnY/PwfqFIAdXXBMPUbvS5PPcU/JjG570mmkKxbiwWuhJ8CTGJ3vGvd1q02x2eOSZVRKJMH/12eeIxiNEIhYHprOkEmGWV6uMTeZoNjtUmx2y2Si1ms3S/DrZbIzNzXpPhBUgnUtx4ktPBnTwRE5yg7E0RjiK6zhEEzFpjbOxFhh4uxkwOL2cYmr3PqpLl6ic8TQko+J1GIZBc3NNzrufd4GgaNc/Z+CxNNuXh2JXz16+f09NY4f31T9x7TRmOw3ZlXJpLwc++7WnoG8G32vlOWEQxpK9VjXG8CSdSpFOI0xyeIja1orklkIR9Mpzcl7iWTK75yg/9RXsS6dR04cAsFs2ZiRCNJeheGkRK5UlPj5NfXkBIzNKJBaR0pNMho7dwYonei14rESKtaefBMchu/teurZ40j65yi4XRQvTbkBmVAyY3z3BZ116HiKRmISFM0kKKwV0py1hzUN30LW7uK4QRAoF0UeNxSwcR9PpuhiGwjQU3a4DyLWdnc2ytdXAcVxyuSjHT89/7dfjMuiBJ3Yd8Lqm2Pt5EtMyaRSLGIYwlmjVcLel9qe9NI+7tSKT48R+mRw2F4I6Lk+JYuTu+5mczXPssfOMjCQZmRqRFWc4Rn52SrwlgEYZNXOYO9/9jYHntHJGXgtF5K8/UaaGeu8RAkdXjEo/fbq/FX0//BChb8D81XgoGtTUQND+fXNBvmNuXDy84Sn5bkOTkB0jms2RSCWIxCKYpknH7tBqtAiFQ6SH0lw8s8TW2jahkMHUTA7TNChsVPmrT5/iuXNbLJxb5dwXH2ZjZZvHHj7Pk4/Ms7myRSgSYvFSkW5Xftxdu0s6l2L5xClG9u9j5q47QBnEM6ke0WRi9zhD48OSm1tdAsMkv2e3nOPcJKRHUOkR+b52k+qpp2Xya5R7ZBAiCZqnH5djjsp7E0fuCwzMlQSe+8OD/dqIPUKG+/z3+aFNP4Tcv/1KdOpXOsntfH//PWJashDo2lApYOTGiMaihDNDUqPX6RKf3kMyPwzlTcJ7jsg9V7hE+dQzhPbdCeEourqFbtUYmxklGo9imGJ4u5dOSRsWp0t+Mk/z0jkS6URP1b5b3iKRTpDI5+mWhR5vju+m0+5IU1pPqxRNwPCMpeQ+bFSgvCG6nr7wdKcl3qV3LovPnRSJuHYdMiNUTz1N89wx2tUq33D/LLVyjWalSq1mYxgK23aoVm2a7S6juTidjkM0atFud0mnI5SLDQxDMbF/9yu7Jpddn0Gd2GuN170n5ufBVDiKFbJQhupRy+3F56Qz7txR7NI2rJ2TkFwsiTk8ibN8lvCsNG7cXNqg3czgdmwe/uRj4t14TS8Lj4r81MSD38jqFz+NXjjOmWQskEbyV+c7+1JVtz0DZQbEDrhcFX+nUkP/yr6/n5XdlPeN7BKBYL+hZn4GtpYI7b9bClg7bU9wWMsq1+vFZZgGtXKNUCSEZVm9UKsMw0UpRave5NL8pqymHZdULoXWmsnJNMXNEhN330MiEWJlocDXvXk/F5fKHJkbZqPc4tjTi9K6I5GjqBRjB25h/cxzJMalQ3RlW5L7pmlS3ChhhkzpZeUJGRdWC6A1sWQ8yL1kRmX8mwti4Fo1mRCzYwFjtLgq5I1Ehrp/3vzyBz/s6p/DXqGx7qlZiOZfM9h35zXYGWL00Qv59V0/n2Vn8MpUG7RLr6eu3+0gmvSkzKKS8xqfw60WaXTTPYmoVqUCzQrW0Dgkc9ibK4SGJ2BojI7dobO5FDQTNUNsZnK4juSSemSkVJ54UspWGJqkuLGNYcm1GjtwC91OF6UUsbk5qqWqhAzbNkbHIJ6K07babC+tyhg9FQ4SuR5L1l09F5zbri3hXJ9dG0lIWDyZk3s/kRFvvLzJh3730/yzf/7NfOSz5zBNWayKvdCsbNQ4uHsI0zQIh026XZdms4MVsqjXbSzrGq7lB57Ya47XtSemXd1jJsaSMVzXlYLXjYu91haxW+6UyToUFYWNZI741B5My2T49ntJZpOMTOWZ3Dsl+1ULZKem5AeYmxCGG0B2jNUv/21vImucfFQ+Iz/jDWbHKh0CKrbTCQySX3y8c/ILvtSVt/v5g01PUSKdx9x1pOdFdLbXpV+X3+bFMCE3iZnMEEvG6Xa6ZIYzPW3J9FC6l8uIJaJMz00SjkWYnB0mlUuRyCTotDvM7hnBNBXtZps33T1FPp8gPzFEuW5j2w4f+fAXeeKReQlTpvJEU0nyE0M0qg2MVI76heeEgl1aw+k6NEolWo0WpildBtLDGfDyluFoBNd1qW6X5LuEoqhwVLzJtrRiSR2+S6ShoiKHRH5GrlEoCvUiobk7xIjtPH87z2N5IyDi9O/bq7PTwf6XSU15K23fGPrbrmTQrgX8+6bdCEKdnZZ4ZLUihmWKIophEk2nIRwTVZbiKio9Qmd9gU7BM/jlTcyZg4x4EmP29iaJdIJ4Mk5iZi/hfbcTjUdpLJyltF4I7jcNmeEMmyubtJttSoWSaF12HaLxKLVSjXQuSXGjSLspxeo9YpJ2ZaxKyTULR4Nz6Bto/zxalnjafnlIJOHJamWhtM7/+oNHyOZiZLNRul2XWq2NaRqsrZTZrLQwTUWz2cE0DcZGEszMZrEsk3j8GgkAD2Snrgte30YMHeS+TAmnKEP1ZKPCe48SiUVEUqheZPjIUWjVaSzNY2+u0G62qZVrbC4X2FrbovzMVwFELSIUljBhrSgftnkpUMfww4QgdPvZW+W5UlL47IeffDmqflzpBt+5rT9v43tt2hXjFYqIF9Fu4qxfkvH5moNOV8Jw9SIqkYVOW1bHrTZoaNabtBotHMcRqSjP6DdqTYaGYliWRShkUtosUVhaZ3g0RanUYmWlysjUCCfObbG4WGbXbIbt7SYXnr3I1KH9aO3lwjYXsEIWl55bpF6pS2gpN45hGBjDkoMLxROkcinsti0hKlsMqtN1iMQjWCGLzMhQT3XE96zDe49CLE2z1qRbr0JunMj+OyCWZvjgkV5dXmfprHhXSgUyXJcpxu8gYvSTbZQRdOP2vS7/2vQ8ur5wZP9rfl6t3+BdC/SP3atBNHcdQQ1NgUeKcVpNaTlU3BIW6Ohu4ofulfs4PQpOh/xkntC+O8mN5Ng8ew5rah9mekiujWkQSwghx7RMKYT2KP3G+F7c4irNehO3UWVkIsfErjGUkvo913VJZpMUN8u4rkt96aKUQLiOeM6+ALXTFbq/3err8tCncOE6EnL0y01AiCijM0L0SeboFDc4/fQ882dWOfnkBSIRC601E1NZTp1aJ2QZDOdiVKttzs0Xabe7VCptOp1raFQG4cTXHDdVOFEp9U7g15AM7W9qrX/hxfY3lIEVsnAdF6fryGQNpG85IvUjHrEj0o1gGybNehNjbBfpXLqXT1NK0b5wguxt92Idvof6s4+z8cgXZRU4cwQrZNFtt4UEkM5jZYbprlbI3vUgpSe/LAbz0gn54XXawgJL5+XH6q9A++/pFyqA7afS+yvU/s7C0aR4hoYp3lYyJxOE73V61H7tyUhprYnncmhXkxnOUC1W6ba7pHLS7bZarNJpNgnH45iWycJ8gcO3z7CxUSeVSzE6lae4VadZa9JqSh1XaVM0E4dTUTKJMNHoAdbXqjhdh+HxYerh26iur0G7QWJ2L44j213Xxd12MUyDaCIqfasMg0qxgmlJfs4wDbq2LELK66L5h9MhkUpQB+yGeCLds094ag4d2uEY4dmDbD39qFdT5oXEtCshrGbl8uJjuHJY0L8+l5E69OXXy/cY/DBi/76X3cRGYNC+1mJnv+7PL7Xo/6xWTdT+PQKM02pCuy797cubRHcfpFV2aBQ2sFJZeV8kQeHcefm71CQ9PSPqHC3pxWcYBuWVFVLj41Q3t+S+CkVJ5aThqZXeh2mZtLe64gGVG0zO5Gg0OlTLTZq1JiOTwzTrbcquFv3SocmgSNvv1F3zfw9+ntEAnODcO10xZNGk5Mq2lrDjGamDC8egusXhB+/m2c89xMiR26hU2qTTEZrNDrVSja4zwp6xBEsrVYqbZVH36DpkMomXfw2uiAGx43rgpjFiSikT+A3gm4Al4DGl1Ee11s++8JugVW9R2a5IjNx1YeMClVKW9OxuWvUWHbsjIce4hNLCkTB22xajtzQPblfanjRaomw/uhvCsV4tk91sYoRCWHuPYlomzbVFaElNGqFIQMAwQ2K8tpaDkJ6fm+nHzpCTb6z6w42+WkFmJPjhG6aXD6lLWKZRkufDU16BtJZWG6kErpsjHA1jhST31W62icTEyzFNk+2LF3v5OyuTJp6I0mraLC9XiMUsTMtkdWGd9FCaWDJGNBGlWWvSbrapqzpffWoZ7Wpq5RqZ4Qz3PLCfet3GHUmQvWuW06fXsUIWayefpbFog+NgjM4QS0jIF+gVQKORUKSCbqeLiek1E61BMkd18UKggOI4sor3C8sTWexLHsMzEg9a5mTHglY50WTgmSkDdN/596+F7/HuZCP29Pz6vDCtEe47V86duX2T8te6IPfbsfh1iI6Xd/UK4lVyCF3ZJDy+G7tWhWYNIzWMqxStRS/HlBqiWyuTnZqiXokSjUdFbsx1aNWFRTixa4xqqY5SiuzIPqmlTCSxK0UM08RxHBKZBKXNkhCdZnexPL9KKBKisBmm2+kyOZ2lnU9SqYgKTnYky+aJZ6RjQNgr0vZ76vWfW/+87uyvpl0xfOm8bCuuCBO4VmL6/gc4d2oJTIvNS6tM7Z9lfa1CLB5h74EJFhfLOI7rhRuzPPPIWWZvmaFUaj3/HH+tGHhZrzluGiMG3Aec01rPAyilPgy8F3hhI4aE/uKpuBih7U1wusQnpmk1WiTSCdFS7HSh08Ju2WRHspQ2i8TTCZJ7D1BbukirWpNJ0jAJpXN0SgVqfkuPcBy3siX1LlZYQoSJHNtPfEUGMD4neYN2XRLREBSres04L0N/LzHfWIUigSHyfyTxjHh1XujSGJ4WA+CHFzu2jK9e7BUTx1OJnoakX4vV7XSxG02UafWS8NHhUQzD6HXF7nQyNGtNds2NYtsO3/TAFH/5yYbIUAGx4REywxlGRhPYtsPkeIpULMSXHrrAyEick8eWqGxuM33LLra2GoTCogIxNLcPp+tQ3tzGtW2RnIqEpZW854H50kCWZdEoSC0T0ZQYoUqB+P7bZLsVBlNLSKoiWou06mLwosleQ1ApM6gH57FVe37Nl6+S0p8H6xE7+jy1K9WL+f/7zzWBx+wb12sBv5bQlzpzHTHS7SapXIpKq4bdahPNZHCTKexmM+hlBxjxFK4j934oEsJxJH8lw1bojiYSMXG8345pGtRKnhxbKMrQ2BBW2KJVbxFLxqhX6nTaHQkJR0KsX1gkPZqnXrcpbde9RaToFcZn9xFPynFrp/rqJH09z35VE/8c9wg1XnlBu+6dY0N+B/kZlp54ArQrxntrDafrCplLKUqlFvF4iK2tBtubVVJZKcOYnk6jNZy6ltdlgNcUN5MRmwIW+/5fAt7wYm/QWuO6LrXtErF0ii5AagjX6y/m52W6LWm9EYqE2FrdIjc2RKveotEQtlckmaC9dg41fYjO/DEYn8NI5XC7DqFImI6TIJJK0S5uiSdQkR8VlYKn4jErf30vwBfi3SkG6xs3CAROfVaj/yOOJmXi9ftFWWGIpnBrkucyYnGcyrYnK1SH9CiRpIRLMvkMlW2ZMNrNNuFImHgyDlqUNqpnjtOJJbGGxnEdl8k9EySTYep1m30Hxzn/3DqmZfLxQo3pXXkWug7v+5ajnLi4zdOPnmd9cR3dqrE8OkatXGNsZoxu16WyUSA7Pkp5S8KDpcVLQXNEpSRPY4nxQosX5jgO6aE0HbtDJBoRNiLIxO1rRwKNwia56WnqlTrZkSwbp08HTTP9RYLdvLw2yw9fyU3iPekzQj7d/nn7EITv/H3hcu/Zn3D7Q4WvpC7sxaBd0CrwwD3vsnL8UelQXisRGx2iuLpOPCvyXu16kejYNK7jYtcK1LQmEo9immavBMV1XTLDsuAyTVG9qZXr5EYyVMsW3U6UZr1J0kpimAaVbSlin9krfeps2+l5+uvL26SyKYqbRdJDaRJGguKJp2hPzomHPTx1eQsjP5TY8bxN+tig/m/AbymjFETy4HS45fY5KuUpbjs8yt9+5iQAW2tbdNo2+akR4okolmVg2w6Hbp0gEjKJRg9Qq9mMDMWv0fVg4IldB9w02olKqfcB79Ba/4D3/z8E7tNa/8iO/X4Q8AXMbgVOvKYDvXrkgcL1HsSL4EYe3408NhiM75Xgeo1tl9Z65JUcQCn1CWT8V4OC1vqdr+TzBhDcTJ7YEjDT9/80sLJzJ631B4APACilHr9RRTZv5LHBjT2+G3lsMBjfK8GNPLaXwsAoXR/cTBT7x4D9Sqk9Sqkw8B3AR6/zmAYYYIABBriOuGk8Ma11Vyn1w8AnEYr9b2utT17nYQ0wwAADDHAdcdMYMQCt9ceAj72Mt3zg1RrLNcCNPDa4scd3I48NBuN7JbiRxzbADYibhtgxwAADDDDAADtxM+XEBhhggAEGGOAyvC6NmFLqnUqpM0qpc0qpn7gOnz+jlPqcUuqUUuqkUupHve1DSqlPK6XOen9zfe/5SW+8Z5RS73iNxmkqpZ5SSv31jTY+pVRWKfWnSqnT3nl8440yPqXUv/Su6wml1IeUUtHrOTal1G8rpTaUUif6tr3s8Sil7lZKHfde+y9KXUk365qM7T961/WYUurPlVLZ6zG2AV4nkJYFr58HQvo4D+wFwsAzwOHXeAwTwF3e8xTwHHAY+CXgJ7ztPwH8ovf8sDfOCLDHG7/5GozzXwF/CPy19/8NMz7gg8APeM/DQPZGGB9SdH8BiHn//zHwvddzbMCbgbuAE33bXvZ4gEeBNwIK+Djwd16lsb0dsLznv3i9xjZ4vD4er0dPrCdPpbW2AV+e6jWD1npVa/2k97yKqNpMeeP4oLfbB4G/6z1/L/BhrXVba30BOId8j1cNSqlp4JuB3+zbfEOMTymVRia/3wLQWtta69KNMj6EEBVTSllAHKlXvG5j01p/EdjesflljUcpNQGktdYPa6018L/73nNNx6a1/pTW2m+v/VWk5vM1H9sArw+8Ho3YleSppq7TWFBK7QbuBB4BxrTWqyCGDhj1drseY/7PwI/R01uCG2h8e4FN4He8cOdvKqUSN8L4tNbLwC8Dl4BVoKy1/tSNMLYdeLnjmfKev9bj/H7Es7oRxzbATYDXoxG7Uqz8ulAwlVJJ4M+Af6G1rrzYrlfY9qqNWSn1bmBDa/3E1b7lCttezXNqISGo/661vhOoIyGxF8JrNj4vt/ReJNw1CSSUUt99I4ztKvFC43nNx6mU+imgC/yBv+kFxnCjncMBbiC8Ho3YVclTvdpQSoUQA/YHWuuPeJvXvdAI3t8Nb/trPeY3Ae9RSl1Ewq3fqJT6/RtofEvAktb6Ee//P0WM2o0wvrcBF7TWm1rrDvAR4IEbZGz9eLnjWSII673q41RKfQ/wbuC7vBDhDTO2AW4uvB6N2HWXp/KYU78FnNJa/2rfSx8Fvsd7/j3AX/Zt/w6lVEQptQfYjySyXxVorX9Saz2ttd6NnJ+/1Vp/9w00vjVgUSl1wNv0VqTlzo0wvkvA/UqpuHed34rkPG+EsfXjZY3HCzlWlVL3e9/rH/W955pCSXPbHwfeo7Vu7BjzdR3bADchrjez5NV4AO9CGIHngZ+6Dp//IBLuOAY87T3eBQwDnwXOen+H+t7zU954z/AaMq+AtxCwE2+Y8QF3AI975/AvgNyNMj7gZ4HTSIeE30PYdNdtbMCHkPxcB/Fa/vHXMh7gHu87nQd+HU8M4VUY2zkk9+X/Nv7H9Rjb4PH6eAwUOwYYYIABBrhp8XoMJw4wwAADDPB/CAZGbIABBhhggJsWAyM2wAADDDDATYuBERtggAEGGOCmxcCIDTDAAAMMcNNiYMQGGGCAAQa4aTEwYjcIlFJaKfV7ff9bSqlN5bVJuUaf8b3eMZ/uexxWSl3oKyz29/3PSqkfe5FjfchrpfEvr9X4XimUUru98/hzfdvySqmOUurX+7b9oNcK5LRS6lGl1IN9r33eawNyzHv913e0Cql5fw2vJcgJr0XIY16B7guN7fu9/Y5573mvUup2pdTTfft8p1Kq4am9oJS6TSl1rO/1X1NKLXuffVvfNdz2ruHTSqnPeOfhxI7Pf79S6l+/wNh+w3vvs0qpZt9xv+3qzvwAA1w/WNd7AAP0UAduVUrFtNZN4JuA5Vfhc/5Ia/3D/RuUUh9GlDt+1vvfAL4Nkad6HpRS48ADWutdV3jN0oFC+fXAPCJn9NPe/+8DTvoverqRPwQ8qLUuKKXuAv5CKXWfFqUQECmkxz3Fl59H1CG+fsfnfDuinXhUa+0q6QpQv9KAvNd+CmnPU1aiqTkCLAC7lFIpLd0OHkCKqO9EVD0eAL7iHcMAvhUpEn6z1vrzSEE4SqnfRQrW/9T7f/fLOWFa63/e976/1lrf8XLeP8AA1xMDT+zGwseR9igA34moHQCglLpPKfWQElX3h3zPSSn1r5RSv+09v81b5cdf5ud+CDFiPt4MXNRaL7zA/p8CRr3V+td53st/UEp9AfhRpdS3KKUe8cb6GaXUmDe+9yulPqiU+pRS6qJS6u8ppX7J81A+0eeB3K2U+oJS6gml1CdVoAH4f3newjHP8F4JTeCUUuoe7/9vR3p++fhx4N9orQsAWlrmfBD45zsPpKWVz48Bs0qp23e8PAGsaq1db98lrXXxBcY0ClSBmrdvTWt9wXvvY8AbvP3uBn4DMV54fx/ynn8Doljx35F741WFUur3lFLv7fv/D5RS71Hizf+ld73OKKX+bd8+3+15tk8rpf6nUsp8tcc5wAADI3Zj4cOIdlwUOIq0b/FxGlmB3wn8DPAfvO3/GdinlPpW4HeAH9KX69HtxLery8OJMa31McDtm6i/gz4DegW8Bzivtb5Da/0lb1tWa/31WutfAb4M3O+N9cOIIfAxhxjq9wK/D3xOa30bYny+2TNk/xX4Nq313cBvA//ee+9PAHdqrY8C/wRAKXWPUqq/JxoE53EacLhcLPYIsFO9/3Fv+/OgtXaQRo0Hd7z0x8C3eOfwV5RSd17p/R6eAdaBC0qp31FKfUvfaw8BDyhpNeMCn+dyI/YV77m/qPlz4N2+wX8RzPVfZ7zz9TLwm8D3ASilMt5YPua9dh/wXYgn+D7vGhxCFgxv8jw5x9tngAFeVQzCiTcQtNbHvJDOdxJMGD4ywAeVUvsRXcaQ9x5XKfW9iMbg/9Raf4UXx/PCiR4+hEz8JxED8zMvc/h/1Pd8Gvgjz4MKI52QfXxca91RSh1HunB/wtt+HNgNHABuBT6tpAO9iWjvgXzHP1BK/QWip4jW+nHgB3aM5RPAzyGG4494aShevLXH81qBaK2XPG/4G73HZ5VS79Naf/YK+zpKRG/vRQSD/5NS6m6t9fsRI/V/A18CHtNan1dK7VNKjQBJrfW8F9Z8F/AvtdZVpdQjSHfkv3mRMZ/vDwsqpd7/Ivs+D1rrL3i5slHg7wF/prXuetfk01rrLe+4H0G0QruIJ/mYt0+MQDl/gAFeNQyM2I2HjyJNF9+CiLj6+DnEa/lWz9B9vu+1/UioavIVfO6HkDDhF4BjWuuXOwH154P+K/CrWuuPKqXeAry/77U29IxvRwfinS5yPyrgpNb6jVf4jG9GQp3vAX5aKXXkSvk3rbWtlHoCMQ5HgH7P51lksv3bvm13edufBy8kdhuiVL/zc9pICPjjSql1pNvw84yYt69G8lyPKqU+jXjN70c6G9+LGIKHvd2XEG/YDyW+E1nEHPcMRBxo8OJG7Frg9xBv6juQ5pU+dhp8v+fXB7XWP/kqj2mAAS7DIJx44+G3gX+ntT6+Y3uGgOjxvf5GL9Tza8jkPqy+RkaZ1vo8sAX8Ai8eSrwa9I/1e15sxyvgDDCilHojSF82pdQRj9gwo7X+HBKezALJFznOrwA/7nsMffgl4BeVUsPe8e9Azud/23kAL2T388CiF3Ltf+0updSk99xAwr9XzCEqpSaVEEh83OHv6xE6Fr0x+EbsYeBfEBix7wR+QGu9W0v7nD3A27+G3OfLxe9640BrfbJv+zcppYaUUjHEcH8FMd7f5nlueK8/j/gzwADXGgMjdoPBIwj82hVe+iXg55VSX0FCbD7+E/DftNbPIW0ufsGfSF4AO3NiD/S99iEk9/Pnr/BrvB/4E6XUl4DCy3mjR6b4NsTQPIO06ngA+c6/74UhnwL+k9a69AI5MbTWJ7XWH7zC9o8iC4WHlFKngf8FfLeWnlU+/kAJtf0EkEDCqzsxCvyVEir7MSSc9utX2A8k9PvLSij7TyO5ox/te/0rQERrvej9/zCw1xtjHHgHfV6X1rqO5B37PcxrDq31OuKB/s6Ol76MeGlPI2HGx7XWzwL/L/Ap79x9GiG/DDDAq4pBK5YBBhjgivAM6HG80gBv2/cC97xAXnWAAV5zDDyxAQYY4HlQSr0NYcT+V9+ADTDAjYiBJ/Y6hFLq+7g8XAXwFb+o9WUc5x3AL+7YfEFr/a2vZHyvZ3jMwciOzf/wCjnO6wKl1G/w/CL2X9Na7wwZDjDATYGBERtggAEGGOCmxSCcOMAAAwwwwE2LgREb4HUL5Yn17tj2ZqXUk0qpbn85ghLRXF/89hnVJ+01wAAD3LgYGLEB/k/DJaQm6w+v8JovpXU7oqf4/7yWAxtggAFePgaKHQP8HwWt9UUApZT7ErumgRcS9B1ggAFuEAyM2AADBJjzipFTiLTTG1589wEGGOB6YxBOHGCAAH44cQ6RW/rAdR7PAAMM8BIYGLEBBrgyPoroUQ4wwAA3MAZGbIABrowHgfPXexADDDDAi2NQ7DzA6xYeeaO/IeavIn27/hzIAS1gTWt9xGtvcwpR0VeADfyw1voRBhhggBsWAyM2wAADDDDATYtBOHGAAQYYYICbFgOK/QA3PbwGl1fqqPzWKzTFHGCAAV5HGIQTBxhggAEGuGkxCCcOMMAAAwxw02JgxAYYYIABBrhpMTBiAwwwwAAD3LQYGLEBBhhggAFuWgyM2AADDDDAADct/n/mgoeNph2YoAAAAABJRU5ErkJggg==",
"text/plain": [
- "PROCESSING TASKS | : 0%| | 0/5 [00:00, ?it/s]"
+ "