-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_and_track.py
542 lines (490 loc) · 18.7 KB
/
detect_and_track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import os
import cv2
import time
import torch
import argparse
from pathlib import Path
from numpy import random
from random import randint
import torch.backends.cudnn as cudnn
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size,
check_requirements,
check_imshow,
non_max_suppression,
apply_classifier,
scale_coords,
xyxy2xywh,
strip_optimizer,
set_logging,
increment_path,
)
from utils.plots import plot_one_box
from utils.torch_utils import (
select_device,
load_classifier,
time_synchronized,
TracedModel,
)
from utils.download_weights import download
# For SORT tracking
import skimage
from sort import *
# For post processing
from post_processing import post_process
import shutil
# ............................... Bounding Boxes Drawing ............................
"""Function to Draw Bounding boxes"""
def draw_boxes(
img,
bbox,
identities=None,
categories=None,
names=None,
save_with_object_id=False,
path=None,
offset=(0, 0),
):
for i, box in enumerate(bbox):
x1, y1, x2, y2 = [int(i) for i in box]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
cat = int(categories[i]) if categories is not None else 0
id = int(identities[i]) if identities is not None else 0
data = (int((box[0] + box[2]) / 2), (int((box[1] + box[3]) / 2)))
label = str(id) + ":" + names[cat]
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1)
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 20), 2)
cv2.rectangle(img, (x1, y1 - 20), (x1 + w, y1), (255, 144, 30), -1)
cv2.putText(
img, label, (x1, y1 - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.6, [255, 255, 255], 1
)
# cv2.circle(img, data, 6, color,-1) #centroid of box
txt_str = ""
if save_with_object_id:
txt_str += "%i %i %f %f %f %f %f %f" % (
id,
cat,
int(box[0]) / img.shape[1],
int(box[1]) / img.shape[0],
int(box[2]) / img.shape[1],
int(box[3]) / img.shape[0],
int(box[0] + box[2]) * 0.5 / img.shape[1],
int(box[1] + box[3]) * 0.5 / img.shape[0],
)
txt_str += "\n"
with open(path + ".txt", "a") as f:
f.write(txt_str)
return img
# ..............................................................................
def detect(save_img=False):
(
source,
weights,
view_img,
save_txt,
imgsz,
trace,
colored_trk,
save_bbox_dim,
save_with_object_id,
vid_stride,
) = (
opt.source,
opt.weights,
opt.view_img,
opt.save_txt,
opt.img_size,
not opt.no_trace,
opt.colored_trk,
opt.save_bbox_dim,
opt.save_with_object_id,
opt.vid_stride,
)
save_img = not opt.nosave and not source.endswith(".txt") # save inference images
webcam = (
source.isnumeric()
or source.endswith(".txt")
or source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
)
# .... Initialize SORT ....
# .........................
sort_max_age = 5
sort_min_hits = 2
sort_iou_thresh = 0.2
sort_tracker = Sort(
max_age=sort_max_age, min_hits=sort_min_hits, iou_threshold=sort_iou_thresh
)
# .........................
# ........Rand Color for every trk.......
rand_color_list = []
amount_rand_color_prime = 5003 # prime number
for i in range(0, amount_rand_color_prime):
r = randint(0, 255)
g = randint(0, 255)
b = randint(0, 255)
rand_color = (r, g, b)
rand_color_list.append(rand_color)
# ......................................
output_txt = None
if opt.project.endswith(".txt"):
output_txt = opt.project
opt.project = "runs/detect"
# Directories
save_dir = Path(
increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)
) # increment run
(save_dir / "labels" if save_txt or save_with_object_id else save_dir).mkdir(
parents=True, exist_ok=True
) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != "cpu" # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name="resnet101", n=2) # initialize
modelc.load_state_dict(
torch.load("weights/resnet101.pt", map_location=device)["model"]
).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(
source, img_size=imgsz, stride=stride, vid_stride=vid_stride
)
# Get names and colors
names = model.module.names if hasattr(model, "module") else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != "cpu":
model(
torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))
) # run once
old_img_w = old_img_h = imgsz
old_img_b = 1
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Warmup
if device.type != "cpu" and (
old_img_b != img.shape[0]
or old_img_h != img.shape[2]
or old_img_w != img.shape[3]
):
old_img_b = img.shape[0]
old_img_h = img.shape[2]
old_img_w = img.shape[3]
for i in range(3):
model(img, augment=opt.augment)[0]
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
t2 = time_synchronized()
# Apply NMS
pred = non_max_suppression(
pred,
opt.conf_thres,
opt.iou_thres,
classes=opt.classes,
agnostic=opt.agnostic_nms,
)
t3 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], "%g: " % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / "labels" / p.stem) + (
"" if dataset.mode == "image" else f"_{frame}"
) # img.txt
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# ..................USE TRACK FUNCTION....................
# pass an empty array to sort
dets_to_sort = np.empty((0, 6))
# NOTE: We send in detected object class too
for x1, y1, x2, y2, conf, detclass in det.cpu().detach().numpy():
dets_to_sort = np.vstack(
(dets_to_sort, np.array([x1, y1, x2, y2, conf, detclass]))
)
# Run SORT
tracked_dets = sort_tracker.update(dets_to_sort)
tracks = sort_tracker.getTrackers()
txt_str = ""
# loop over tracks
for track in tracks:
# color = compute_color_for_labels(id)
# draw colored tracks
if colored_trk:
[
cv2.line(
im0,
(
int(track.centroidarr[i][0]),
int(track.centroidarr[i][1]),
),
(
int(track.centroidarr[i + 1][0]),
int(track.centroidarr[i + 1][1]),
),
rand_color_list[track.id % amount_rand_color_prime],
thickness=2,
)
for i, _ in enumerate(track.centroidarr)
if i < len(track.centroidarr) - 1
]
# draw same color tracks
else:
[
cv2.line(
im0,
(
int(track.centroidarr[i][0]),
int(track.centroidarr[i][1]),
),
(
int(track.centroidarr[i + 1][0]),
int(track.centroidarr[i + 1][1]),
),
(255, 0, 0),
thickness=2,
)
for i, _ in enumerate(track.centroidarr)
if i < len(track.centroidarr) - 1
]
if save_txt and not save_with_object_id:
# Normalize coordinates
txt_str += "%i %i %f %f" % (
track.id,
track.detclass,
track.centroidarr[-1][0] / im0.shape[1],
track.centroidarr[-1][1] / im0.shape[0],
)
if save_bbox_dim:
txt_str += " %f %f" % (
np.abs(
track.bbox_history[-1][0]
- track.bbox_history[-1][2]
)
/ im0.shape[0],
np.abs(
track.bbox_history[-1][1]
- track.bbox_history[-1][3]
)
/ im0.shape[1],
)
txt_str += "\n"
if save_txt and not save_with_object_id:
with open(txt_path + ".txt", "a") as f:
f.write(txt_str)
# draw boxes for visualization
if len(tracked_dets) > 0:
bbox_xyxy = tracked_dets[:, :4]
identities = tracked_dets[:, 8]
categories = tracked_dets[:, 4]
draw_boxes(
im0,
bbox_xyxy,
identities,
categories,
names,
save_with_object_id,
txt_path,
)
else: # SORT should be updated even with no detections
tracked_dets = sort_tracker.update()
# ........................................................
# Print time (inference + NMS)
print(
f"{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS"
)
# Stream results
if view_img:
cv2.imshow(str(p), im0)
if cv2.waitKey(1) == ord("q"): # q to quit
cv2.destroyAllWindows()
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == "image":
cv2.imwrite(save_path, im0)
print(f" The image with the result is saved in: {save_path}")
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS) / vid_stride
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += ".mp4"
vid_writer = cv2.VideoWriter(
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)
)
vid_writer.write(im0)
if save_txt or save_img or save_with_object_id:
s = (
f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
if save_txt
else ""
)
print(f"Results saved to {save_dir}{s}")
print(f"Tracking Done. ({time.time() - t0:.3f}s)")
# Post processing
data_no = 0
for path in dataset.files:
data_no += 1
# print current processing file and total files and path and time
print(
f"Post Processing ({data_no}/{len(dataset.files)}) : {path} ({time.time() - t0:.3f}s)"
)
post_process(
save_dir=save_dir,
original_file_path=path,
flight_info_id=opt.name,
data_no=data_no,
vid_stride=vid_stride,
)
if data_no == 1:
os.makedirs(os.path.dirname(os.path.abspath(output_txt)), exist_ok=True)
shutil.copy2(list(save_dir.glob("*.txt"))[0], output_txt)
if data_no >= 2 and output_txt is not None:
os.makedirs(os.path.dirname(os.path.abspath(output_txt)), exist_ok=True)
# merge all txt files to one txt file
with open(output_txt, "w") as outfile:
for path in dataset.files:
with open(str(save_dir / Path(path).stem) + ".txt") as infile:
outfile.write(infile.read())
print(f"All Done. ({time.time() - t0:.3f}s)")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--weights", nargs="+", type=str, default="yolov7.pt", help="model.pt path(s)"
)
parser.add_argument(
"--download", action="store_true", help="download model weights automatically"
)
parser.add_argument(
"--no-download",
dest="download",
action="store_false",
help="not download model weights if already exist",
)
parser.add_argument(
"--source", type=str, default="inference/images", help="source"
) # file/folder, 0 for webcam
parser.add_argument(
"--img-size", type=int, default=640, help="inference size (pixels)"
)
parser.add_argument(
"--conf-thres", type=float, default=0.25, help="object confidence threshold"
)
parser.add_argument(
"--iou-thres", type=float, default=0.45, help="IOU threshold for NMS"
)
parser.add_argument(
"--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu"
)
parser.add_argument("--view-img", action="store_true", help="display results")
parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
parser.add_argument(
"--save-conf", action="store_true", help="save confidences in --save-txt labels"
)
parser.add_argument(
"--nosave", action="store_true", help="do not save images/videos"
)
parser.add_argument(
"--classes",
nargs="+",
type=int,
help="filter by class: --class 0, or --class 0 2 3",
)
parser.add_argument(
"--agnostic-nms", action="store_true", help="class-agnostic NMS"
)
parser.add_argument("--augment", action="store_true", help="augmented inference")
parser.add_argument("--update", action="store_true", help="update all models")
parser.add_argument(
"--project", default="runs/detect", help="save results to project/name"
)
parser.add_argument(
"--name", default="object_tracking", help="save results to project/name"
)
parser.add_argument(
"--exist-ok",
action="store_true",
help="existing project/name ok, do not increment",
)
parser.add_argument("--no-trace", action="store_true", help="don`t trace model")
parser.add_argument(
"--colored-trk",
action="store_true",
help="assign different color to every track",
)
parser.add_argument(
"--save-bbox-dim",
action="store_true",
help="save bounding box dimensions with --save-txt tracks",
)
parser.add_argument(
"--save-with-object-id",
action="store_true",
help="save results with object id to *.txt",
)
parser.add_argument(
"--vid-stride",
type=int,
default=4,
help="video frame stride for detection. Default is 4",
)
parser.set_defaults(download=True)
opt = parser.parse_args()
print(opt)
# check_requirements(exclude=('pycocotools', 'thop'))
if opt.download and not os.path.exists("".join(opt.weights)):
print("Model weights not found. Attempting to download now...")
download("./")
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ["yolov7.pt"]:
detect()
strip_optimizer(opt.weights)
else:
detect()