-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathcollapse_edge_seam.cpp
415 lines (395 loc) · 14.3 KB
/
collapse_edge_seam.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#include <igl/circulation.h>
#include <igl/edge_collapse_is_valid.h>
#include "collapse_edge_seam.h"
#include "decimate.h"
#include "neighbor_faces_and_boundary.h"
#include "detect_foldover.h"
#include "cost_and_placement.h"
bool try_collapse_5d_Edge(
const int e,
const placement_info_5d & new_placement, // vertex position, texture coordinate, metric
Eigen::MatrixXd & V,
Eigen::MatrixXi & F,
Eigen::MatrixXi & E,
Eigen::VectorXi & EMAP,
Eigen::MatrixXi & EF,
Eigen::MatrixXi & EI,
Eigen::MatrixXd & TC, // TODO: Texture coordinates
Eigen::MatrixXi & FT, // TODO: Texture coordinates per face.
EdgeMap & seam_edges, // TODO: A set of edges in V for vertices which lie on edges which should be preserved.
MapV5d & Vmetrics, // TODO: The per-vertex data.
int & a_e1,
int & a_e2)
{
// Assign this to 0 rather than, say, -1 so that deleted elements will get
// draw as degenerate elements at vertex 0 (which should always exist and
// never get collapsed to anything else since it is the smallest index)
using namespace Eigen;
using namespace std;
// Helper function to replace edge and associate information with NULL
const auto & kill_edge = [&E,&EI,&EF](const int e)
{
E(e,0) = DUV_COLLAPSE_EDGE_NULL;
E(e,1) = DUV_COLLAPSE_EDGE_NULL;
EF(e,0) = DUV_COLLAPSE_EDGE_NULL;
EF(e,1) = DUV_COLLAPSE_EDGE_NULL;
EI(e,0) = DUV_COLLAPSE_EDGE_NULL;
EI(e,1) = DUV_COLLAPSE_EDGE_NULL;
};
const int eflip = E(e,0)>E(e,1);
// source and destination
const int s = eflip?E(e,1):E(e,0);
const int d = eflip?E(e,0):E(e,1);
const bool collapse_on_seam = contains_edge( seam_edges, s, d );
// If both endpoints are on seams, but there is no seam between them, reject it.
if( seam_edges.count( s ) && seam_edges.count( d ) && !collapse_on_seam ) {
return false;
}
// Link condition
if(!igl::edge_collapse_is_valid(e,F,E,EMAP,EF,EI) )
{
return false;
}
// Important to grab neighbors of d before monkeying with edges
const std::vector<int> nV2Fd = igl::circulation(e,!eflip,EMAP,EF,EI);
// We need the neighbors of s in case d is a seam "corner".
const std::vector<int> nV2Fs = igl::circulation(e, eflip,EMAP,EF,EI);
Bundle bundle = get_half_edge_bundle( e, E, EF, EI, F, FT );
assert( bundle.size() == 2 );
// sGet s_tc and d_tc by looking at F via EF/EI.
int s_tc = bundle[0].p[0].tci;
int d_tc = bundle[0].p[1].tci;
// Match what eflip does.
if( bundle[0].p[0].vi == d ) {
assert( bundle[0].p[1].vi == s );
std::swap( s_tc, d_tc );
} else {
assert( bundle[0].p[0].vi == s );
assert( bundle[0].p[1].vi == d );
}
// test fold-over
const bool disable_boundary_foldover = true;
if( disable_boundary_foldover && !collapse_on_seam ) {
for(int i=1; i<nV2Fd.size()-1; i++) {
const int f = nV2Fd[i];
for(int v=0; v<3; v++) {
if( F(f,v) == d ) {
RowVectorXd uv = TC.row(FT(f,v));
RowVectorXd uv1 = TC.row(FT(f,(v+1)%3));
RowVectorXd uv2 = TC.row(FT(f,(v+2)%3));
if( !two_points_on_same_side( uv1, uv2, uv, new_placement.tcs[0] ) /*&&
contains_edge( seam_edges, F(f,(v+1)%3), F(f,(v+2)%3) )*/) {
return false;
}
}
}
}
for(int i=1; i<nV2Fs.size()-1; i++) {
const int f = nV2Fs[i];
for(int v=0; v<3; v++) {
if( F(f,v) == s ) {
RowVectorXd uv = TC.row(FT(f,v));
RowVectorXd uv1 = TC.row(FT(f,(v+1)%3));
RowVectorXd uv2 = TC.row(FT(f,(v+2)%3));
if( !two_points_on_same_side( uv1, uv2, uv, new_placement.tcs[0] ) /*&&
contains_edge( seam_edges, F(f,(v+1)%3), F(f,(v+2)%3) )*/) {
return false;
}
}
}
}
}
// The following implementation strongly relies on s<d
assert(s<d && "s should be less than d");
// Preserve seams.
// We can handle the case when (s, d) is a seam edge.
if( collapse_on_seam )
{
assert( new_placement.tcs.size() == 2 );
assert( new_placement.metrics.size() == 2 );
// move source and destination to midpoint
V.row(s) = new_placement.p;
V.row(d) = new_placement.p;
// Update UV coordinates of the edge endpoints here. If both edge endpoints are on the seam, return false (see above). If one of the edge endpoints is on the seam, we should be able to handle it preserving that endpoint and collapsing the other one.
int he0_ts = bundle[0].p[0].tci;
int he0_td = bundle[0].p[1].tci;
if( bundle[0].p[0].vi == d ) std::swap( he0_ts, he0_td );
TC.row(he0_ts) = new_placement.tcs[0];
TC.row(he0_td) = new_placement.tcs[0];
int he1_ts = bundle[1].p[0].tci;
int he1_td = bundle[1].p[1].tci;
if( bundle[1].p[0].vi == d ) std::swap( he1_ts, he1_td );
TC.row(he1_ts) = new_placement.tcs[1];
TC.row(he1_td) = new_placement.tcs[1];
// Update the per-vertex metric.
// Move the other d metrics to s.
Vmetrics[d].erase(he0_td);
Vmetrics[d].erase(he1_td);
Vmetrics[s].insert(Vmetrics[d].begin(), Vmetrics[d].end());
Vmetrics.erase(d);
Vmetrics[s][he0_ts] = new_placement.metrics[0];
Vmetrics[s][he1_ts] = new_placement.metrics[1];
}
else {
// if(seam_edges.count( s ) || seam_edges.count( d )) cout << "try to decimate edge attached to seam." << endl;
assert( new_placement.tcs.size() == 1 );
assert( new_placement.metrics.size() == 1 );
// move source and destination to midpoint
V.row(s) = new_placement.p;
V.row(d) = new_placement.p;
// Update UV coordinates of the edge endpoints here. If both edge endpoints are on the seam, return false (see above). If one of the edge endpoints is on the seam, we should be able to handle it preserving that endpoint and collapsing the other one.
TC.row(s_tc) = new_placement.tcs[0];
TC.row(d_tc) = new_placement.tcs[0];
// Update the per-vertex metric.
// Move the other d metrics to s.
assert(bundle[0].p[0] == bundle[1].p[0] || bundle[0].p[0] == bundle[1].p[1]);
assert(bundle[0].p[1] == bundle[1].p[0] || bundle[0].p[1] == bundle[1].p[1]);
Vmetrics[d].erase(d_tc);
Vmetrics[s].insert(Vmetrics[d].begin(), Vmetrics[d].end());
Vmetrics.erase(d);
Vmetrics[s][s_tc] = new_placement.metrics[0];
}
// finally, reindex faces and edges incident on d. Do this last so asserts
// make sense.
//
// Could actually skip first and last, since those are always the two
// collpased faces.
const int m = F.rows();
// vi, ti at s,d
VertexBundle s_pair[2];
VertexBundle d_pair[2];
// update edge info
// for each flap
for(int side = 0;side<2;side++)
{
const int f = EF(e,side);
const int v = EI(e,side);
const int sign = (eflip==0?1:-1)*(1-2*side);
// next edge emanating from d
const int e1 = EMAP(f+m*((v+sign*1+3)%3));
// prev edge pointing to s
const int e2 = EMAP(f+m*((v+sign*2+3)%3));
assert(E(e1,0) == d || E(e1,1) == d);
assert(E(e2,0) == s || E(e2,1) == s);
// We can't handle e1, which will be deleted, being a seam edge.
// We also can't handle both endpoints of e1 being seam vertices,
// even if there is no edge between them.
// Add a test at the beginning which rejects collapsing (s,d) if
// all three vertices on either face flap are seam vertices.
// If only e1 is a seam edge, meaning d is a seam vertex, but s is not,
// we need to use our rename_vertex(d, s) function. We do it at the end.
// face adjacent to f on e1, also incident on d
const bool flip1 = EF(e1,1)==f;
const int f1 = flip1 ? EF(e1,0) : EF(e1,1);
assert(f1!=f);
assert(F(f1,0)==d || F(f1,1)==d || F(f1,2) == d);
// across from which vertex of f1 does e1 appear?
const int v1 = flip1 ? EI(e1,0) : EI(e1,1);
assert(F(f1,v1)!=s);
// find vi and ti at s
const int e_vi = bundle[side].p[0].vi == s ? 0 : 1;
s_pair[side] = bundle[side].p[e_vi];
d_pair[side] = bundle[side].p[1-e_vi];
// Kill e1
kill_edge(e1);
// Kill f
F(f,0) = DUV_COLLAPSE_EDGE_NULL;
F(f,1) = DUV_COLLAPSE_EDGE_NULL;
F(f,2) = DUV_COLLAPSE_EDGE_NULL;
// Kill the texture coordinates FT face as well
FT(f,0) = DUV_COLLAPSE_EDGE_NULL;
FT(f,1) = DUV_COLLAPSE_EDGE_NULL;
FT(f,2) = DUV_COLLAPSE_EDGE_NULL;
// map f1's edge on e1 to e2
assert(EMAP(f1+m*v1) == e1);
EMAP(f1+m*v1) = e2;
// side opposite f2, the face adjacent to f on e2, also incident on s
const int opp2 = (EF(e2,0)==f?0:1);
assert(EF(e2,opp2) == f);
EF(e2,opp2) = f1;
EI(e2,opp2) = v1;
// remap e2 from d to s
E(e2,0) = E(e2,0)==d ? s : E(e2,0);
E(e2,1) = E(e2,1)==d ? s : E(e2,1);
if(side==0) a_e1 = e1;
else a_e2 = e1;
}
// Loop over face neighborhood of d.
// We always collapse d to s, so these faces should be
// updated to have their d vertex index point to s.
for(int i=1; i<nV2Fd.size()-1; i++)
{
const int f = nV2Fd[i];
for(int v=0; v<3; v++)
{
if(F(f,v) == d)
{
const int flip1 = (EF(EMAP(f+m*((v+1)%3)),0)==f)?1:0;
const int flip2 = (EF(EMAP(f+m*((v+2)%3)),0)==f)?0:1;
assert(E(EMAP(f+m*((v+1)%3)),flip1) == d
|| E(EMAP(f+m*((v+1)%3)),flip1) == s);
E(EMAP(f+m*((v+1)%3)),flip1) = s;
assert(E(EMAP(f+m*((v+2)%3)),flip2) == d
|| E(EMAP(f+m*((v+2)%3)),flip2) == s);
E(EMAP(f+m*((v+2)%3)),flip2) = s;
F(f,v) = s;
// Update FT to point to the other endpoint.
// If d is on the seam, some F neighbors won't be FT neighbors. Only update FT entries
// that actually pointed to d_tc. (If "s" were the seam vertex, we wouldn't have to do this check.)
// If d is a seam vertex, some face(s) incident at d
// will not have texture coordinate d_tc.
// Only update the ones that do.
// Normally F and FTC have the same number of faces.
// For meshes with boundaries, though, they won't.
// The outside-of-the-mesh side of the boundary
// edge will be connected with new faces to a vertex at infinity.
// These new faces exist in F, but not FT.
// Skip these new faces.
// UPDATE: They now do have the same number of faces;
// FTC is also augmented with a vertex to infinity.
// if( f < FT.rows() )
{
assert( seam_edges.count(d) or FT(f,v) == d_tc );
if( !collapse_on_seam ) {
if( FT(f,v) == d_tc ) FT(f,v) = s_tc;
}
else {
if (FT(f,v) == d_pair[0].tci ) FT(f,v) = s_pair[0].tci;
else if(FT(f,v) == d_pair[1].tci ) FT(f,v) = s_pair[1].tci;
}
}
}
}
}
// Check for seam corners.
const bool seam_corner = d_pair[0].tci == d_pair[1].tci;
if( collapse_on_seam && seam_corner ) {
for(int i=1; i<nV2Fs.size()-1; i++)
{
const int f = nV2Fs[i];
for(int v=0; v<3; v++)
{
if(FT(f,v) == s_pair[1].tci) FT(f,v) = s_pair[0].tci;
}
}
}
// If 's' was a seam vertex and 'd' wasn't, we don't need to do anything. d was removed.
// If 'd' was a seam vertex and 's' wasn't, we need to rename 'd' to 's'.
if( seam_edges.count(d) && !seam_edges.count(s) ) rename_vertex( seam_edges, d, s );
// If 's' and 'd' were both seam vertices but (s,d) is not a seam edge, we have a problem.
assert( !( seam_edges.count(d) && seam_edges.count(s) && !contains_edge( seam_edges, d, s ) ) );
// If (s,d) is a seam_edge, collapse it 'd' to 's'.
if( contains_edge( seam_edges, d, s ) ) ::collapse_edge( seam_edges, d, s );
// Finally, "remove" this edge and its information
kill_edge(e);
return true;
}
bool collapse_edge_with_uv(
Eigen::MatrixXd & V,
Eigen::MatrixXi & F,
Eigen::MatrixXi & E,
Eigen::VectorXi & EMAP,
Eigen::MatrixXi & EF,
Eigen::MatrixXi & EI,
Eigen::MatrixXd & TC, // Texture coordinates
Eigen::MatrixXi & FT, // Texture coordinates per face.
EdgeMap & seam_edges, // A set of indices into V or TC for vertices which lie on edges which should be preserved.
MapV5d & Vmetrics, // The per-vertex data.
int seam_aware_degree,
std::set<std::pair<double,int> > & Q,
std::vector<std::set<std::pair<double,int> >::iterator > & Qit,
std::vector< placement_info_5d > & C,
int & e,
bool test)
{
using namespace std;
using namespace Eigen;
using namespace igl;
if(Q.empty())
{
// no edges to collapse
return false;
}
std::pair<double,int> p = *(Q.begin());
if(p.first == std::numeric_limits<double>::infinity())
{
// min cost edge is infinite cost
return false;
}
Q.erase(Q.begin());
e = p.second;
Qit[e] = Q.end();
// Get the one-ring of faces as N.
std::unordered_set<int> N;
std::vector<int> Ne = circulation(e, true,EMAP,EF,EI);
N.insert( Ne.begin(), Ne.end() );
Ne = circulation(e,false,EMAP,EF,EI);
N.insert( Ne.begin(), Ne.end() );
int e1,e2;
const bool collapsed =
try_collapse_5d_Edge(e,C.at(e),V,F,E,EMAP,EF,EI,TC,FT,seam_edges,Vmetrics,e1,e2);
if(collapsed)
{
if(test == true ) {
cout << "try collapse succeed." << endl;
}
// Erase the two, other collapsed edges
Q.erase(Qit[e1]);
Qit[e1] = Q.end();
Q.erase(Qit[e2]);
Qit[e2] = Q.end();
// update local neighbors
// loop over original face neighbors
std::unordered_set< int > affected_edges;
for(auto n : N)
{
if(F(n,0) != DUV_COLLAPSE_EDGE_NULL &&
F(n,1) != DUV_COLLAPSE_EDGE_NULL &&
F(n,2) != DUV_COLLAPSE_EDGE_NULL)
{
for(int v = 0;v<3;v++)
{
// get edge id
const int ei = EMAP(v*F.rows()+n);
// Because faces share edges, recomputing here would recompute
// every affected edge twice. Instead, build a set< int > of edge
// indices, and iterate over it once.
affected_edges.insert( ei );
}
}
}
if(test == true ) {
cout << "first loop succeed." << endl;
}
for( auto ei : affected_edges )
{
if( E(ei,0) != DUV_COLLAPSE_EDGE_NULL && E(ei,1) != DUV_COLLAPSE_EDGE_NULL )
{
// erase old entry
Q.erase(Qit[ei]);
Qit[ei] = Q.end();
// compute cost and potential placement
double cost;
placement_info_5d place;
Bundle b = get_half_edge_bundle( ei, E, EF, EI, F, FT );
cost_and_placement_qslim5d_halfedge(b,V,F,TC,FT,seam_edges,Vmetrics,seam_aware_degree,cost,place);
// Replace in queue
Qit[ei] = Q.insert(std::pair<double,int>(cost,ei)).first;
C.at(ei) = place;
}
}
if(test == true ) {
cout << "second loop succeed." << endl;
}
} else
{
if(test == true ) {
cout << "try collapse failed." << endl;
}
// reinsert with infinite weight (the provided cost function must **not**
// have given this un-collapsable edge inf cost already)
p.first = std::numeric_limits<double>::infinity();
Qit[e] = Q.insert(p).first;
}
return collapsed;
}