-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval.py
135 lines (113 loc) · 4.38 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from __future__ import print_function
import sys
import time
import torch
from torchvision import datasets, transforms
import os
import dataset
import random
import math
import numpy as np
from utils import get_all_boxes, multi_bbox_ious, nms, read_data_cfg, logging
from cfg import parse_cfg
from darknet import Darknet
import argparse
# etc parameters
use_cuda = True
seed = 22222
eps = 1e-5
# Test parameters
conf_thresh = 0.25
nms_thresh = 0.4
iou_thresh = 0.5
FLAGS = None
def main():
# Training settings
datacfg = FLAGS.data
cfgfile = FLAGS.config
data_options = read_data_cfg(datacfg)
testlist = data_options['valid']
gpus = data_options['gpus'] # e.g. 0,1,2,3
ngpus = len(gpus.split(','))
num_workers = int(data_options['num_workers'])
# for testing, batch_size is setted to 1 (one)
batch_size = 1 # int(net_options['batch'])
global use_cuda
use_cuda = torch.cuda.is_available() and (True if use_cuda is None else use_cuda)
###############
torch.manual_seed(seed)
if use_cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
torch.cuda.manual_seed(seed)
global model
model = Darknet(cfgfile)
#model.print_network()
init_width = model.width
init_height = model.height
kwargs = {'num_workers': num_workers, 'pin_memory': True} if use_cuda else {}
global test_loader
test_loader = torch.utils.data.DataLoader(
dataset.listDataset(testlist, shape=(init_width, init_height),
shuffle=False,
transform=transforms.Compose([
transforms.ToTensor(),
]), train=False),
batch_size=batch_size, shuffle=False, **kwargs)
if use_cuda:
if ngpus > 1:
model = torch.nn.DataParallel(model)
model = model.module
model = model.to(torch.device("cuda" if use_cuda else "cpu"))
for w in FLAGS.weights:
model.load_weights(w)
logging('evaluating ... %s' % (w))
test()
def test():
def truths_length(truths):
for i in range(50):
if truths[i][1] == 0:
return i
return 50
model.eval()
num_classes = model.num_classes
print("num",num_classes)
total = 0.0
proposals = 0.0
correct = 0.0
device = torch.device("cuda" if use_cuda else "cpu")
for _, (data, target) in enumerate(test_loader):
data = data.to(device)
output = model(data)
all_boxes = get_all_boxes(output, conf_thresh, num_classes)
for k in range(data.size(0)):
boxes = all_boxes[k]
boxes = np.array(nms(boxes, nms_thresh))
truths = target[k].view(-1, 5)
num_gts = truths_length(truths)
total = total + num_gts
num_pred = len(boxes)
if num_pred == 0:
continue
proposals += int((boxes[:,4]>conf_thresh).sum())
for i in range(num_gts):
gt_boxes = torch.FloatTensor([truths[i][1], truths[i][2], truths[i][3], truths[i][4], 1.0, 1.0, truths[i][0]])
gt_boxes = gt_boxes.repeat(num_pred,1).t()
pred_boxes = torch.FloatTensor(boxes).t()
best_iou, best_j = torch.max(multi_bbox_ious(gt_boxes, pred_boxes, x1y1x2y2=False),0)
# pred_boxes and gt_boxes are transposed for torch.max
if best_iou > iou_thresh and pred_boxes[6][best_j] == gt_boxes[6][0]:
correct += 1
precision = 1.0*correct/(proposals+eps)
recall = 1.0*correct/(total+eps)
fscore = 2.0*precision*recall/(precision+recall+eps)
logging("precision: %f, recall: %f, fscore: %f" % (precision, recall, fscore))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', '-d', type=str,
default='cfg/voc.data', help='data definition file')
parser.add_argument('--config', '-c', type=str,
default='cfg/yolo_v3.cfg', help='network configuration file')
parser.add_argument('--weights', '-w', type=str, nargs='+',
default=['weights/yolov3.weights'], help='initial weights file')
FLAGS, _ = parser.parse_known_args()
main()