forked from openai/simple-evals
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmath_eval.py
57 lines (47 loc) · 2.3 KB
/
math_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
"""
Measuring Mathematical Problem Solving With the MATH Dataset
Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, Jacob Steinhardt
https://arxiv.org/abs/2103.03874
"""
import random
import re
import blobfile as bf
import pandas
from . import common
from .common import ANSWER_PATTERN, HTML_JINJA, check_equality
from .types import Eval, EvalResult, SamplerBase, SingleEvalResult
QUERY_TEMPLATE = """
Solve the following math problem step by step. The last line of your response should be of the form Answer: $ANSWER (without quotes) where $ANSWER is the answer to the problem.
{Question}
Remember to put your answer on its own line after "Answer:", and you do not need to use a \\boxed command.
""".strip()
class MathEval(Eval):
def __init__(self, equality_checker: SamplerBase, num_examples: int | None = None):
df = pandas.read_csv(
bf.BlobFile("https://openaipublic.blob.core.windows.net/simple-evals/math_test.csv")
)
examples = [row.to_dict() for _, row in df.iterrows()]
if num_examples:
examples = random.Random(0).sample(examples, num_examples)
self.examples = examples
self.equality_checker = equality_checker
def __call__(self, sampler: SamplerBase) -> EvalResult:
def fn(row: dict):
prompt_messages = [
sampler._pack_message(content=QUERY_TEMPLATE.format(**row), role="user")
]
response_text = sampler(prompt_messages)
match = re.search(ANSWER_PATTERN, response_text)
extracted_answer = match.group(1) if match else None
score = float(check_equality(self.equality_checker, row["Answer"], extracted_answer))
html = common.jinja_env.from_string(HTML_JINJA).render(
prompt_messages=prompt_messages,
next_message=dict(content=response_text, role="assistant"),
score=score,
correct_answer=row["Answer"],
extracted_answer=extracted_answer,
)
convo = prompt_messages + [dict(content=response_text, role="assistant")]
return SingleEvalResult(html=html, score=score, convo=convo)
results = common.map_with_progress(fn, self.examples)
return common.aggregate_results(results)