-
Notifications
You must be signed in to change notification settings - Fork 4
/
colorization_model.py
68 lines (56 loc) · 2.94 KB
/
colorization_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from .pix2pix_model import Pix2PixModel
import torch
from skimage import color # used for lab2rgb
import numpy as np
class ColorizationModel(Pix2PixModel):
"""This is a subclass of Pix2PixModel for image colorization (black & white image -> colorful images).
The model training requires '-dataset_model colorization' dataset.
It trains a pix2pix model, mapping from L channel to ab channels in Lab color space.
By default, the colorization dataset will automatically set '--input_nc 1' and '--output_nc 2'.
"""
@staticmethod
def modify_commandline_options(parser, is_train=True):
"""Add new dataset-specific options, and rewrite default values for existing options.
Parameters:
parser -- original option parser
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
Returns:
the modified parser.
By default, we use 'colorization' dataset for this model.
See the original pix2pix paper (https://arxiv.org/pdf/1611.07004.pdf) and colorization results (Figure 9 in the paper)
"""
Pix2PixModel.modify_commandline_options(parser, is_train)
parser.set_defaults(dataset_mode='colorization')
return parser
def __init__(self, opt):
"""Initialize the class.
Parameters:
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
For visualization, we set 'visual_names' as 'real_A' (input real image),
'real_B_rgb' (ground truth RGB image), and 'fake_B_rgb' (predicted RGB image)
We convert the Lab image 'real_B' (inherited from Pix2pixModel) to a RGB image 'real_B_rgb'.
we convert the Lab image 'fake_B' (inherited from Pix2pixModel) to a RGB image 'fake_B_rgb'.
"""
# reuse the pix2pix model
Pix2PixModel.__init__(self, opt)
# specify the images to be visualized.
self.visual_names = ['real_A', 'real_B_rgb', 'fake_B_rgb']
def lab2rgb(self, L, AB):
"""Convert an Lab tensor image to a RGB numpy output
Parameters:
L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array)
AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array)
Returns:
rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array)
"""
AB2 = AB * 110.0
L2 = (L + 1.0) * 50.0
Lab = torch.cat([L2, AB2], dim=1)
Lab = Lab[0].data.cpu().float().numpy()
Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0))
rgb = color.lab2rgb(Lab) * 255
return rgb
def compute_visuals(self):
"""Calculate additional output images for visdom and HTML visualization"""
self.real_B_rgb = self.lab2rgb(self.real_A, self.real_B)
self.fake_B_rgb = self.lab2rgb(self.real_A, self.fake_B)