-
-
Notifications
You must be signed in to change notification settings - Fork 24
/
img_classifier.py
28 lines (28 loc) · 1.2 KB
/
img_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def our_image_classifier(image):
'''
Function that takes the path of the image as input and returns the closest predicted label as output
'''
# Disable scientific notation for clarity
np.set_printoptions(suppress=True)
# Load the model
model = tensorflow.keras.models.load_model(
'model/name_of_the_keras_model.h5')
# Determined by the first position in the shape tuple, in this case 1.
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# Resizing the image to be at least 224x224 and then cropping from the center
size = (224, 224)
image = ImageOps.fit(image, size, Image.ANTIALIAS)
# Turn the image into a numpy array
image_array = np.asarray(image)
# Normalize the image
normalized_image_array = (
image_array.astype(np.float32) / 127.0) - 1
# Load the image into the array
data[0] = normalized_image_array
labels = {0: "Class 0", 1: "Class 1", 2: "Class 2",
3: "Class 3", 4: "Class 4", 5: "Class 5"}
# Run the inference
predictions = model.predict(data).tolist()
best_outcome = predictions[0].index(max(predictions[0]))
print(labels[best_outcome])
return labels[best_outcome]