forked from facebookresearch/fairseq
-
Notifications
You must be signed in to change notification settings - Fork 2
/
generate.py
140 lines (119 loc) · 6.63 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#
import torch
from fairseq import bleu, data, options, tokenizer, utils
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.sequence_generator import SequenceGenerator
def main():
parser = options.get_parser('Generation')
parser.add_argument('--path', metavar='FILE', required=True, action='append',
help='path(s) to model file(s)')
dataset_args = options.add_dataset_args(parser)
dataset_args.add_argument('--batch-size', default=32, type=int, metavar='N',
help='batch size')
dataset_args.add_argument('--gen-subset', default='test', metavar='SPLIT',
help='data subset to generate (train, valid, test)')
dataset_args.add_argument('--num-shards', default=1, type=int, metavar='N',
help='shard generation over N shards')
dataset_args.add_argument('--shard-id', default=0, type=int, metavar='ID',
help='id of the shard to generate (id < num_shards)')
options.add_generation_args(parser)
args = parser.parse_args()
if args.no_progress_bar and args.log_format is None:
args.log_format = 'none'
print(args)
use_cuda = torch.cuda.is_available() and not args.cpu
if hasattr(torch, 'set_grad_enabled'):
torch.set_grad_enabled(False)
# Load dataset
if args.replace_unk is None:
dataset = data.load_dataset(args.data, [args.gen_subset], args.source_lang, args.target_lang)
else:
dataset = data.load_raw_text_dataset(args.data, [args.gen_subset], args.source_lang, args.target_lang)
if args.source_lang is None or args.target_lang is None:
# record inferred languages in args
args.source_lang, args.target_lang = dataset.src, dataset.dst
# Load ensemble
print('| loading model(s) from {}'.format(', '.join(args.path)))
models, _ = utils.load_ensemble_for_inference(args.path, dataset.src_dict, dataset.dst_dict)
print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
print('| {} {} {} examples'.format(args.data, args.gen_subset, len(dataset.splits[args.gen_subset])))
# Optimize ensemble for generation
for model in models:
model.make_generation_fast_(
beamable_mm_beam_size=None if args.no_beamable_mm else args.beam)
# Initialize generator
translator = SequenceGenerator(
models, beam_size=args.beam, stop_early=(not args.no_early_stop),
normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
unk_penalty=args.unkpen)
if use_cuda:
translator.cuda()
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(args.replace_unk)
# Generate and compute BLEU score
scorer = bleu.Scorer(dataset.dst_dict.pad(), dataset.dst_dict.eos(), dataset.dst_dict.unk())
max_positions = min(model.max_encoder_positions() for model in models)
itr = dataset.eval_dataloader(
args.gen_subset, max_sentences=args.batch_size, max_positions=max_positions,
skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
if args.num_shards > 1:
if args.shard_id < 0 or args.shard_id >= args.num_shards:
raise ValueError('--shard-id must be between 0 and num_shards')
itr = data.sharded_iterator(itr, args.num_shards, args.shard_id)
num_sentences = 0
with utils.build_progress_bar(args, itr) as t:
wps_meter = TimeMeter()
gen_timer = StopwatchMeter()
translations = translator.generate_batched_itr(
t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
cuda_device=0 if use_cuda else None, timer=gen_timer)
for sample_id, src_tokens, target_tokens, hypos in translations:
# Process input and ground truth
target_tokens = target_tokens.int().cpu()
# Either retrieve the original sentences or regenerate them from tokens.
if align_dict is not None:
src_str = dataset.splits[args.gen_subset].src.get_original_text(sample_id)
target_str = dataset.splits[args.gen_subset].dst.get_original_text(sample_id)
else:
src_str = dataset.src_dict.string(src_tokens, args.remove_bpe)
target_str = dataset.dst_dict.string(target_tokens, args.remove_bpe, escape_unk=True)
if not args.quiet:
print('S-{}\t{}'.format(sample_id, src_str))
print('T-{}\t{}'.format(sample_id, target_str))
# Process top predictions
for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
hypo_tokens=hypo['tokens'].int().cpu(),
src_str=src_str,
alignment=hypo['alignment'].int().cpu(),
align_dict=align_dict,
dst_dict=dataset.dst_dict,
remove_bpe=args.remove_bpe)
if not args.quiet:
print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
print('A-{}\t{}'.format(sample_id, ' '.join(map(str, alignment))))
# Score only the top hypothesis
if i == 0:
if align_dict is not None or args.remove_bpe is not None:
# Convert back to tokens for evaluation with unk replacement and/or without BPE
target_tokens = tokenizer.Tokenizer.tokenize(target_str,
dataset.dst_dict,
add_if_not_exist=True)
scorer.add(target_tokens, hypo_tokens)
wps_meter.update(src_tokens.size(0))
t.log({'wps': round(wps_meter.avg)})
num_sentences += 1
print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} tokens/s)'.format(
num_sentences, gen_timer.n, gen_timer.sum, 1. / gen_timer.avg))
print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
if __name__ == '__main__':
main()