forked from itsmisterbrown/microfiltR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
microfiltR_source_code.R
911 lines (767 loc) · 31.5 KB
/
microfiltR_source_code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
##functions for processing compositional microbiome datasets
#all scripts written by BPB, 062519
#ERROR PROTECTION FUNCTIONS
format.ASV.tab <- function(ps){
if(as.logical(class(phyloseq::otu_table(ps))[1] == "otu_table") &&
as.logical(taxa_are_rows(phyloseq::otu_table(ps)) == TRUE)){
asv.tab <- as.matrix(phyloseq::otu_table(ps))
} else {
asv.tab <- as.matrix(t(phyloseq::otu_table(ps)))
}
asv.tab
}
format.parameter.string <- function(string){
string <- gsub(pattern = "c(|)", replacement = "", x = string)
string[2] <- gsub(pattern = ":", replacement = ", ", x = string[2])
string <- strsplit(string, split = ", ")
string <- as.numeric(paste0(c(string[[2]], string[[3]])))
string
}
format.long <- function(df){
ctc <- rep(colnames(df)[2], nrow(df))
ctm <- rep(colnames(df)[3], nrow(df))
tvv <- rep(df[,1], 2)
th <- c(df[,2], df[, 3])
df2 <- cbind.data.frame(c(ctc, ctm), tvv, th)
colnames(df2) <- c("cgroup", "threshold.value", "taxa.hits")
df2
}
#PLOTTING FUNCTIONS
plot.threshold <- function(est.obj, y=NULL, x=NULL, PFT=NULL, RAT=NULL, CVT=NULL, taxrank=NULL){
#never gray
ggplot2::theme_set(theme_bw())
#error checking
if (!is.null(x) && is.null(y)){
stop("Please provide variables for both axes")
}
if (is.null(x) && !is.null(y)){
stop("Please provide variables for both axes")
}
#plot either WS, AS or taxonomic filter figs
#begin WS threshold plots
if (is.data.frame(est.obj)){
df <- format.long(est.obj)
plot1 <- ggplot2::ggplot(data = df, aes(x=threshold.value, y=taxa.hits, color=cgroup)) +
ggplot2::geom_line(size=2, alpha=0.7) + ggplot2::scale_color_manual(values = c("orange", "steelblue2"), labels = c("Total", "Matches")) +
ggplot2::theme(axis.text.y = element_text(size = 15, colour = "black"),
axis.text.x = element_text(size = 15, colour = "black", angle = 315, vjust = 0.7),
axis.title.x = element_text(size = 15, colour = "black"),
axis.title.y = element_text(size = 15),
legend.title = element_text(size = 0),
legend.text = element_text(size = 15, colour = "black"),
legend.position = "top",
legend.key = element_rect(size = 5),
legend.key.size = unit(2.5, 'lines')) +
labs(x="Threshold value", y="Taxon count")
plot2 <- ggplot2::ggplot(data = est.obj, aes(x = threshold.value, y = read.percent)) + ggplot2::geom_line(size=2, color="orangered1") +
ggplot2::theme(axis.text.y = element_text(size = 15, colour = "black"),
axis.text.x = element_text(size = 15, colour = "black", angle = 315, vjust = 0.7),
axis.title.x = element_text(size = 15, colour = "black"),
axis.title.y = element_text(size = 15, colour = "black")) +
labs(x="Threshold value", y="Read percent")
cowplot::plot_grid(plot1, plot2, labels = "AUTO")
#begin ASV threshold plots
} else if (!is.null(x) && !is.null(y)){
#create df of ASV data and remove filtered taxa
ASV.df <- est.obj$ASV.filtering.stats
ASV.df.f <- ASV.df[complete.cases(ASV.df[,5]),] #remove filtered taxa
#plots
if (x == "P" && y =="RA"){
#plot RA by prevalence
asv.plot <- ggplot2::ggplot(data = ASV.df.f, aes(x = ASV.prevalence.percent, y = ASV.read.percent, color=Phylum)) + ggplot2::geom_point(size=3) +
ggplot2::facet_wrap(taxrank, scales = "fixed") + ggplot2::scale_y_log10() +
ggplot2::theme(axis.text.x = element_text(size = 10, angle = 315, vjust = 0.2),
legend.position = "right",
strip.text = element_text(size=11, color="white"),
strip.background = element_rect(fill = "black")) +
ggplot2::geom_hline(yintercept = RAT, lty=2) +
ggplot2::geom_vline(xintercept = PFT) +
ggplot2::labs(y="ASV abundance (%)", x= "ASV prevalence (%)")
return(asv.plot)
} else if (x == "P" && y =="CV"){
#plot CV by prevalence
asv.plot <- ggplot2::ggplot(data = ASV.df.f, aes(x = ASV.prevalence.percent, y = ASV.CV, color=Phylum)) + ggplot2::geom_point(size=3) +
ggplot2::facet_wrap(taxrank, scales = "fixed") +
ggplot2::theme(axis.text.x = element_text(size = 10, angle = 315, vjust = 0.2),
legend.position = "right",
strip.text = element_text(size=11, color="white"),
strip.background = element_rect(fill = "black")) +
ggplot2::geom_hline(yintercept = CVT, lty=2) +
ggplot2::geom_vline(xintercept = PFT) +
ggplot2::labs(y="ASV CV", x= "ASV prevalence (%)")
return(asv.plot)
} else if (x == "RA" && y =="CV"){
#plot CV by RA
asv.plot <- ggplot2::ggplot(data = ASV.df.f, aes(x = ASV.read.percent, y = ASV.CV, color=Phylum)) + ggplot2::geom_point(size=3) +
ggplot2::facet_wrap(taxrank, scales = "fixed") + ggplot2::scale_x_log10() +
ggplot2::theme(axis.text.x = element_text(size = 10, angle = 315, vjust = 0.2),
legend.position = "right",
strip.text = element_text(size=11, color="white"),
strip.background = element_rect(fill = "black")) +
ggplot2::geom_hline(yintercept = CVT, lty=2) +
ggplot2::geom_vline(xintercept = RAT) +
ggplot2::labs(y="ASV CV", x= "ASV abundance (%)")
return(asv.plot)
} else if (x == "RA" && y =="P"){
#plot prevalence by RA
asv.plot <- ggplot2::ggplot(data = ASV.df.f, aes(x = ASV.read.percent, y = ASV.prevalence.percent, color=Phylum)) + ggplot2::geom_point(size=3) +
ggplot2::facet_wrap(taxrank, scales = "fixed") + ggplot2::scale_x_log10() +
ggplot2::theme(axis.text.x = element_text(size = 10, angle = 315, vjust = 0.2),
legend.position = "right",
strip.text = element_text(size=11, color="white"),
strip.background = element_rect(fill = "black")) +
ggplot2::geom_hline(yintercept = PFT, lty=2) +
ggplot2::geom_vline(xintercept = RAT) +
ggplot2::labs(y="ASV prevalence (%)", x= "ASV abundance (%)")
return(asv.plot)
} else if (x == "CV" && y =="RA"){
#plot RA by CV
asv.plot <- ggplot2::ggplot(data = ASV.df.f, aes(x = ASV.CV, y = ASV.read.percent, color=Phylum)) + ggplot2::geom_point(size=3) +
ggplot2::facet_wrap(taxrank, scales = "fixed") + ggplot2::scale_y_log10() +
ggplot2::theme(axis.text.x = element_text(size = 10, angle = 315, vjust = 0.2),
legend.position = "right",
strip.text = element_text(size=11, color="white"),
strip.background = element_rect(fill = "black")) +
ggplot2::geom_hline(yintercept = RAT, lty=2) +
ggplot2::geom_vline(xintercept = CVT) +
ggplot2::labs(y="ASV abundance (%)", x= "ASV CV")
return(asv.plot)
} else if (x == "CV" && y =="P"){
#plot prevalence by CV
asv.plot <- ggplot2::ggplot(data = ASV.df.f, aes(x = ASV.CV, y = ASV.prevalence.percent, color=Phylum)) + ggplot2::geom_point(size=3) +
ggplot2::facet_wrap(taxrank, scales = "fixed") +
ggplot2::theme(axis.text.x = element_text(size = 10, angle = 315, vjust = 0.2),
legend.position = "right",
strip.text = element_text(size=11, color="white"),
strip.background = element_rect(fill = "black")) +
ggplot2::geom_hline(yintercept = PFT, lty=2) +
ggplot2::geom_vline(xintercept = CVT) +
ggplot2::labs(y="ASV prevalence (%)", x= "ASV CV")
return(asv.plot)
}
#begin AS threshold plots
} else {
#RA
if (!is.null(est.obj$relative.abundance.filtering.stats)){
RA.stats <- est.obj$relative.abundance.filtering.stats
plot3 <- ggplot2::ggplot(data = RA.stats, aes(x = relative.abundance.filter, y = ASV.count)) + ggplot2::geom_line(size=2, color="steelblue2") +
ggplot2::theme(axis.text.y = element_text(size = 15, colour = "black"),
axis.text.x = element_text(size = 15, colour = "black", angle = 315, vjust = 0.7),
axis.title.x = element_text(size = 15, colour = "black"),
axis.title.y = element_text(size = 15, colour = "black")) +
labs(x="Relative abundance threshold", y="Taxon count")
} else {
RA.stats <- NULL
plot3 <- NULL
}
#CV
if (!is.null(est.obj$CV.filtering.stats)){
CV.stats <- est.obj$CV.filtering.stats
plot4 <- ggplot2::ggplot(data = CV.stats, aes(x = CV.filter, y = ASV.count)) + ggplot2::geom_line(size=2, color="orangered1") +
ggplot2::theme(axis.text.y = element_text(size = 15, colour = "black"),
axis.text.x = element_text(size = 15, colour = "black", angle = 315, vjust = 0.7),
axis.title.x = element_text(size = 15, colour = "black"),
axis.title.y = element_text(size = 15, colour = "black")) +
labs(x="CV threshold", y="Taxon count")
} else {
CV.stats <- NULL
plot4 <- NULL
}
#P
if (!is.null(est.obj$prevalence.filtering.stats)){
P.stats <- est.obj$prevalence.filtering.stats
plot5 <- ggplot2::ggplot(data = P.stats, aes(x = prevalence.filter, y = ASV.count)) + ggplot2::geom_line(size=2, color="forestgreen") +
ggplot2::theme(axis.text.y = element_text(size = 15, colour = "black"),
axis.text.x = element_text(size = 15, colour = "black", angle = 315, vjust = 0.7),
axis.title.x = element_text(size = 15, colour = "black"),
axis.title.y = element_text(size = 15, colour = "black")) +
labs(x="Prevalence threshold", y="Taxon count")
} else {
P.stats <- NULL
plot5 <- NULL
}
plist <- list(plot3, plot4, plot5)
cowplot::plot_grid(labels = "AUTO", plotlist = plist[which(!sapply(plist, is.null))])
}
}
#PROCESSING FUNCTIONS
#standardization
standardize.median <- function(ps){
median.rc <- median(phyloseq::sample_sums(ps))
ps.t <- phyloseq::transform_sample_counts(ps, fun = function(x) round(median.rc * (x/sum(x))))
ps.t
}
#parameter estimation
getWS <- function(ps, WSrange, controlID, controlFASTA=NULL, useREFSEQ=FALSE){
#Build param lists
l.t <- seq(from = WSrange[1], to = WSrange[2], by = WSrange[3])
nt <- length(l.t)
tvec <- c()
svec <- c()
pvec <- c()
#build files for sequence matching if specified
if (!is.null(controlFASTA)){
nvec <- list()
mvec <- c()
cfasta <- ShortRead::readFasta(controlFASTA)
}
for (i in 1:nt){
tryCatch({
#loop through values
ps.ws <- suppressMessages(WSfilter(ps = ps, WST = l.t[i]))
asv.tab <- format.ASV.tab(ps.ws)
#FILTERING
tvec[i] <- nrow(asv.tab[which(asv.tab[,match(controlID, colnames(asv.tab))] != 0),])
svec[i] <- sum(phyloseq::sample_sums(ps.ws))
pvec[i] <- sum(phyloseq::sample_sums(ps.ws))/sum(phyloseq::sample_sums(ps))*100
if (!is.null(controlFASTA)){
if (isTRUE(useREFSEQ)){
#from phyloseq refseq slot
control.taxanames <- rownames(asv.tab[which(asv.tab[,match(controlID, colnames(asv.tab))] != 0),])
nvec[[i]] <- phyloseq::refseq(ps.ws)[control.taxanames]
} else {
nvec[[i]] <- rownames(asv.tab[which(asv.tab[,match(controlID, colnames(asv.tab))] != 0),])
}
#calculate matches to control FASTA
mvec[i] <- sum(sapply(nvec[[i]], function(x) any(grepl(x, as.character(ShortRead::sread(cfasta))))))
}
},
error=function(e){cat("Warning :",conditionMessage(e), "\n")})
}
names(tvec) <- c(l.t)
names(svec) <- c(l.t)
names(pvec) <- c(l.t)
if (!is.null(controlFASTA)){
names(mvec) <- c(l.t)
} else {
mvec <- rep(NA, length(tvec))
}
df <- as.data.frame(cbind(as.numeric(paste0(names(tvec))), tvec, mvec, svec, pvec))
colnames(df) <- c("threshold.value", "control.taxa.count", "control.taxa.matches", "read.count", "read.percent")
rownames(df) <- seq(1:length(l.t))
df
}
getCV <- function(ps, WST=NULL, CVrange){
#WS filtering
if(is.null(WST)){
message('Not applying WS filter')
ps.ws <- ps
} else {
ps.ws <- WSfilter(ps = ps, WST = WST)
}
#standardize to median sample depth
ps.wsm <- standardize.median(ps.ws)
#build param vectors
if(is.null(CVrange)){
dfc <- NULL
} else {
l.c <- seq(from = CVrange[1], to = CVrange[2], by = CVrange[3])
nc <- length(l.c)
cvec <- c()
for (i in 1:nc){
tryCatch({
#loop through values and filter
ps.wsm <- phyloseq::filter_taxa(ps.wsm, function(x) sd(x)/mean(x) > l.c[i], TRUE)
cvec[i] <- phyloseq::ntaxa(ps.wsm)
},
error=function(e){cat("Warning :c",conditionMessage(e), "\n")})
}
#create df
#make both vectors same length and add NAs if CV filter zeroed out ASV table
length(cvec) <- length(l.c)
dfc <- as.data.frame(cbind(l.c, cvec))
colnames(dfc) <- c("CV.filter", "ASV.count")
rownames(dfc) <- seq(1:length(l.c))
}
dfc
}
getRA <- function(ps, WST=NULL, RArange){
#WS filtering
if(is.null(WST)){
message('Not applying WS filter')
ps.ws <- ps
} else {
ps.ws <- WSfilter(ps = ps, WST = WST)
}
#build param vectors
if(is.null(RArange)){
dfr <- NULL
} else {
l.r <- seq(from = RArange[1], to = RArange[2], by = RArange[3])
nr <- length(l.r)
rvec <- c()
for (i in 1:nr){
tryCatch({
#loop through values and filter
raf <- sum(phyloseq::taxa_sums(ps.ws)) * l.r[i]
ps.ws <- phyloseq::prune_taxa(taxa_sums(ps.ws)>=raf, ps.ws)
rvec[i] <- phyloseq::ntaxa(ps.ws)
},
error=function(e){cat("Warning :r",conditionMessage(e), "\n")})
}
#create df
#make both vectors same length and add NAs if RF filter zeroed out ASV table
length(rvec) <- length(l.r)
dfr <- as.data.frame(cbind(l.r, rvec))
colnames(dfr) <- c("relative.abundance.filter", "ASV.count")
rownames(dfr) <- seq(1:length(l.r))
}
dfr
}
getPrev <- function(ps, WST=NULL, Prange){
#WS filtering
if(is.null(WST)){
message('Not applying WS filter')
ps.ws <- ps
} else {
ps.ws <- WSfilter(ps = ps, WST = WST)
}
asv.tab <- format.ASV.tab(ps.ws)
#build param vectors
l.p <- seq(from = Prange[1], to = Prange[2], by = Prange[3])
np <- length(l.p)
pvec <- c()
taxa.cvec <- c()
#get prevalence list for each taxon
taxa.plist <- apply(X = asv.tab, MARGIN = 1, FUN = function(x){names(x)[which(x!=0)]})
#populate vector of sample counts per ASV
for(j in 1:length(taxa.plist)){
taxa.cvec[j] <- length(taxa.plist[[j]])
}
#loop through params
for (i in 1:np){
tryCatch({
#apply ASV names and filter ASVs below PF
names(taxa.cvec) <- names(taxa.plist)
prev.count <- phyloseq::nsamples(ps.ws)* l.p[i]
taxa.cvec.f <- taxa.cvec[which(taxa.cvec > prev.count)]
tn.cvec.f <- names(taxa.cvec.f)
#filter ps
ps.ws <- phyloseq::prune_taxa(tn.cvec.f, ps.ws)
pvec[i] <- phyloseq::ntaxa(ps.ws)
},
error=function(e){cat("Warning :p",conditionMessage(e), "\n")})
}
#create df
#make both vectors same length and add NAs if PF filter zeroed out ASV table
length(pvec) <- length(l.p)
dfp <- cbind.data.frame(l.p, pvec)
colnames(dfp) <- c("prevalence.filter", "ASV.count")
rownames(dfp) <- seq(1:length(l.p))
#name taxa prevalence vector
names(taxa.cvec) <- names(taxa.plist)
# Build return list
l.return = list()
l.return[['prevalence.filtering.stats']] <- dfp
l.return[['ASV.prevalence.count']] <- taxa.cvec
return(l.return)
}
#filtering scripts
WSfilter <- function(ps, WST){
#perform filter
message('Applying WS filter threshold of ', WST)
filterfx = function(x){
x[(x / sum(x)) < WST] <- 0
return(x)
}
ps <- phyloseq::transform_sample_counts(ps, fun = filterfx)
ps
}
MDfilter <- function(ps, mdFACTOR, mdCAT, mdNEGATIVE=FALSE){
#create sample df for subsetting
sampledf <- suppressWarnings(as.matrix(phyloseq::sample_data(ps)))
if (isTRUE(mdNEGATIVE)){
filtered.names <- rownames(sampledf[which(sampledf[,match(mdCAT, colnames(sampledf))] == mdFACTOR),])
message('Removing ', (phyloseq::nsamples(ps) - length(filtered.names)), ' samples not matching metadata identifiers ', mdCAT, ":", mdFACTOR)
} else {
filtered.names <- rownames(sampledf[which(sampledf[,match(mdCAT, colnames(sampledf))] != mdFACTOR),])
message('Removing ', (phyloseq::nsamples(ps) - length(filtered.names)), ' samples matching metadata identifiers ', mdCAT, ":", mdFACTOR)
}
#subset sampledf to include nonfiltered samples only
sampledf.s <- as.data.frame(sampledf[filtered.names,])
phyloseq::sample_data(ps) <- phyloseq::sample_data(sampledf.s)
ps
}
CVfilter <- function(ps, WST=NULL, CVF){
#WS filtering
if(is.null(WST)){
message('Not applying WS filter')
ps.ws <- ps
} else {
ps.ws <- WSfilter(ps = ps, WST = WST)
}
#standardize to median sample depth
ps.wsm <- standardize.median(ps.ws)
#perform filter
ps.wsm <- phyloseq::filter_taxa(ps.wsm, function(x) sd(x)/mean(x) > CVF, TRUE)
#get taxa names to apply to original, unstandardized dataset
filtered.taxa.names <- phyloseq::taxa_names(ps.wsm)
#apply filter to unstandardized dataset
ps.ws <- phyloseq::prune_taxa(taxa = filtered.taxa.names, x = ps.ws)
ps.ws
}
RAfilter<- function(ps, WST=NULL, RAF){
#WS filtering
if(is.null(WST)){
message('Not applying WS filter')
ps.ws <- ps
} else {
ps.ws <- WSfilter(ps = ps, WST = WST)
}
#perform filter
raf <- sum(phyloseq::taxa_sums(ps.ws)) * RAF
ps.ws <- phyloseq::prune_taxa(taxa_sums(ps.ws)>=raf, ps.ws)
ps.ws
}
Pfilter <- function(ps, WST=NULL, PF){
#WS filtering
if(is.null(WST)){
message('Not applying WS filter')
ps.ws <- ps
} else {
ps.ws <- WSfilter(ps = ps, WST = WST)
}
#format asv table
asv.tab <- format.ASV.tab(ps.ws)
#create sample count vector
taxa.cvec <- c()
#get prevalence list for each taxon
taxa.plist <- apply(X = asv.tab, MARGIN = 1, FUN = function(x){names(x)[which(x!=0)]})
#populate vector of sample counts per ASV
for(j in 1:length(taxa.plist)){
taxa.cvec[j] <- length(taxa.plist[[j]])
}
names(taxa.cvec) <- names(taxa.plist)
prev.count <- phyloseq::nsamples(ps.ws)* PF
taxa.cvec.f <- taxa.cvec[which(taxa.cvec > prev.count)]
tn.cvec.f <- names(taxa.cvec.f)
#perform filter
ps.ws <- phyloseq::prune_taxa(tn.cvec.f, ps.ws)
ps.ws
}
#WRAPPER FUNCTIONS
estimate.WSthreshold <- function(ps, WSrange, controlID, controlFASTA=NULL, useREFSEQ=FALSE) {
#throw error if controlID doesn't match
if(!(controlID %in% phyloseq::sample_names(ps))){
stop("controlID provided is not a valid sample name")
}
#convert param string to numeric vector
string.w <- substitute(WSrange)
WST <- eval(expr = format.parameter.string(string = string.w), envir = parent.frame())
message('Estimating filtering statistics from WS thresholds ', WST[1], ' to ', WST[2], ' by ', WST[3])
gws <- getWS(ps = ps, WSrange = WST, controlID = controlID, controlFASTA = controlFASTA, useREFSEQ=useREFSEQ)
gws
}
estimate.ASthreshold <- function(ps, WST=NULL, RAT=NULL, CVT=NULL, PFT=NULL, mdCAT=NULL, mdFACTOR=NULL, mdNEGATIVE=FALSE,
minLIB=NULL, Prange=NULL, CVrange=NULL, RArange=NULL){
#throw error if mdCAT doesn't match
if(all(!is.null(mdCAT), !(mdCAT %in% colnames(phyloseq::sample_data(ps))))){
stop("mdCAT provided is not a valid metadata category")
}
#remove samples < minlib
if(is.null(minLIB)){
ps = ps
} else {
pml.c <- nrow(phyloseq::sample_data(ps))
ps = phyloseq::prune_samples(phyloseq::sample_sums(ps)>=minLIB, ps)
message('Removing ',(pml.c - phyloseq::nsamples(ps)), ' samples with read count < ', minLIB)
}
#WS filtering
if (is.null(WST)){
ps.ws <- ps
} else {
ps.ws <- WSfilter(ps = ps, WST = WST)
}
#save WS filtered object for reversion later
ps.wso <- ps.ws
#METADATA BASED SAMPLE FILTERING
if (any(c(is.null(mdCAT), is.null(mdFACTOR)))){
ps.ws <- ps.ws
} else {
ps.ws <- MDfilter(ps = ps.ws, mdFACTOR = mdFACTOR, mdCAT = mdCAT, mdNEGATIVE = mdNEGATIVE)
}
#INCORPORATE FIXED THRESHOLDS
#RELATIVE ABUNDANCE
if(!is.null(RAT)){
ps.ws <- suppressMessages(RAfilter(ps = ps.ws, WST = NULL, RAF = RAT))
message('Applying fixed relative abundance threshold of ', RAT)
}
#CV
if(!is.null(CVT)){
ps.ws <- suppressMessages(CVfilter(ps = ps.ws, WST = NULL, CVF = CVT))
message('Applying fixed CV threshold of ', CVT)
}
#PREVALENCE
if(!is.null(PFT)){
ps.ws <- suppressMessages(Pfilter(ps = ps.ws, WST = NULL, PF = PFT))
message('Applying fixed prevalence threshold of ', PFT)
}
#ESTIMATION
#RELATIVE ABUNDANCE
#build param lists
if(is.null(RArange)){
gr <- NULL
} else {
#convert param string to numeric vector
string.r <- substitute(RArange)
RAF <- eval(expr = format.parameter.string(string = string.r), envir = parent.frame())
message('Estimating filtering statistics from relative abundance thresholds ', RAF[1], ' to ', RAF[2], ' by ', RAF[3])
gr <- suppressMessages(getRA(ps = ps.ws, WST = NULL, RArange = RAF))
}
#CV
#build param lists
if(is.null(CVrange)){
gc <- NULL
} else {
string.c <- substitute(CVrange)
CVF <- eval(expr = format.parameter.string(string = string.c), envir = parent.frame())
message('Estimating filtering statistics from CV thresholds ', CVF[1], ' to ', CVF[2], ' by ', CVF[3])
gc <- suppressMessages(getCV(ps = ps.ws, WST = NULL, CVrange = CVF))
}
#PREVALENCE
#Build param lists
if(is.null(Prange)){
gp <- NULL
} else {
string.p <- substitute(Prange)
PF <- eval(expr = format.parameter.string(string = string.p), envir = parent.frame())
message('Estimating filtering statistics from prevalence thresholds ', PF[1], ' to ', PF[2], ' by ', PF[3])
gp <- suppressMessages(getPrev(ps = ps.ws, WST = NULL, Prange = PF))
}
#CREATE ASV DF
#build df vectors
ts <- taxa_sums(ps.wso)
tsp <- taxa_sums(ps.wso)/sum(taxa_sums(ps.wso)) * 100
namevec <- names(ts)
#standardize to median sample depth for CV calculation
ps.ws <- standardize.median(ps.wso)
asv.tab <- format.ASV.tab(ps.ws)
cv.asv <- apply(asv.tab[namevec,], MARGIN = 1, FUN = function(x) sd(x)/mean(x))
tax.tab <- phyloseq::tax_table(ps.wso)[namevec,]
#set prev vectors to null if no prev stats desired
if (all(c(is.null(Prange), !is.null(PFT)))){
gp.reload <- suppressMessages(getPrev(ps = ps.ws, WST = NULL, Prange = c(0.10,0.11,0.01)))
taxa.cvec <- gp.reload$ASV.prevalence.count
prev <- taxa.cvec[namevec]
prevp <- prev/phyloseq::nsamples(ps.ws) * 100
} else if (all(c(is.null(Prange), is.null(PFT)))){
prev <- rep(NA, length(ts))
prevp <- rep(NA, length(ts))
} else {
gp.reload <- suppressMessages(getPrev(ps = ps.ws, WST = NULL, Prange = PF))
taxa.cvec <- gp.reload$ASV.prevalence.count
prev <- taxa.cvec[namevec]
prevp <- prev/phyloseq::nsamples(ps.ws) * 100
}
#build df and rename
df.asv <- cbind.data.frame(ts, tsp, prev, prevp, cv.asv, tax.tab, rownames(tax.tab))
colnames(df.asv)[1:5] <- c("ASV.read.count", "ASV.read.percent", "ASV.prevalence", "ASV.prevalence.percent", "ASV.CV")
colnames(df.asv)[ncol(df.asv)] <- "ASV.ID"
rownames(df.asv) <- seq(1:nrow(df.asv))
# Build return list
l.return = list()
l.return[['relative.abundance.filtering.stats']] <- gr
l.return[['CV.filtering.stats']] <- gc
l.return[['prevalence.filtering.stats']] <- gp$prevalence.filtering.stats
l.return[['ASV.filtering.stats']] <- df.asv
return(l.return)
}
microfilter <- function(ps, controlID=NULL, mdCAT=NULL, mdFACTOR=NULL, mdNEGATIVE=FALSE, minLIB=NULL, WST=NULL, RAT=NULL, CVT=NULL, PFT=NULL, return.all=FALSE){
#throw error if controlID doesn't match
if(all(!is.null(controlID), !(controlID %in% phyloseq::sample_names(ps)))){
stop("controlID provided is not a valid sample name")
}
#throw error if mdCAT doesn't match
if(all(!is.null(mdCAT), !(mdCAT %in% colnames(phyloseq::sample_data(ps))))){
stop("mdCAT provided is not a valid metadata category")
}
#remove samples < minlib
if(is.null(minLIB)){
ps = ps
} else {
pml.c <- nrow(phyloseq::sample_data(ps))
ps = phyloseq::prune_samples(phyloseq::sample_sums(ps)>=minLIB, ps)
message('Removing ',(pml.c - phyloseq::nsamples(ps)), ' samples with read count < ', minLIB)
}
#create unfiltered sample sum vector
ov <- phyloseq::sample_sums(ps)
#WS filtering
if (is.null(WST)){
ps.ws <- ps
} else {
ps.ws <- WSfilter(ps = ps, WST = WST)
}
#create WS filtered sample sum vector
ifv <- phyloseq::sample_sums(ps.ws)
#calculate percent filtered, individual
p.if <- phyloseq::sample_sums(ps.ws)/phyloseq::sample_sums(ps)*100
asv.tab <- format.ASV.tab(ps.ws)
#METADATA-BASED SAMPLE REMOVAL
if(is.null(controlID)){
npos <- NULL
tax.tab.subset <- NULL
ttsn <- NULL
} else {
#calculate control taxa count
npos <- nrow(asv.tab[which(asv.tab[,match(controlID, colnames(asv.tab))] != 0),])
#get taxonomy of taxa in positive control
tax.tab <- phyloseq::tax_table(ps.ws)
taxanames.control <- rownames(asv.tab[which(asv.tab[,match(controlID, colnames(asv.tab))] != 0),])
tax.tab.subset <- tax.tab[taxanames.control] #taxonomy of taxa in positive control
ttsn <- tax.tab.subset
rownames(ttsn) <- NULL
}
#remove samples by metadata filters
if (any(c(is.null(mdCAT), is.null(mdFACTOR)))){
ps.ws <- ps.ws
} else {
ps.ws <- MDfilter(ps = ps.ws, mdFACTOR = mdFACTOR, mdCAT = mdCAT, mdNEGATIVE = mdNEGATIVE)
}
#AS filtering
#relative abundance filter
if(is.null(RAT)){
ps.ws <- ps.ws
raf <- NULL
} else {
message('Applying relative abundance threshold of ', RAT)
ps.ws <- suppressMessages(RAfilter(ps = ps.ws, WST = NULL, RAF = RAT))
raf <- RAT * sum(phyloseq::taxa_sums(ps.ws))
}
#CV filter
if(is.null(CVT)){
ps.ws <- ps.ws
} else {
message('Applying CV threshold of ', CVT)
ps.ws <- suppressMessages(CVfilter(ps = ps.ws, WST = NULL, CVF = CVT))
}
#prevalence filter
if(is.null(PFT)){
ps.ws <- ps.ws
prev.count <- NULL
} else {
message('Applying prevalence threshold of ', PFT)
ps.ws <- suppressMessages(Pfilter(ps = ps.ws, WST = NULL, PF = PFT))
prev.count <- phyloseq::nsamples(ps.ws) * PFT
}
#create AS filter sample sum vector
pfv <- phyloseq::sample_sums(ps.ws)
#calculate percent filtered, AS
p.pf <- suppressWarnings(phyloseq::sample_sums(ps.ws)/phyloseq::sample_sums(ps)[names(phyloseq::sample_sums(ps.ws))]*100)
#order vectors
pfv <- pfv[names(p.if)]
p.pf <- p.pf[names(p.if)]
#cbind vectors into df
sstab <- cbind(ov, ifv, p.if, pfv, p.pf)
colnames(sstab) <- c("unfiltered.read.count", "WSfiltered.read.count", "WSfiltered.read.percent", "ASfiltered.read.count", "ASfiltered.read.percent")
# Build return list
l.return = list()
if (return.all==FALSE){
return(ps.ws)
} else {
l.return[['filtered.phyloseq']] <- ps.ws
l.return[['ntaxa.in.control']] <- npos
l.return[['control.taxa.sequences']] <- rownames(tax.tab.subset)
l.return[['taxonomy.of.control.taxa']] <- ttsn
l.return[['read.count.table']] <- sstab
l.return[['relative.abundance.filter.read.count']] <- raf
l.return[['prevalence.filter.sample.count']] <- prev.count
}
return(l.return)
}
write.dataset.biom <- function(ps, filePATH, filePREFIX, writeFASTA=TRUE, rename=FALSE, useREFSEQ=FALSE){
#pull seqs from refseq slot or extract from ASV ID for fasta format
if (isTRUE(useREFSEQ)){
#from phyloseq refseq slot
f.onames <- phyloseq::refseq(ps)
} else {
f.onames <- phyloseq::taxa_names(ps)
}
if (isTRUE(rename)){
phyloseq::taxa_names(ps) <- paste("ASV", 1:length(phyloseq::taxa_names(ps)), sep = "")
names(f.onames) <- paste0(">", phyloseq::taxa_names(ps))
} else {
names(f.onames) <- paste0(">", phyloseq::taxa_names(ps))
}
#generate biom file
suppressWarnings(ps.b <- biomformat::make_biom(
data = format.ASV.tab(ps),
sample_metadata = as.data.frame(phyloseq::sample_data(ps)),
observation_metadata = as.data.frame(phyloseq::tax_table(ps)),
matrix_element_type = "int"
)
)
#create output string
if (isTRUE(writeFASTA)){
fa <- print(paste0(filePATH, filePREFIX, "_ASVs.fasta"))
}
bo <- print(paste0(filePATH, filePREFIX, "_ASV_table.biom"))
#write output
if (isTRUE(writeFASTA)){
write.table(x = f.onames, file = fa, quote = FALSE, sep = "\n", col.names = FALSE)
}
#biom export
biomformat::write_biom(x = ps.b, biom_file = bo)
#return phyloseq object with taxa renamed to ASV1, etc., if desired
if (isTRUE(rename)){
return(ps)
}
}
write.dataset <- function(ps, filePATH, filePREFIX, writeFASTA=TRUE, rename=FALSE, useREFSEQ=FALSE){
#pull seqs from refseq slot or extract from ASV ID for fasta format
if (isTRUE(useREFSEQ)){
#from phyloseq refseq slot
f.onames <- phyloseq::refseq(ps)
} else {
f.onames <- phyloseq::taxa_names(ps)
}
if (isTRUE(rename)){
phyloseq::taxa_names(ps) <- paste("ASV", 1:length(phyloseq::taxa_names(ps)), sep = "")
names(f.onames) <- paste0(">", phyloseq::taxa_names(ps))
} else {
names(f.onames) <- paste0(">", phyloseq::taxa_names(ps))
}
#generate asv table formatted for biom generation
asv.tab <- format.ASV.tab(ps)
suppressWarnings(asv.tab <- as.matrix(asv.tab))
cb <- as.matrix(cbind(rownames(asv.tab), asv.tab))
rcb <- as.matrix(rbind(colnames(cb), cb))
rcb[1,1] <- "#ASVID"
rownames(rcb) <- NULL
colnames(rcb) <- NULL
#generate tax table formatted for biom generation
tax.tab <- as.data.frame(phyloseq::tax_table(ps))
tax.tab$taxonomy <- tidyr::unite_(tax.tab, "out", c(colnames(tax.tab)), sep = ";")
cbt <- as.matrix(cbind(rownames(tax.tab), tax.tab$taxonomy))
rcbt <- as.matrix(rbind(c("#ASVID", "taxonomy"), cbt))
rownames(cbt) <- NULL
colnames(cbt) <- NULL
#generate sampledf table formatted for biom generation
samdf <- suppressWarnings(as.matrix(phyloseq::sample_data(ps)))
cbs <- as.matrix(cbind(rownames(samdf), samdf))
rcbs <- as.matrix(rbind(colnames(cbs), cbs))
rcbs[1,1] <- "#SampleID"
rownames(rcbs) <- NULL
colnames(rcbs) <- NULL
#create output string
if (isTRUE(writeFASTA)){
fa <- print(paste0(filePATH, filePREFIX, "_ASVs.fasta"))
}
otb <- print(paste0(filePATH, filePREFIX, "_ASV_table.txt"))
ttb <- print(paste0(filePATH, filePREFIX, "_ASV_taxonomy.txt"))
stb <- print(paste0(filePATH, filePREFIX, "_sample_data.txt"))
#write output
#ASV fasta
if (isTRUE(writeFASTA)){
write.table(x = f.onames, file = fa, quote = FALSE, sep = "\n", col.names = FALSE)
}
#asv.tab
write.table(x = rcb, file = otb, row.names = FALSE, col.names = FALSE, quote = FALSE, sep = "\t")
#tax.tab
write.table(x = rcbt, file = ttb, row.names = FALSE, col.names = FALSE, quote = FALSE, sep = "\t")
#sampledf
write.table(x = rcbs, file = stb, row.names = FALSE, col.names = FALSE, quote = FALSE, sep = "\t")
#return phyloseq object with taxa renamed to ASV1, etc., if desired
if (isTRUE(rename)){
return(ps)
}
}