-
Notifications
You must be signed in to change notification settings - Fork 1
/
regression_exp.py
407 lines (366 loc) · 20.3 KB
/
regression_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
"""
Badam regrssions with sampling and linearised laplace
"""
import os.path
import math
import numpy as np
import tensorflow as tf
import matplotlib
matplotlib.use('Agg') # for server
import matplotlib.pyplot as plt
from visualise import predictive_dist_plot, predictive_dist_plot_sampling
from optimizers import BayesAdam
from data import reg, reg_iter
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
eps = 1e-8
seed = 1
class FullyConnectedNN():
def __init__(self, hparams):
self.hparams = hparams
self.name = hparams.name
self.n_in = hparams.n_in
self.d = hparams.d
self.num_layers = hparams.num_layers
self.n_out = hparams.n_out
self.dropout_rate = hparams.dropout_rate
self.activation = hparams.activation
self.sigma_prior = getattr(self.hparams, "sigma_prior", 0.1)
self.noise_var = getattr(self.hparams, "noise_var", 0.1)
self.reg = getattr(self.hparams, "l2_reg", 0.0)
if hparams.activation == 'relu':
self.activation = tf.nn.relu
elif hparams.activation == 'tanh':
self.activation = tf.nn.tanh
elif hparams.activation == 'sigmoid':
self.activation = tf.nn.sigmoid
elif hparams.activation == 'lrelu':
self.activation = tf.nn.leaky_relu
elif hparams.activation == 'elu':
self.activation = tf.nn.elu
else:
raise ValueError
self.log_folder = os.path.join(self.hparams.tensorboard_dir, "graph_{}".format(self.name))
self._make_graph()
def _make_graph(self):
tf.reset_default_graph()
self.graph = tf.Graph()
with self.graph.as_default():
tf.set_random_seed(seed)
self.sess = tf.Session(config=config)
self.global_step = tf.train.get_or_create_global_step()
self._init_placeholders()
self._init_model(activation=self.activation)
self.sess.run(tf.global_variables_initializer())
self.saver = tf.train.Saver()
if self.hparams.badam:
self.sample_weights()
def _init_placeholders(self):
self.X = tf.placeholder(tf.float32, shape=[None, self.n_in], name='X')
self.Y = tf.placeholder(tf.float32, shape=[None, self.n_out], name='Y')
self.N = tf.placeholder(tf.float32, shape=(), name='N')
self.training = tf.placeholder(tf.bool, shape=(), name='training_flag')
def _init_model(self, activation):
regularizer = tf.contrib.layers.l2_regularizer(scale=self.reg) if self.reg != 0 else None
layer = self.X
for j in range(self.num_layers):
layer = tf.layers.dropout(
tf.layers.dense(layer,
self.d,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
bias_initializer=tf.contrib.layers.xavier_initializer(),
kernel_regularizer=regularizer,
bias_regularizer=regularizer,
name='dense_l{}'.format(j)),
rate=self.dropout_rate,
training=self.training)
# if j == self.num_layers - 1:
# layer = tf.nn.tanh(layer)
# else:
# layer = activation(layer)
layer = activation(layer)
self.preds = tf.layers.dense(layer,
self.n_out,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
bias_initializer=tf.contrib.layers.xavier_initializer(),
kernel_regularizer=regularizer,
bias_regularizer=regularizer,
name='out') # (?, n_out)
self.loss = tf.reduce_mean(tf.square(self.preds - self.Y)) + tf.losses.get_regularization_loss()
if self.hparams.badam:
self.optim = BayesAdam(learning_rate=self.hparams.lr,
laplace_mle=self.hparams.laplace_mle,
N = self.hparams.N,
no_bias_init=self.hparams.no_bias_init,
params = {'beta_1': 0.9,
'beta_2': 0.999,
'prec': 1.0/(self.hparams.sigma_prior**2)})
else:
self.optim = tf.train.AdamOptimizer(learning_rate=self.hparams.lr)
self.grads_loss = self.optim.compute_gradients(loss=self.loss)
self.train_op = self.optim.apply_gradients(grads_and_vars=self.grads_loss)
# Jacobian
self.grads = tf.gradients(self.preds, tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES))
def train(self, tag, n, num_epochs, batch_size, N, return_batch=False, verbose=True, root=''):
"""
Trains for num_epochs
:param tag: str
:param num_epochs: int
:param data_batching_size: int
:return:
"""
with self.graph.as_default():
tf.set_random_seed(seed)
self.reg_train_x, self.reg_train_y = reg(n=n, train=True)
for epoch in range(num_epochs):
num_batches = int(math.ceil(self.reg_train_x.shape[0] / float(batch_size)))
for i in range(num_batches):
inds = np.random.permutation(self.reg_train_x.shape[0])
x = self.reg_train_x[inds[int(i * batch_size):int((i + 1) * batch_size)]].reshape(-1, 1)
y = self.reg_train_y[inds[int(i * batch_size):int((i + 1) * batch_size)]].reshape(-1, 1)
_, loss, preds = self.sess.run([self.train_op, self.loss, self.preds], feed_dict=self.make_inputs_to_graph(x, y, N, train=True))
if verbose and epoch % 500 == 0:
print("Epoch: {0}, val loss: {1:.3f}".format(epoch, loss))
self.save(self.log_folder)
# predictive distirbution
if verbose:
fig, ax = plt.subplots(1, 1)
ax.scatter(x, y, alpha=0.3)
ax.scatter(x, preds, alpha=0.2)
ax.set_xticks([0.0, 0.5], minor=True)
ax.xaxis.grid(True, which='minor')
plt.tight_layout()
plt.savefig("{2}plots/train_dist_{0}_{1}.png".format('badam' if self.hparams.badam else 'variational_dropout', tag, root))
plt.clf()
if return_batch:
return x, y
def debug_weights(self):
for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
print("{0}: {1}".format(v.name, self.sess.run(v)))
def debug_mean_coef(self):
for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
print("{0}: {1}".format(v.name, self.sess.run(self.optim.get_slot(v, "mean_coef"))))
def test(self, n, batch_size, N, tag, verbose=True, root=''):
"""
:param iters: number of iterations of testing to make
:return: test loss
"""
losses = []
predictions = []
xx = []
yy = []
with self.graph.as_default():
tf.set_random_seed(seed)
for x, y in reg_iter(n, train=False, batch_size=batch_size):
xx += x[:, 0].tolist()
yy += y[:, 0].tolist()
pred, loss = self.sess.run([self.preds, self.loss], feed_dict=self.make_inputs_to_graph(x,
y, N,
train=False))
predictions += pred[:, 0].tolist()
losses.append(loss)
# predictive distribution
if verbose:
fig, ax = plt.subplots(1, 1)
ax.scatter(xx, yy, alpha=0.5)
ax.scatter(xx, predictions, alpha=0.05)
ax.set_xticks([0.0, 0.5], minor=True)
ax.xaxis.grid(True, which='minor')
plt.tight_layout()
plt.savefig("{2}plots/test_dist_{0}_{1}.png".format('badam' if self.hparams.badam else 'variational_dropout', tag, root))
plt.clf()
return np.mean(losses)
def sample_weights(self):
"""
Samples weights according the BADAM distribution and places them into the graph
:return: None
"""
with self.graph.as_default():
tf.set_random_seed(seed)
weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
weights = [v for v in weights if 'out' not in v.name]
# sigmas = [tf.sqrt(self.optim.get_slot(v, "sigma"), name="ws_sqrt_{}".format(i)) for i, v in enumerate(weights)]
if self.hparams.laplace_mle:
sigmas = [tf.sqrt(self.optim.get_slot(v, "sigma")) for v in weights] # the slot sigma is actually the variance
mean_coefs = [self.optim.get_slot(v, "mean_coef") for v in weights]
store = []
for _ in range(self.hparams.n_samples):
vv = [coef * v + sigma * tf.random_normal(v.get_shape()) for v, coef, sigma in zip(weights, mean_coefs, sigmas)]
store.append(vv)
y = list(zip(*store)) # [(<tf.Tensor 'add:0' shape=(1, 100) dtype=float32>,), (<tf.Tensor 'add_1:0' shape=(100,) dtype=float32>,), (<tf.Tensor 'add_2:0' shape=(100, 100) dtype=float32>,), (<tf.Tensor 'add_3:0' shape=(100,) dtype=float32>,)]
self.new_vars = [tf.add_n(v) / len(v) for v in y]
else:
sigmas = [tf.sqrt(self.optim.get_slot(v, "sigma") / self.N) for v in weights] # the slot sigma is actually the variance
self.new_vars = [v + sigma * tf.random_normal(v.get_shape()) for v, sigma in zip(weights, sigmas)]
# assignment
self.assignment_op = [v.assign(v_new) for v, v_new in zip(weights, self.new_vars)]
def predictive_dist_sampling(self, x, y, N, samples=100):
"""
Plots the predictive distributions for Variational Dropout and BADAM
:param d: number of points
:param data_batching_size: batch_size for use in outputing the predictive distributions
:return: None
"""
xx, yy, predictions = [], [], []
with self.graph.as_default():
tf.set_random_seed(seed)
if self.hparams.badam:
for i in range(samples):
self.sess.run(self.assignment_op, feed_dict=self.make_inputs_to_graph(x, y, N, train=False))
pred = self.sess.run(self.preds, feed_dict=self.make_inputs_to_graph(x, y, N, train=False))
yy += y[:, 0].tolist()
xx += x[:, 0].tolist()
predictions += pred[:, 0].tolist()
self.restore(self.log_folder)
# MC dropout
else:
for _ in range(samples):
pred = self.sess.run(self.preds, feed_dict=self.make_inputs_to_graph(x, y, N, train=True))
predictions += pred[:, 0].tolist()
yy += y[:, 0].tolist()
xx += x[:, 0].tolist()
return predictions, yy, xx
def gradients(self, d, data, targets, N):
no_train = data.shape[0]
S = np.zeros((no_train, d))
with self.graph.as_default():
tf.set_random_seed(seed)
for i in range(no_train):
gg = self.sess.run(self.grads, feed_dict=self.make_inputs_to_graph(data[i].reshape(-1, 1),
targets[i].reshape(-1, 1),
N,
train=False)) # gradients: a list of (gradient, variable) pairs.
gg_flat = np.hstack(np.array([g.flatten() for g in gg]))
S[i, :] = gg_flat
return S
def predictive_dist_linear(self, x, y, N, data_var = 0.0, ggn_approx=False):
y_preds, pred_sigmas = [], []
with self.graph.as_default():
tf.set_random_seed(seed)
weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=tf.get_variable_scope().name)
d = sum([self.sess.run(w).size for w in weights])
if ggn_approx:
raise NotImplementedError
# for i in range(x.shape[0]):
# y_pred = self.sess.run([self.preds], feed_dict=self.make_inputs_to_graph(x[i, :].reshape(1, 1), y[i, :].reshape(1, 1), N, train=False))[0] # gradients: a list of (gradient, variable) pairs.
# y_preds.append(y_pred)
# d = sum([self.sess.run(w).size for w in weights])
# Z = self.gradients(d, self.reg_train_x, self.reg_train_y) # (no_train x d) max = 1, min-1
# N = Z.shape[0]
# G = self.gradients(d, x, y) # (no_test x d) max =1, min=-1
# Gunsq = np.expand_dims(G, 2)
# Pinv = 1/self.sigma_prior**2 # 100 <--
# PinvG = Pinv * Gunsq # max = 100
# ZPinvG = np.matmul(Z, np.transpose(np.squeeze(PinvG))) # (no_train, no_test) max= 800, min 500, foong max is 200
# PinvZt = Pinv * np.transpose(Z) # (d, no_train)
# M = np.eye(N) + (1/data_var) * np.matmul(Z, PinvZt) # (no_train, no_train), max = 80000 <-- order of mag smaller
# M = (M + np.transpose(M)) / 2
# M = M + np.eye(N)* M[0,0]*1e-6
# U = scipy.linalg.cholesky(M) # (no_train, no_train) # max = 200
# V = scipy.linalg.solve_triangular(U, ZPinvG) # (no_train, no_test) # min=-4000, 800
# v_tmp = np.zeros((x.shape[0], 1, 1))
# for i in range(x.shape[0]):
# v_tmp[i, 0, 0] = np.expand_dims(np.transpose(V), 1)[i, :, :] @ np.expand_dims(np.transpose(V), 2)[i, :, :]
# v = (-1 /data_var) * np.einsum('ijk,ikl->ijl', np.expand_dims(np.transpose(V), 1), np.expand_dims(np.transpose(V), 2)) # (no_test, 1, 1) # foong max = -7 min = -1000
#
# G *= PinvG
# prior_term = np.sum(G, 1)
# pred_sigmas = np.sqrt(data_var + prior_term + np.squeeze(v))
else:
print([w.get_shape() for w in weights])
# Checking that gradients are doing what we think they are doing.
g_l_1 = self.sess.run(tf.gradients(self.loss, tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=tf.get_variable_scope().name)),
feed_dict=self.make_inputs_to_graph(x[0, :].reshape(1, 1),
y[0, :].reshape(1, 1),
N, train=False))
g_l_2 = self.sess.run(self.grads_loss, feed_dict=self.make_inputs_to_graph(x[0, :].reshape(1, 1),
y[0, :].reshape(1, 1),
N, train=False))
# tf.compute gradiens returns (grad, var) pairs
g_l_2 = [g[0] for g in g_l_2]
for a, b in zip(g_l_1, g_l_2):
assert np.allclose(a, b)
# Checking that gradients are doing what we think they are doing.
g_l_1 = self.sess.run(tf.gradients(self.loss, tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=tf.get_variable_scope().name)),
feed_dict=self.make_inputs_to_graph(x[1, :].reshape(1, 1),
y[1, :].reshape(1, 1),
N, train=False))
g_l_2 = self.sess.run(self.grads_loss, feed_dict=self.make_inputs_to_graph(x[1, :].reshape(1, 1),
y[1, :].reshape(1, 1),
N, train=False))
g_l_2 = [g[0] for g in g_l_2]
for a, b in zip(g_l_1, g_l_2):
assert np.allclose(a, b)
for i in range(x.shape[0]):
y_pred, gg = self.sess.run([self.preds, self.grads], feed_dict=self.make_inputs_to_graph(x[i, :].reshape(1, 1), y[i, :].reshape(1, 1), N, train=False)) # gradients: a list of (gradient, variable) pairs.
y_preds.append(y_pred)
sigmas = [self.optim.get_slot(v, "sigma") for v in weights]
S = np.diag(np.hstack(np.array([self.sess.run(s).flatten() for s in sigmas])))
S *= (1.0/N)
gg_flat = np.hstack(np.array([g.flatten() for g in gg]))
vv = data_var + np.matmul(np.transpose(gg_flat), np.matmul(S, gg_flat))
pred_sigmas.append(np.sqrt(vv + eps))
return y_preds, pred_sigmas, d
def save(self, model_dir):
self.saver.save(self.sess, os.path.join(model_dir, "model.ckpt"))
def restore(self, model_dir):
self.saver.restore(self.sess, os.path.join(model_dir, "model.ckpt"))
def make_inputs_to_graph(self, batch_x, batch_y, N, train):
return {self.X: batch_x, self.Y: batch_y, self.N: N, self.training: train}
if __name__ == "__main__":
t = 'badam'
n = 200
no_test = 400
n_epochs = 20000
learning_rate = 0.001
batch_size = 128
root_model_folder = '../results/'
pickle_file = 'reg_pd.pickle'
root_data_folder = '../results/'
data_var = 0.00
dr = 0.0
num_layers = 2
dims = 50
Ns = [200, 400, 1000]
Ns_sampling = [float(i) for i in np.geomspace(2000, 20000, 5)]
l2_reg = [0.00001, 0.0001]
for r in l2_reg:
###########
## Train ##
###########
tag = "{0}_{1}_{2}_{3}".format(t, num_layers, dims, r)
hparams_badam = tf.contrib.training.HParams(name=tag, n_in=1, d=dims,
num_layers=num_layers, n_out=1,
dropout_rate=dr, activation='tanh',
sigma_prior=0.1, noise_var=data_var, l2_reg=r,
badam=True, laplace_mle=False, N=n,
output_tb_gradients=False, val_time=1e2,
tensorboard_dir='logs', lr=learning_rate,
model_folder=os.path.join(root_model_folder, 'badam' + tag),
n_samples=1, no_bias_init=True,
badam_no_out=False)
model = FullyConnectedNN(hparams_badam)
x_train_batch, y_train_batch = model.train(tag, n, n_epochs, batch_size, n, return_batch=True, root='', verbose=False)
test_loss = model.test(no_test, batch_size, n, tag, root='', verbose=False)
print("Test loss: {}".format(test_loss))
#########
## Val ##
#########
val_mse = []
x, y = reg(n, True, seed=123)
for N in Ns:
preds, yy, _ = model.predictive_dist_sampling(x.reshape(-1, 1), y.reshape(-1, 1), N, samples=100)
val_mse.append(np.mean([(p-target)**2 for p, target in zip(preds, yy)]))
##########
## Test ##
##########
mipw_sampling, mipw_ll = [], []
x, y = reg(no_test, False, seed=123)
for N in Ns_sampling:
preds, yy, xx = model.predictive_dist_sampling(x.reshape(-1, 1), y.reshape(-1, 1), N, samples=100)
mipw = predictive_dist_plot_sampling(x_train_batch, y_train_batch, xx, yy, preds, tag="sampling_{0}_{1}".format(tag, N), root='')
mipw_sampling.append(mipw)
for N in Ns:
mus, sigmas, no_params = model.predictive_dist_linear(x.reshape(-1, 1), y.reshape(-1, 1), N, data_var=0.0, ggn_approx=False) # no_params won't change for each iter
mipw = predictive_dist_plot(x_train_batch, y_train_batch, x, mus, sigmas, tag="ll_{0}_{1}".format(tag, N), root='')
mipw_ll.append(mipw)