-
Notifications
You must be signed in to change notification settings - Fork 0
/
lorenztimestep.m
500 lines (429 loc) · 22.3 KB
/
lorenztimestep.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
classdef lorenztimestep < handle
% An analytic arc segment and its evolution in time under the Lorenz flow parameterized as a 2-variable Taylor series.
% Written by S.K. 05/2016
% FIXED:
% Fast operator inversion added 02/2017
% Deprecated the lorenz_arc class 12/2016
% TO DO:
% Delegate functions inside class constructor. constructor should do no work
% Implement as a subclass of TaylorTimestep superclass
% Add support for vectorized method calls
% Implement surface area computation
properties
Coord; % vector of BAscalars for each coordinate of this chart
Modes; % truncation size in [space,time] directions
Tau=1; % vector field (time) rescaling
TimeSpan; % interval in time for this chart
MTCrange = [-1,1]; % material (spatial) coordinates this chart
ErrorBound; % analytic error bound
end
properties(Hidden = true)
Parameter = [28,10,8/3]; %[rho,sigma,beta]
Weight = 'ones';
MaxTau; % maximal tau for this timestep
InitCoef; % (BAscalar) form of initial data
RadiiPoly; % Radii polynomial data for validation of this step
ErrorProp; % decimal digits of precision loss for this step
SubArcDepth; % keep track of sub-division depth and break out of infinite sub-division loops
InitialError = 0; % error at the start of this timestep
Parent; % handle for the preceding timestep
end
methods
%% =================================== CLASS CONSTRUCTOR METHODS ===================================
function obj = lorenztimestep(Xinit,Yinit,Zinit,parameter,modes,varargin)
% class constructor
if(nargin > 0)
p = inputParser;
addRequired(p,'Xinit')
addRequired(p,'Yinit')
addRequired(p,'Zinit')
addRequired(p,'parameter')
addRequired(p,'modes')
addParameter(p,'timeSpan',0)
%parse varargs
parse(p,Xinit,Yinit,Zinit,parameter,modes,varargin{:})
obj.TimeSpan = p.Results.timeSpan;
% set properties
obj.Parameter = parameter;
obj.Modes = modes;
obj.InitCoef = [BAscalar(Xinit,obj.Modes);BAscalar(Yinit,obj.Modes);BAscalar(Zinit,obj.Modes)];
switch length(modes)
case 1 % initial date is a point
obj.Coord = [BAscalar(Xinit);BAscalar(Yinit);BAscalar(Zinit)];
generatecoef(obj); % No scaling on IVP solver.
case 2 % initial data is an arc
obj.Coord = [BAscalar(Xinit,[1,modes(2)]);BAscalar(Yinit,[1,modes(2)]);BAscalar(Zinit,[1,modes(2)])];
generatecoef(obj);
if length(obj.TimeSpan) == 1 || isa(obj.TimeSpan,'cell')
row_decay = obj.decay;
L = (1e-16/row_decay)^(1/(obj.Modes(1)-1));
if length(obj.TimeSpan) == 1 % rescale coefficients automatically based on coefficient (in time) decay
obj.scaletime(L);
else
obj.scaletime(min([L,obj.TimeSpan{2}])); % take a timestep based on coefficient decay but not to exceed Timespan{2} units
end
elseif isa(obj.TimeSpan,'double') % take a fixed timestep
obj.scaletime(diff(obj.TimeSpan));
end
end
end
end
function generatecoef(obj)
% generate the coefficients for this timestep by recursively solving the differential equation
switch length(obj.Modes)
case 1
for m = 1:obj.Modes - 1
XZ = recursive_conv(obj.Coord(1).Coef,obj.Coord(3).Coef,'1d');
XY = recursive_conv(obj.Coord(1).Coef,obj.Coord(2).Coef,'1d');
obj.Coord(1).Coef(m+1) = (obj.Parameter(2)/m)*(obj.Coord(2).Coef(m) - obj.Coord(1).Coef(m));
obj.Coord(2).Coef(m+1) = (1/m)*(obj.Parameter(1)*obj.Coord(1).Coef(m) - XZ - obj.Coord(2).Coef(m));
obj.Coord(3).Coef(m+1) = (1/m)*(XY - obj.Parameter(3)*obj.Coord(3).Coef(m));
end
case 2
for m = 1:(obj.Modes(1)-1)
% cauchy products for non-linear terms
XZ = conv2([zeros(size(obj.Coord(1).Coef)-[0,1]),obj.Coord(1).Coef],obj.Coord(3).Coef,'valid');
XY = conv2([zeros(size(obj.Coord(1).Coef)-[0,1]),obj.Coord(1).Coef],obj.Coord(2).Coef,'valid');
obj.Coord(1).Coef(m+1,:) = (obj.Parameter(2)/m)*(obj.Coord(2).Coef(m,:) - obj.Coord(1).Coef(m,:));
obj.Coord(2).Coef(m+1,:) = (1/m)*(obj.Parameter(1)*obj.Coord(1).Coef(m,:) - XZ - obj.Coord(2).Coef(m,:));
obj.Coord(3).Coef(m+1,:) = (1/m)*(XY - obj.Parameter(3)*obj.Coord(3).Coef(m,:));
end
end
for jj = 1:3
obj.Coord(jj).Modes = obj.Modes;
end
end
function ddt = diff(obj)
% return time derivative for this chart
ddt = [obj.Coord(1).dt;obj.Coord(2).dt;obj.Coord(3).dt];
end
function coefs = taumap(obj,Tau)
% evaluation of time-tau map
coefs = [obj.Coord(1).fixtime(Tau);obj.Coord(2).fixtime(Tau);obj.Coord(3).fixtime(Tau)];
end
function scaletime(obj,L)
% rescale time for this chart by L
obj.Coord(1).scaletime(L/obj.Tau); % new coefficients correspond to image under the time-rescaled flow.
obj.Coord(2).scaletime(L/obj.Tau);
obj.Coord(3).scaletime(L/obj.Tau);
obj.Tau = L;
if isa(obj.TimeSpan,'cell')
obj.TimeSpan = [obj.TimeSpan{1},L];
else
obj.TimeSpan(2) = L;
end
end
function objNorm = norm(obj)
% returns the max norm for this chart
objNorm = max(norm(obj.Coord));
end
function decay = decay(obj)
% returns the coefficient decay for this chart
decay = max([obj.Coord(1).decay,obj.Coord(2).decay,obj.Coord(3).decay]);
end
%% =================================== EVALUATION METHODS ===================================
function varargout = eval(obj,data)
% evaluation method for obtaining image of this chart in phase space.
% INPUT:
% data: m-by-(k+1) array of the form [S1,S2,...,Sk,T];
x = real(obj.Coord(1).eval(data));
y = real(obj.Coord(2).eval(data));
z = real(obj.Coord(3).eval(data));
switch nargout
case 1
varargout{1} = [x;y;z];
case 3
varargout{1} = x;
varargout{2} = y;
varargout{3} = z;
end
end
function [vertex,face,cData] = tri(obj,spaceNodes,timeNodes)
% evaluate this chart on a Delauney triangulation of space-time grid
% INPUT:
% sNodes, tNodes are vectors or REAL time and RELATIVE space coordinates
% pick out timeNodes which lie in this timestep
tdir = sign(timeNodes(end)-timeNodes(1)); % direction of the flow
initTime = obj.TimeSpan(1); % initial time for this timestep
finalTime = initTime + tdir*obj.Tau; % final time for this timestep
timeSlice = tdir*initTime < tdir*timeNodes & tdir*timeNodes < tdir*finalTime; % index for tNodes which lie in this timestep
if ~any(timeSlice)
face = [];
vertex = [];
cData = [];
return
end
% real time coordinates
if tdir < 0
realTime = [initTime,timeNodes(timeSlice),max([finalTime,timeNodes(end)])]; %
else
realTime = [initTime,timeNodes(timeSlice),min([finalTime,timeNodes(end)])];
end
materialTime = obj.mtc(realTime); % relative time coordinates
if numel(materialTime) ==1
numVertex = length(spaceNodes);
data = [reshape(spaceNodes,[],1),materialTime*ones(numVertex,1)];
[X,Y,Z] = obj.eval(data);
vertex = [X,Y,Z];
face = [(1:numVertex-2)',(2:numVertex-1)',(3:numVertex)'];
cData = realTime*ones(numVertex,1);
else
% triangulate flow values on valid space-time coordinates
[ss,tt] = meshgrid(spaceNodes,materialTime);
data = [reshape(ss,[],1),reshape(tt,[],1)];
s = data(:,1);
t = data(:,2);
try
face = delaunay(s,t); % index triples for delaunay triangulation in space-time.
[X,Y,Z] = obj.eval(data); % coordinates for each vertex
vertex = [X,Y,Z];
cData = repmat(realTime',length(spaceNodes),1);
catch ME
face = [];
vertex = [];
cData = [];
disp('Empty triangles returned. Something is wrong')
end
end
end
function MTC = mtc(obj,T)
% scale a vector of real time coordinates, T, to material time coordinates in [-1,1] relative to this time step.
MTC = (T - obj.TimeSpan(1))/obj.Tau;
end
function nodes = rk45subdiv(obj,timeSpan,numArcs,varargin)
% returns spatial sub-division nodes by using RK45 to estimate the (spatial) Lyapunov exponents locally (in time).
switch nargin
case 3
gridDensity = [2500,200]; % use a dense space-time grid for numerics
otherwise
gridDensity = varargin{1};
end
% approximate subdivision using RK45 heuristics
s = linspace(-1,1,gridDensity(1));
T = linspace(timeSpan(1),timeSpan(2),gridDensity(2));
evl = @(arc,s)polyval(fliplr(arc),s); % evaluation of polynomial arc
%RK45 test integration
lorenz = @(t,y)vectorizeinitdata(t,y);
ICs = nan(3*length(s),1);
ICs(1:3:end) = evl(obj.InitCoef(1).Coef(1,:),s)';
ICs(2:3:end) = evl(obj.InitCoef(2).Coef(1,:),s)';
ICs(3:3:end) = evl(obj.InitCoef(3).Coef(1,:),s)';
[~,sol] = ode45(lorenz,T,ICs);
PX = sol(:,1:3:end)';
PY = sol(:,2:3:end)';
PZ = sol(:,3:3:end)';
% approximate lyapunov exponents
dX = diff(diff(PX),1,2);
dY = diff(diff(PY),1,2);
dZ = diff(diff(PZ),1,2);
d_tot = abs(dX) + abs(dY) + abs(dZ);
dS_tot = sum(d_tot,2);
intS = [0,cumsum(dS_tot)'];
davg = intS(end)/numArcs;
nodes = [-1,nan(1,numArcs)];
for j = 1:numArcs
next_ind = find(intS > davg,1);
nodes(j+1) = mean([s(next_ind-1),s(next_ind)]);
intS = intS - davg;
end
nodes(end) = 1;
end
%% =================================== VALIDATION METHODS ===================================
function Feval = zeroMap(obj,varargin)
% compute F for polynomial approximation
if nargin > 1
numType = varargin{1};
else
numType = 'intval';
end
switch numType
case 'double' % non-rigorous. Use only for testing/debugging
% add/subtract gamma has no effect on the finite part so it is omitted
F1 = obj.Coord(1).dt - obj.Tau*obj.Parameter(2)*shift(obj.Coord(2)-obj.Coord(1));
F2 = obj.Coord(2).dt - obj.Tau*shift(obj.Parameter(1)*obj.Coord(1) - mtimes(obj.Coord(1),obj.Coord(3),'Full') - obj.Coord(2));
F3 = obj.Coord(3).dt - obj.Tau*shift(mtimes(obj.Coord(1),obj.Coord(2),'Full') - obj.Parameter(3)*obj.Coord(3));
Feval = [F1;F2;F3];
case 'intval' % rigorous enclosure for big F map of obj
intvalCoord = obj.Coord.intval;
zeroOrder = [BAscalar(intvalCoord(1).Coef(1,:),obj.Modes);BAscalar(intvalCoord(2).Coef(1,:),obj.Modes);BAscalar(intvalCoord(3).Coef(1,:),obj.Modes)];
F1 = intvalCoord(1).dt + obj.InitCoef(1).intval - zeroOrder(1) - obj.Tau*obj.Parameter(2)*shift(intvalCoord(2) - intvalCoord(1));
F2 = intvalCoord(2).dt + obj.InitCoef(2).intval - zeroOrder(2) - obj.Tau*shift(obj.Parameter(1)*intvalCoord(1) - mtimes(intvalCoord(1),intvalCoord(3),'Full') - intvalCoord(2));
F3 = intvalCoord(3).dt + obj.InitCoef(3).intval - zeroOrder(3) - obj.Tau*shift(mtimes(intvalCoord(1),intvalCoord(2),'Full') - obj.Parameter(3)*intvalCoord(3));
Feval = [F1;F2;F3];
end
end
function rPoly = validate(obj,varargin)
% Computes validated error bounds for analytic error (ell^1) of the polynomial chart
% ----------------------- F,DF, A, and A_dagger -----------------------
if(nargin>1)
initialError = varargin{1};
else
initialError = 0;
end
MN = prod(obj.Modes);
% F = obj.zeroMap('double');
F = obj.zeroMap();
% prime operator given by its action on vectors by Ah = h'
Idprime = BAoperator(diag(repmat([1,1:obj.Modes(1)-1],1,obj.Modes(2))),obj.Modes);
% shift operator given by its action on vectors by Ah = eta(h)
shift_subdiag = ones(1,MN);
shift_subdiag(obj.Modes(2):obj.Modes(2):end) = zeros(1,obj.Modes(1));
shift_matrix = diag(shift_subdiag);
Idshift = BAoperator([shift_matrix(end,:);shift_matrix(1:end-1,:)],obj.Modes);
% finite part of DF as 9 BAoperators (components of the Jacobian)
DF(1,1) = Idprime + obj.Tau*obj.Parameter(2)*Idshift; %DxF1
DF(1,2) = -obj.Tau*obj.Parameter(2)*Idshift; %DyF1
DF(1,3) = BAoperator(zeros(MN),obj.Modes); %DzF1
DF(2,1) = -obj.Tau*obj.Parameter(1)*Idshift + obj.Tau*leftTimesOperator(obj.Coord(3).shift); %DxF2
DF(2,2) = Idprime + obj.Tau*Idshift; %DyF2
DF(2,3) = obj.Tau*leftTimesOperator(obj.Coord(1).shift); %DzF2
DF(3,1) = -obj.Tau*leftTimesOperator(obj.Coord(2).shift); %DxF3
DF(3,2) = -obj.Tau*leftTimesOperator(obj.Coord(1).shift); %DyF3
DF(3,3) = Idprime + obj.Tau*obj.Parameter(3)*Idshift; %DzF3
DF_matrix = DF.block;
A_matrix = inv(DF); % inverse operator
% A to BAoperator
for j = 1:3
for k = 1:3
A(j,k) = BAoperator(A_matrix(1+(j-1)*MN:j*MN,1+(k-1)*MN:k*MN),obj.Modes);
end
end
%% ----------------------- Radii Polynomial Bounds -----------------------
r_star = max([100*initialError,1e-13]); % initial guess for Lipschitz bound
Anorms = [sum(arrayfun(@(j)A(1,j).norm,1:3));sum(arrayfun(@(j)A(2,j).norm,1:3));sum(arrayfun(@(j)A(3,j).norm,1:3))];
normA = max(Anorms); % operator norm ||A||
% Y0
F_MN = [BAscalar(F(1).Coef,obj.Modes),BAscalar(F(2).Coef,obj.Modes),BAscalar(F(3).Coef,obj.Modes)];
y1 = A(1,1)*F_MN(1) + A(1,2)*F_MN(2) + A(1,3)*F_MN(3); %[A*F]_1
Y_1 = y1.norm;
% y2 = mtimes(obj.Coord(1),obj.Coord(3),'Full'); %full X*Z including spillover terms
y2 = BAscalar(F(2).Coef);
AF_2 = (A(2,1)*F_MN(1) + A(2,2)*F_MN(2) + A(2,3)*F_MN(3)); %convolution without spillover terms
y2.Coef(1:obj.Modes(1),1:obj.Modes(2)) = AF_2.Coef;
Y_2 = y2.norm;
% y3 = mtimes(obj.Coord(1),obj.Coord(2),'Full'); %full X*Y including spillover terms
y3 = BAscalar(F(3).Coef);
AF_3 = (A(3,1)*F_MN(1) + A(3,2)*F_MN(2) + A(3,3)*F_MN(3)); %convolution without spillover terms
y3.Coef(1:obj.Modes(1),1:obj.Modes(2)) = AF_3.Coef;
Y_3 = y3.norm;
Y0 = max(sup([Y_1,Y_2,Y_3])) + initialError;
% Z0
ADF_matrix = A_matrix*DF_matrix;
Id_MN = eye(size(ADF_matrix));
Id_ADF = Id_MN - ADF_matrix;
for j = 1:3
for k = 1:3
I_ADF(j,k) = BAoperator(Id_ADF(1+(j-1)*MN:j*MN,1+(k-1)*MN:k*MN),obj.Modes);
end
end
IADFnorms = [sum(arrayfun(@(j)I_ADF(1,j).norm,1:3));sum(arrayfun(@(j)I_ADF(2,j).norm,1:3));sum(arrayfun(@(j)I_ADF(3,j).norm,1:3))];
Z0 = max(IADFnorms);
% Z1
Z1 = (obj.Tau./obj.Modes(1))*max([2*obj.Parameter(1),obj.Parameter(2) + obj.Coord(3).norm + 1 + obj.Coord(1).norm, obj.Coord(2).norm + obj.Coord(1).norm + obj.Parameter(3)]);
% Z2
Z2 = (obj.Tau*r_star)*max(1/obj.Modes(1),normA);
% radii polynomial
rPoly.bounds = [Z2,Z1,Z0,Y0];
rPoly.coefs = [Z2,Z0+Z1 - 1,Y0];
try
rPoly.radius = solveradiipoly(rPoly.coefs); % interval quadratic equation solver
catch ME
error('Radii polynomial solver encountered a problem')
end
% rPoly.radius = min(roots(rPoly.coefs));
obj.RadiiPoly = rPoly.bounds;
if imag(rPoly.radius) ~= 0
obj.ErrorBound = Inf;
warning('Radii polynomial has no real roots')
elseif rPoly.radius < 0
obj.ErrorBound = Inf;
warning('Radii polynomial has a NEGATIVE root. Something is wrong')
else
obj.ErrorBound = rPoly.radius;
% fprintf('Error: %.4d \n', [rPoly.radius])
end
if initialError > 0
obj.ErrorProp = log10(obj.ErrorBound/initialError); % decimal places of precision lost on this step
else
obj.ErrorProp = log10(obj.ErrorBound/eps(1));
end
if obj.ErrorProp < 0
error('Error can never decrease in a timestep. Something is wrong')
end
end
%% ===================================DEPRECATED METHODS ===================================
% These should never be called anymore and will return an error if they are. Remove these if no calls occur for some time.
function plot(obj,s,t,varargin) % deprecated 03/2018
error('This method is deprecated')
% if nargin > 3
% plot_color = varargin{1};
% else
% plot_color = 'g';
% end
% [x,y,z] = obj.mesh_eval(s,t);
% x = x'; y = y'; z = z';
% plot3(x,y,z,'LineWidth',1.2,'Color',plot_color);
end
function newStep = advect(obj,timeDirection,errTol,numSubDivs,maxSubDiv) % deprecated 03/2018
% this should never be called
error('This method is deprecated')
% % errTol: maximum error per time unit
% % timeDirection: 1 or -1 for direction to flow in time
% % numSubDivs: number of subdivisions to take if error tolerance is exceeded
% % maxSubDiv: maximum number of subdivision attempts before integration stops
% obj.validate(obj.InitialError);
% maxErr = obj.Tau*errTol;
% if obj.ErrorProp < maxErr
% newStep = obj;
% elseif obj.SubArcDepth == maxSubDiv
% set(obj,'Tau',0)
% newStep = obj;
% else
% disp('subdividing');
% divNodes = obj.rk45subdiv([obj.TimeSpan(1),obj.TimeSpan(1) + timeDirection*5*obj.Tau],numSubDivs);
% xSubArcs = obj.InitCoef(1).subdivide([divNodes(1:end-1)',divNodes(2:end)'],0);
% ySubArcs = obj.InitCoef(2).subdivide([divNodes(1:end-1)',divNodes(2:end)'],0);
% zSubArcs = obj.InitCoef(3).subdivide([divNodes(1:end-1)',divNodes(2:end)'],0);
% if obj.MaxTau < Inf;
% timeSpan = {obj.TimeSpan(1),obj.MaxTau};
% else
% timeSpan = obj.TimeSpan(1);
% end
% for j = 1:numSubDivs
% newStep(j) = lorenztimestep(xSubArcs(j,:),ySubArcs(j,:),zSubArcs(j,:),obj.Parameter,obj.Modes,'timeSpan',timeSpan);
% newStep(j).SubArcDepth = obj.SubArcDepth + 1;
% newStep(j).MTCrange = mean(obj.MTCrange) + divNodes(j,j+1)*diff(obj.MTCrange);
% end
% end
end % end advect
function patch(obj,s,t,varargin) % deprecated 03/2018
error('This method is deprecated. Use the lorenzpatch function')
% % s,t are vectors of evaluation points.
% switch length(obj)
% case 1
% if nargin > 3
% patch_color = varargin{1};
% else
% patch_color = 'g';
% end
% S = length(s); T = length(t);
% [Xs,Ys,Zs] = obj.mesh_eval(s,t(1));
% [Xs(S+1:S+T),Ys(S+1:S+T),Zs(S+1:S+T)] = obj.mesh_eval(s(end),t);
% [Xs(S+T+1:2*S+T),Ys(S+T+1:2*S+T),Zs(S+T+1:2*S+T)] = obj.mesh_eval(fliplr(s),t(end));
% [Xs(2*S+T+1:2*(S+T)),Ys(2*S+T+1:2*(S+T)),Zs(2*S+T+1:2*(S+T))] = obj.mesh_eval(s(1),fliplr(t));
% gcf;
% patch(Xs,Ys,Zs,patch_color,'EdgeColor',patch_color);
% otherwise
% for j = 1:length(obj)
% obj(j).patch(s,t,varargin{:})
% end
% end
end
function [x,y,z] = mesh_eval(obj,s,t) % deprecated 03/2018
error('This method is deprecated')
% x = real(obj.Coord(1).gridEval(s,t));
% y = real(obj.Coord(2).gridEval(s,t));
% z = real(obj.Coord(3).gridEval(s,t));
end %end mesh_eval
end %end methods
end %end class