-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_detection.py
42 lines (33 loc) · 1.21 KB
/
face_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import cv2
import numpy as np
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
cap = cv2.VideoCapture(0)
while True:
# cap.read will return one status variable and the captured image
ret, img = cap.read()
# classifier will work on gray scale images
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# This will detect all the faces in the current frame and returns the co-ordinates of the faces
# gray = input image
# 1.3,5 some parameters for getting accurate values
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
# we will be having multiple faces so we need get each and every faces and draw rectangle
for (x,y,w,h) in faces:
# input = colored image
# x,y - first point : x+w,y+h - end point
# 2 - thickness
cv2.rectangle(img, (x,y), (x+w, y+h), (255,0,0), 2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes :
cv2.rectangle(roi_color, (ex,ey), (ex+ew,ey+eh), (0,255,0), 2)
# to show the image
cv2.imshow('img',img)
k = cv2.waitKey(30) & 0xff
if k == 27:
break
# release camera
cap.release()
cv2.destroyAllWindows()