Skip to content

Latest commit

 

History

History
106 lines (88 loc) · 4.33 KB

README.md

File metadata and controls

106 lines (88 loc) · 4.33 KB

implicit-recon

Introduction

The implicit-recon repository contains functionality for the reconstruction of shapes using implicit representations from images or voxel grids with intensity values. This repository is structured as follows:

implicit-recon
├── example_output
│   ├── logs
│   ├── predictions_chd_ct
│   ├── saved_models
│   └── stl
├── example_runs
└── src
    ├── metrics
    ├── models
    └── utilities

Requirements

The code has been tested for Python 3.8. It has the following dependencies: numpy, pillow, scikit-image, tqdm, torch, torchvision, torchsummary, tensorboard, numpy-stl

These can be installed (in your virtual environment) by running

pip install -r requirements.txt

Note: If you experience compatibility issues with torch and torchvision, remove them from the requirements.txt and follow the instructions on https://pytorch.org/.

Creating the data

The Congenital Heart Disease (CHD) CT data-set was kindly made available to us by Dr. Xiaowei Xu from the Department of Computer Science and Engineering, University of Notre Dame.

Suppose the root of the above directory tree is BASE_DATA_DIR="CHD_orig/". Running, from the directory src/utilities/, the command

python compute_distance_fields.py --input_dir $BASE_DATA_DIR

splits the CHD CT data-set into training, validation and test data (and optionally computes distance fields) with input images in images_1_slice_512 and segmented binary masks (labels) in BP_masks_512. This results in the following directory tree, rooted at the CHD_orig directory:

CHD_orig
└── output_512
    ├── test
    │   ├── BP_masks_512
    │   └── images_1_slice_512
    ├── train
    │   ├── BP_masks_512
    │   └── images_1_slice_512
    └── val
        ├── BP_masks_512
        └── images_1_slice_512

Scripts

The example_runs directory contains several Python scripts that can either be called from the command line (straight from their example_runs directory), or imported in another Python script. Documentation for precise usage is obtained by running the script with the --help argument.

  • train.py: Train a VGGTrunc1, VGGTrunc2, or UNetImplicit neural network.
  • infer.py: Inference of a trained VGGTrunc1, VGGTrunc2, or UNetImplicit neural network applied to image files in a directory.
  • parameter_study.py: Import functionality from train.py to train for several UNetImplicit architectures with different network parameters.

In addition, the src/utilities directory contains:

  • png_to_mesh.py: Convert alphabetically ordered PNG files in a directory into an STL file.

Example workflow

Suppose our dataset is split following the directory tree shown above, for which the root of the above directory tree is BASE_DATA_DIR="CHD_orig/" and its subdirectory is SUB_DATA_DIR="output_512". As above, input images are stored in the subdirectory IMAGE_DIR="images_1_slice_512", while binary masks (labels) are stored in the subdirectory MASK_DIR="BP_masks_512". The base directory for the output is the repository root BASE_OUTPUT_DIR="implicit_recon".

Let's examine an example workflow for:

  • training a NETWORK="UNetImplicit",
  • storing and loading the model weights in MODEL_FILE="../example_output/saved_models/weights_chd_ct.pth"
  • applying inference to the directory IMAGE_INFERENCE_DIR=$BASE_DATA_DIR$SUB_DATA_DIR"/test/images_1_slice_512",
  • storing the inferred predictions in the directory PRED_DIR="../example_output/predictions_chd_ct", and
  • and converting to an STL file in STL_DIR="../example_output/stl".

With the above definitions, the following commands should then be run from the example_runs directory:

#!/bin/bash
python train.py --base_data_dir $BASE_DATA_DIR --sub_data_dir $SUB_DATA_DIR --base_output_dir $BASE_OUTPUT_DIR \
            --image_dir $IMAGE_DIR --mask_dir $MASK_DIR --model_in $MODEL_FILE --model_out $MODEL_FILE \
            --network $NETWORK --n_epochs 10
python infer.py --model_path $MODEL_FILE --image_paths $IMAGE_INFERENCE_DIR --output_path $PRED_DIR
python ../src/utilities/png_to_mesh.py --init_slice 0 --final_slice 134 --aspect_ratio 2 \
   --in_path $PRED_DIR --out_path $STL_DIR --out_fname model_chd_ct.stl --out_res 0 0 0