Skip to content

Commit

Permalink
fix: equation labels
Browse files Browse the repository at this point in the history
  • Loading branch information
Jlh18 committed Dec 4, 2024
1 parent 822e1e6 commit c842797
Showing 1 changed file with 8 additions and 8 deletions.
16 changes: 8 additions & 8 deletions blueprint/src/chapter/natural_model.tex
Original file line number Diff line number Diff line change
Expand Up @@ -140,7 +140,7 @@ \subsection{Pi types}
\arrow["\Pi"', from=2-1, to=2-2]
\end{tikzcd}
\begin{equation}
\label{diag:pi_intp_pullback}
\label{eq:PiDefinition}
\end{equation}
\end{center}
\end{defn}
Expand All @@ -167,7 +167,7 @@ \subsection{Sigma types}
\arrow["\Si"', from=2-1, to=2-2]
\end{tikzcd}
\begin{equation}
\label{diag:si_intp_pullback}
\label{eq:SiDefinition}
\end{equation}
\end{center}

Expand Down Expand Up @@ -226,7 +226,7 @@ \subsection{Identity types}
\arrow["\Id"', from=2-1, to=2-2]
\end{tikzcd}
\begin{equation}
\label{diag:id_pullback_def}
\label{eq:IdDefinition}
\end{equation}
\end{center}

Expand Down Expand Up @@ -745,7 +745,7 @@ \subsection{Stability of the universe under type formers}
\arrow[from=5-5, to=5-6]
\end{tikzcd}
\begin{equation}
\label{diag:J_U_definition}
\label{eq:UJDefinition}
\end{equation}
\end{center}

Expand Down Expand Up @@ -836,7 +836,7 @@ \subsection{Stability of the universe under type formers}
The front face of the outer cube is the naturality square for $\Star{\rho}$ from
\ref{eq:JDefinition2}
and similarly the back face is the naturality square for $\Star{\rho_{U}}$ from
\ref{diag:J_U_definition}.
\ref{eq:UJDefinition}.

Since the left face is a pullback square,
to make $J_{U} : T_{U} \to \Poly{q_{U}}{\E}$ it suffices to consider
Expand Down Expand Up @@ -884,8 +884,8 @@ \subsection{Binary products and Exponentials}
\arrow["\fst"', from=2-2, to=2-3]
\end{tikzcd}\end{center}

Then, respectively, the pullback of the diagrams \ref{diag:pi_intp_pullback}
and \ref{diag:si_intp_pullback} for interpreting $\Pi$ and $\Si$
Then, respectively, the pullback of the diagrams \ref{eq:PiDefinition}
and \ref{eq:SiDefinition} for interpreting $\Pi$ and $\Si$
rules along this map give us pullback diagrams for interpreting
function types and product types.
% https://q.uiver.app/#q=WzAsNixbMSwwLCJcXFBvbHl7XFx0cH17XFxUZXJtfSJdLFsxLDEsIlxcUG9seXtcXHRwfXtcXFR5cGV9Il0sWzIsMCwiXFxUZXJtIl0sWzIsMSwiXFxUeXBlIl0sWzAsMSwiXFxUeXBlIFxcdGltZXMgXFxUeXBlIl0sWzAsMCwiRiJdLFswLDEsIlxcUG9seXtcXHRwfXtcXHRwfSIsMl0sWzAsMiwiXFxsYSJdLFsyLDMsIlxcdHAiXSxbMSwzLCJcXFBpIiwyXSxbMCwzLCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbNCwxLCIoXFxmc3QsXFxzbmQpIiwyXSxbNSw0LCIoXFxkb20sXFxjb2QpIiwyXSxbNSwwLCIoXFxkb20sXFxmdW4pIiwyXSxbNCwzLCJcXEV4cCIsMix7ImN1cnZlIjo1fV0sWzUsMiwiXFxsYSIsMCx7ImN1cnZlIjotNH1dLFs1LDEsIiIsMix7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==
Expand Down Expand Up @@ -1075,7 +1075,7 @@ \subsection{Extensional identity types and UIP}
Equality reflection says that if one can construct a term satisfying $\Id(a,b)$
then we have that definitionally $a \equiv b$,
i.e. they are equal morphisms in the natural model.
This amounts to requiring that \ref{diag:id_pullback_def} is a pullback,
This amounts to requiring that \ref{eq:IdDefinition} is a pullback,
i.e. $\rho$ is an isomorphism
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXFRlcm0iXSxbMCwxLCJcXHRwIFxcdGltZXNfXFxUeXBlIFxcdHAiXSxbMSwxLCJcXFR5cGUiXSxbMSwwLCJcXFRlcm0iXSxbMCwxLCJcXGRlIiwyXSxbMSwyLCJcXElkIiwyXSxbMywyLCJcXHRwIl0sWzAsMywiXFxyZWZsIl0sWzAsMiwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV1d
\begin{center}\begin{tikzcd}
Expand Down

0 comments on commit c842797

Please sign in to comment.