Skip to content

Commit

Permalink
added GroupoidSigma (#29)
Browse files Browse the repository at this point in the history
Co-authored-by: Spencer Woolfson <[email protected]>
  • Loading branch information
SpencerWoolfson and Spencer Woolfson authored Dec 4, 2024
1 parent dd08b3d commit ad6a085
Showing 1 changed file with 43 additions and 0 deletions.
43 changes: 43 additions & 0 deletions GroupoidModel/Groupoids/GroupoidNaturalModel.lean
Original file line number Diff line number Diff line change
Expand Up @@ -95,6 +95,49 @@ def PolyDataGet (Γ : sGrpdᵒᵖ) (Q : ((NaturalModel.P NaturalModel.tp).obj Na
apply yonedaEquiv.invFun
exact Q


def GroupoidSigma {Γ : Grpd} (A : Γ ⥤ Grpd) (B : (GroupoidalGrothendieck A) ⥤ Grpd) : Γ ⥤ Grpd where
obj x := by
let xA : (A.obj x) ⥤ GroupoidalGrothendieck A := by
fconstructor
. fconstructor
. intro a
fconstructor
. exact x
. exact a
. intros a1 a2 f
fconstructor
dsimp [Quiver.Hom]
exact 𝟙 x
dsimp [Grpd.forgetToCat, Quiver.Hom]
rw [A.map_id]
dsimp[CategoryStruct.id]
exact f
. aesop_cat
. sorry
refine Grpd.of (GroupoidalGrothendieck (xA ⋙ B))
map f := by
dsimp[Grpd.of,Bundled.of,Quiver.Hom]
rename_i X Y
fconstructor
. fconstructor
. intro a
rcases a with ⟨x,a⟩
dsimp at a
fconstructor
. exact (A.map f).obj x
. dsimp
let F : (B.obj { base := X, fiber := x }) ⟶ (B.obj { base := Y, fiber := (A.map f).obj x }) := by
refine B.map ?_
fconstructor
. exact f
. dsimp [Grpd.forgetToCat]
exact 𝟙 _
exact F.obj a
. aesop_cat
. aesop_cat
. aesop_cat

instance GroupoidNMSigma : NaturalModel.NaturalModelSigma sGrpd.{u} where
Sig := by
fconstructor
Expand Down

0 comments on commit ad6a085

Please sign in to comment.