diff --git a/blueprint/print/print.pdf b/blueprint/print/print.pdf index a487b7f..403f6c6 100644 Binary files a/blueprint/print/print.pdf and b/blueprint/print/print.pdf differ diff --git a/blueprint/src/groupoid_model.tex b/blueprint/src/groupoid_model.tex index 6696930..d4ae55e 100644 --- a/blueprint/src/groupoid_model.tex +++ b/blueprint/src/groupoid_model.tex @@ -39,6 +39,7 @@ \subsection{Classifying display maps} \medskip \begin{defn}[The display map classifier] + \label{tp_defn} We would like to define a natural transformation in $\Pshgrpd$ \[ \tp \co \Term \to \Type \] @@ -60,15 +61,16 @@ \subsection{Classifying display maps} in \quad $\PshCat$. } \] - Since any small groupoid is also a large category $\grpd \hookrightarrow \Cat$, - we can restrict $\Cat$ indexed presheaves to be $\grpd$ indexed presheaves. + Since any small groupoid is also a large category $i : \grpd \hookrightarrow \Cat$, + we can restrict $\Cat$ indexed presheaves to be $\grpd$ indexed presheaves + (this the nerve in $i_{!} \dashv \mathsf{res}$). We define $\tp \co \Term \to \Type$ as the image of $U \circ$ under this restriction. % https://q.uiver.app/#q=WzAsNixbMCwwLCJcXENhdCJdLFsxLDAsIlxcUHNoQ2F0Il0sWzIsMCwiXFxQc2hncnBkIl0sWzAsMSwiXFxncnBkIl0sWzEsMSwiWy0sXFxncnBkXSJdLFsyLDEsIlxcVHlwZSJdLFswLDEsInkiXSxbMSwyLCJcXHRleHRzZntyZXN9Il0sWzMsNCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dLFs0LDUsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0= \[\begin{tikzcd}[row sep = tiny] \Cat & \PshCat & \Pshgrpd \\ \grpd & {[-,\grpd]} & \Type \arrow["\yo", from=1-1, to=1-2] - \arrow["{\textsf{res}}", from=1-2, to=1-3] + \arrow["{\mathsf{res}}", from=1-2, to=1-3] \arrow[maps to, from=2-1, to=2-2] \arrow[maps to, from=2-2, to=2-3] \end{tikzcd}\] @@ -171,7 +173,7 @@ \subsection{Classifying display maps} \arrow[from=1-2, to=2-2] \arrow["A"', from=2-1, to=2-2] \end{tikzcd}\] - We send this square along $\textsf{res} \circ \yo$ in the following + We send this square along $\mathsf{res} \circ \yo$ in the following % https://q.uiver.app/#q=WzAsNSxbMiwxLCJcXFBzaGdycGQiXSxbMSwyXSxbMiwwLCJcXFBzaENhdCJdLFswLDAsIlxcQ2F0Il0sWzAsMSwiXFxncnBkIl0sWzMsMiwiXFx5byJdLFsyLDAsIlxcdGV4dHNme3Jlc30iXSxbMywwXSxbNCwzXSxbNCwwLCJcXHlvIl1d \[\begin{tikzcd} \Cat && \PshCat \\ @@ -179,13 +181,13 @@ \subsection{Classifying display maps} & {} \arrow["\yo", from=1-1, to=1-3] \arrow[from=1-1, to=2-3] - \arrow["{\textsf{res}}", from=1-3, to=2-3] + \arrow["{\mathsf{res}}", from=1-3, to=2-3] \arrow[from=2-1, to=1-1] \arrow["\yo", from=2-1, to=2-3] \end{tikzcd}\] The Yoneda embedding $\yo : \Cat \to \PshCat$ preserves pullbacks, - as does $\textsf{res}$ since it is a right adjoint - (with left Kan extension $\io_{!} \dashv \textsf{res}_{\io}$). + as does $\mathsf{res}$ since it is a right adjoint + (with left Kan extension $\io_{!} \dashv \mathsf{res}_{\io}$). \end{proof} \medskip @@ -1140,8 +1142,70 @@ \subsection{Pi and Sigma structure} %% TODO fix subsection title \quad \be \, x = (\ev{\al}{B} \, x, b_{x}) \] +\end{proof} \subsection{Identity types} +\begin{defn}[Identity formation and introduction] + To define the commutative square in $\Pshgrpd$ + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXFRlcm0iXSxbMCwxLCJcXHRwIFxcdGltZXNfXFxUeXBlIFxcdHAiXSxbMSwxLCJcXFR5cGUiXSxbMSwwLCJcXFRlcm0iXSxbMCwxLCJcXGRlIiwyXSxbMSwyLCJcXElkIiwyXSxbMywyLCJcXHRwIl0sWzAsMywiXFxyZWZsIl1d +\[\begin{tikzcd} + \Term & \Term \\ + {\tp \times_\Type \tp} & \Type + \arrow["\refl", from=1-1, to=1-2] + \arrow["\de"', from=1-1, to=2-1] + \arrow["\tp", from=1-2, to=2-2] + \arrow["\Id"', from=2-1, to=2-2] +\end{tikzcd}\] + We first note that both $\de$ and $\tp$ in the are + in the essential image + of the composition from \cref{tp_defn} + % https://q.uiver.app/#q=WzAsMyxbMCwwLCJcXENhdCJdLFsxLDAsIlxcUHNoQ2F0Il0sWzIsMCwiXFxQc2hncnBkIl0sWzAsMSwiXFx5byJdLFsxLDIsIlxcbWF0aHNme3Jlc30iXV0= +\[\begin{tikzcd} + \Cat & \PshCat & \Pshgrpd + \arrow["\yo", from=1-1, to=1-2] + \arrow["{\mathsf{res}}", from=1-2, to=1-3] +\end{tikzcd}\] + since the composition preserves pullbacks. + So we first define in $\Cat$ +% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXHB0Z3JwZCJdLFswLDEsIlUgXFx0aW1lc19cXGdycGQgVSJdLFsxLDEsIlxcZ3JwZCJdLFsxLDAsIlxccHRncnBkIl0sWzAsMSwiXFxkZSIsMl0sWzEsMiwiXFxJZCciLDJdLFszLDIsIlUiXSxbMCwzLCJcXHJlZmwnIl1d + \begin{equation} + \label{id_diagram1} + \begin{tikzcd} + \ptgrpd & \ptgrpd \\ + {U \times_\grpd U} & \grpd + \arrow["{\refl'}", from=1-1, to=1-2] + \arrow["\de"', from=1-1, to=2-1] + \arrow["U", from=1-2, to=2-2] + \arrow["{\Id'}"', from=2-1, to=2-2] +\end{tikzcd} + \end{equation} + Then obtain $\Id$ and $\refl$ in $\Pshgrpd$ + by applying $\mathsf{res} \circ \yo$ to this diagram. + + To this end, + let $\Id' : U \times_{\grpd} U \to \grpd$ act on objects by + taking the \textit{set} - the discrete groupoid - of isomorphisms + \[ (A, a_{0}, a_{1}) \mapsto A(a_{0}, a_{1})\] + and on morphisms + $(f, \phi_{0}, \phi_{1}) : (A, a_{0}, a_{1}) \to (B, b_{0}, b_{1})$ by + \[(f : {\color{gray} A \to B}, + \phi_{0} : {\color{gray} f a_{0} \to b_{0}}, + \phi_{1} : {\color{gray} f a_{1} \to b_{1}}) \mapsto \phi_{1} \circ f(-) \circ \phi_{0}^{-1}\] + + Let $\refl' : \ptgrpd \to \ptgrpd$ act on objects by + \[ (A, a) \mapsto (A(a,a), \id_{a}) \] + and on morphisms $(f, \phi) : (A, a) \to (B, b)$ by + \[ (f : {\color{gray} A \to B}, \phi : {\color{gray} (A, a) \to (B, b)}) + \mapsto (\phi \circ f(-) \circ \phi^{-1}, \_) \] + where the second component has to be the identity on the object $\id_{d}$, + since $B(b,b)$ is a discrete groupoid. + So we need a merely propositional proof that the two maps are equal, + indeed + \[ \phi \circ f(\id_{a}) \circ \phi^{-1} = \id_{b}\] +\end{defn} +\begin{proof} + Since $\de (A,a) = (A, a, a)$, it follows that the square + in \cref{id_diagram1} commutes. \end{proof} diff --git a/blueprint/src/polynomial.tex b/blueprint/src/polynomial.tex index de10b37..00f1d08 100644 --- a/blueprint/src/polynomial.tex +++ b/blueprint/src/polynomial.tex @@ -419,16 +419,16 @@ \arrow["{\Star{\rho}_X}", from=1-3, to=2-3] \end{tikzcd}\] where $\al^{*} \rho$ is defined as -% https://q.uiver.app/#q=WzAsNixbMCwyLCJcXEdhIl0sWzEsMiwiQSJdLFsxLDEsIkIiXSxbMSwwLCJDIl0sWzAsMCwiXFxHYSBcXGNkb3RfcyBcXGFsIl0sWzAsMSwiXFxHYSBcXGNkb3RfdCBcXGFsIl0sWzAsMSwiXFxhbCIsMl0sWzIsMSwidCJdLFszLDIsIlxccmhvIl0sWzUsMF0sWzUsMiwidF4qIHkiXSxbNSwxLCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbNCwzLCJzXiogeSJdLFs0LDUsIlxcYWxeKiBcXHJobyIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs0LDIsIiIsMCx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ== +% https://q.uiver.app/#q=WzAsNixbMCwyLCJcXEdhIl0sWzEsMiwiQSJdLFsxLDEsIkIiXSxbMSwwLCJDIl0sWzAsMCwiXFxHYSBcXGNkb3RfcyBcXGFsIl0sWzAsMSwiXFxHYSBcXGNkb3RfdCBcXGFsIl0sWzAsMSwiXFxhbCIsMl0sWzIsMSwidCJdLFszLDIsIlxccmhvIl0sWzUsMF0sWzUsMiwidF4qIFxcYWwiXSxbNSwxLCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbNCwzLCJzXiogXFxhbCJdLFs0LDUsIlxcYWxeKiBcXHJobyIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs0LDIsIiIsMCx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ== \[\begin{tikzcd} {\Ga \cdot_s \al} & C \\ {\Ga \cdot_t \al} & B \\ \Ga & A - \arrow["{s^* y}", from=1-1, to=1-2] + \arrow["{s^* \al}", from=1-1, to=1-2] \arrow["{\al^* \rho}"', dashed, from=1-1, to=2-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=2-2] \arrow["\rho", from=1-2, to=2-2] - \arrow["{t^* y}", from=2-1, to=2-2] + \arrow["{t^* \al}", from=2-1, to=2-2] \arrow[from=2-1, to=3-1] \arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-1, to=3-2] \arrow["t", from=2-2, to=3-2]