Skip to content

Commit

Permalink
remove outdated Notes
Browse files Browse the repository at this point in the history
  • Loading branch information
Jlh18 committed Aug 28, 2024
1 parent 1021e76 commit 6333a4a
Show file tree
Hide file tree
Showing 3 changed files with 74 additions and 10 deletions.
Binary file modified blueprint/print/print.pdf
Binary file not shown.
78 changes: 71 additions & 7 deletions blueprint/src/groupoid_model.tex
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ \subsection{Classifying display maps}
\medskip

\begin{defn}[The display map classifier]
\label{tp_defn}
We would like to define a natural transformation in
$\Pshgrpd$
\[ \tp \co \Term \to \Type \]
Expand All @@ -60,15 +61,16 @@ \subsection{Classifying display maps}
in \quad $\PshCat$.
}
\]
Since any small groupoid is also a large category $\grpd \hookrightarrow \Cat$,
we can restrict $\Cat$ indexed presheaves to be $\grpd$ indexed presheaves.
Since any small groupoid is also a large category $i : \grpd \hookrightarrow \Cat$,
we can restrict $\Cat$ indexed presheaves to be $\grpd$ indexed presheaves
(this the nerve in $i_{!} \dashv \mathsf{res}$).
We define $\tp \co \Term \to \Type$ as the image of $U \circ$ under this restriction.
% https://q.uiver.app/#q=WzAsNixbMCwwLCJcXENhdCJdLFsxLDAsIlxcUHNoQ2F0Il0sWzIsMCwiXFxQc2hncnBkIl0sWzAsMSwiXFxncnBkIl0sWzEsMSwiWy0sXFxncnBkXSJdLFsyLDEsIlxcVHlwZSJdLFswLDEsInkiXSxbMSwyLCJcXHRleHRzZntyZXN9Il0sWzMsNCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoibWFwcyB0byJ9fX1dLFs0LDUsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Im1hcHMgdG8ifX19XV0=
\[\begin{tikzcd}[row sep = tiny]
\Cat & \PshCat & \Pshgrpd \\
\grpd & {[-,\grpd]} & \Type
\arrow["\yo", from=1-1, to=1-2]
\arrow["{\textsf{res}}", from=1-2, to=1-3]
\arrow["{\mathsf{res}}", from=1-2, to=1-3]
\arrow[maps to, from=2-1, to=2-2]
\arrow[maps to, from=2-2, to=2-3]
\end{tikzcd}\]
Expand Down Expand Up @@ -171,21 +173,21 @@ \subsection{Classifying display maps}
\arrow[from=1-2, to=2-2]
\arrow["A"', from=2-1, to=2-2]
\end{tikzcd}\]
We send this square along $\textsf{res} \circ \yo$ in the following
We send this square along $\mathsf{res} \circ \yo$ in the following
% https://q.uiver.app/#q=WzAsNSxbMiwxLCJcXFBzaGdycGQiXSxbMSwyXSxbMiwwLCJcXFBzaENhdCJdLFswLDAsIlxcQ2F0Il0sWzAsMSwiXFxncnBkIl0sWzMsMiwiXFx5byJdLFsyLDAsIlxcdGV4dHNme3Jlc30iXSxbMywwXSxbNCwzXSxbNCwwLCJcXHlvIl1d
\[\begin{tikzcd}
\Cat && \PshCat \\
\grpd && \Pshgrpd \\
& {}
\arrow["\yo", from=1-1, to=1-3]
\arrow[from=1-1, to=2-3]
\arrow["{\textsf{res}}", from=1-3, to=2-3]
\arrow["{\mathsf{res}}", from=1-3, to=2-3]
\arrow[from=2-1, to=1-1]
\arrow["\yo", from=2-1, to=2-3]
\end{tikzcd}\]
The Yoneda embedding $\yo : \Cat \to \PshCat$ preserves pullbacks,
as does $\textsf{res}$ since it is a right adjoint
(with left Kan extension $\io_{!} \dashv \textsf{res}_{\io}$).
as does $\mathsf{res}$ since it is a right adjoint
(with left Kan extension $\io_{!} \dashv \mathsf{res}_{\io}$).
\end{proof}

\medskip
Expand Down Expand Up @@ -1140,8 +1142,70 @@ \subsection{Pi and Sigma structure} %% TODO fix subsection title
\quad
\be \, x = (\ev{\al}{B} \, x, b_{x})
\]
\end{proof}

\subsection{Identity types}

\begin{defn}[Identity formation and introduction]
To define the commutative square in $\Pshgrpd$
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXFRlcm0iXSxbMCwxLCJcXHRwIFxcdGltZXNfXFxUeXBlIFxcdHAiXSxbMSwxLCJcXFR5cGUiXSxbMSwwLCJcXFRlcm0iXSxbMCwxLCJcXGRlIiwyXSxbMSwyLCJcXElkIiwyXSxbMywyLCJcXHRwIl0sWzAsMywiXFxyZWZsIl1d
\[\begin{tikzcd}
\Term & \Term \\
{\tp \times_\Type \tp} & \Type
\arrow["\refl", from=1-1, to=1-2]
\arrow["\de"', from=1-1, to=2-1]
\arrow["\tp", from=1-2, to=2-2]
\arrow["\Id"', from=2-1, to=2-2]
\end{tikzcd}\]

We first note that both $\de$ and $\tp$ in the are
in the essential image
of the composition from \cref{tp_defn}
% https://q.uiver.app/#q=WzAsMyxbMCwwLCJcXENhdCJdLFsxLDAsIlxcUHNoQ2F0Il0sWzIsMCwiXFxQc2hncnBkIl0sWzAsMSwiXFx5byJdLFsxLDIsIlxcbWF0aHNme3Jlc30iXV0=
\[\begin{tikzcd}
\Cat & \PshCat & \Pshgrpd
\arrow["\yo", from=1-1, to=1-2]
\arrow["{\mathsf{res}}", from=1-2, to=1-3]
\end{tikzcd}\]
since the composition preserves pullbacks.
So we first define in $\Cat$
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXHB0Z3JwZCJdLFswLDEsIlUgXFx0aW1lc19cXGdycGQgVSJdLFsxLDEsIlxcZ3JwZCJdLFsxLDAsIlxccHRncnBkIl0sWzAsMSwiXFxkZSIsMl0sWzEsMiwiXFxJZCciLDJdLFszLDIsIlUiXSxbMCwzLCJcXHJlZmwnIl1d
\begin{equation}
\label{id_diagram1}
\begin{tikzcd}
\ptgrpd & \ptgrpd \\
{U \times_\grpd U} & \grpd
\arrow["{\refl'}", from=1-1, to=1-2]
\arrow["\de"', from=1-1, to=2-1]
\arrow["U", from=1-2, to=2-2]
\arrow["{\Id'}"', from=2-1, to=2-2]
\end{tikzcd}
\end{equation}
Then obtain $\Id$ and $\refl$ in $\Pshgrpd$
by applying $\mathsf{res} \circ \yo$ to this diagram.

To this end,
let $\Id' : U \times_{\grpd} U \to \grpd$ act on objects by
taking the \textit{set} - the discrete groupoid - of isomorphisms
\[ (A, a_{0}, a_{1}) \mapsto A(a_{0}, a_{1})\]
and on morphisms
$(f, \phi_{0}, \phi_{1}) : (A, a_{0}, a_{1}) \to (B, b_{0}, b_{1})$ by
\[(f : {\color{gray} A \to B},
\phi_{0} : {\color{gray} f a_{0} \to b_{0}},
\phi_{1} : {\color{gray} f a_{1} \to b_{1}}) \mapsto \phi_{1} \circ f(-) \circ \phi_{0}^{-1}\]

Let $\refl' : \ptgrpd \to \ptgrpd$ act on objects by
\[ (A, a) \mapsto (A(a,a), \id_{a}) \]
and on morphisms $(f, \phi) : (A, a) \to (B, b)$ by
\[ (f : {\color{gray} A \to B}, \phi : {\color{gray} (A, a) \to (B, b)})
\mapsto (\phi \circ f(-) \circ \phi^{-1}, \_) \]
where the second component has to be the identity on the object $\id_{d}$,
since $B(b,b)$ is a discrete groupoid.
So we need a merely propositional proof that the two maps are equal,
indeed
\[ \phi \circ f(\id_{a}) \circ \phi^{-1} = \id_{b}\]
\end{defn}
\begin{proof}
Since $\de (A,a) = (A, a, a)$, it follows that the square
in \cref{id_diagram1} commutes.
\end{proof}
6 changes: 3 additions & 3 deletions blueprint/src/polynomial.tex
Original file line number Diff line number Diff line change
Expand Up @@ -419,16 +419,16 @@
\arrow["{\Star{\rho}_X}", from=1-3, to=2-3]
\end{tikzcd}\]
where $\al^{*} \rho$ is defined as
% https://q.uiver.app/#q=WzAsNixbMCwyLCJcXEdhIl0sWzEsMiwiQSJdLFsxLDEsIkIiXSxbMSwwLCJDIl0sWzAsMCwiXFxHYSBcXGNkb3RfcyBcXGFsIl0sWzAsMSwiXFxHYSBcXGNkb3RfdCBcXGFsIl0sWzAsMSwiXFxhbCIsMl0sWzIsMSwidCJdLFszLDIsIlxccmhvIl0sWzUsMF0sWzUsMiwidF4qIHkiXSxbNSwxLCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbNCwzLCJzXiogeSJdLFs0LDUsIlxcYWxeKiBcXHJobyIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs0LDIsIiIsMCx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==
% https://q.uiver.app/#q=WzAsNixbMCwyLCJcXEdhIl0sWzEsMiwiQSJdLFsxLDEsIkIiXSxbMSwwLCJDIl0sWzAsMCwiXFxHYSBcXGNkb3RfcyBcXGFsIl0sWzAsMSwiXFxHYSBcXGNkb3RfdCBcXGFsIl0sWzAsMSwiXFxhbCIsMl0sWzIsMSwidCJdLFszLDIsIlxccmhvIl0sWzUsMF0sWzUsMiwidF4qIFxcYWwiXSxbNSwxLCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbNCwzLCJzXiogXFxhbCJdLFs0LDUsIlxcYWxeKiBcXHJobyIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFs0LDIsIiIsMCx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==
\[\begin{tikzcd}
{\Ga \cdot_s \al} & C \\
{\Ga \cdot_t \al} & B \\
\Ga & A
\arrow["{s^* y}", from=1-1, to=1-2]
\arrow["{s^* \al}", from=1-1, to=1-2]
\arrow["{\al^* \rho}"', dashed, from=1-1, to=2-1]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=2-2]
\arrow["\rho", from=1-2, to=2-2]
\arrow["{t^* y}", from=2-1, to=2-2]
\arrow["{t^* \al}", from=2-1, to=2-2]
\arrow[from=2-1, to=3-1]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-1, to=3-2]
\arrow["t", from=2-2, to=3-2]
Expand Down

0 comments on commit 6333a4a

Please sign in to comment.