Skip to content

Commit

Permalink
dependent pair classifier
Browse files Browse the repository at this point in the history
  • Loading branch information
Jlh18 committed Aug 8, 2024
1 parent 3d6b57a commit 1fd5346
Show file tree
Hide file tree
Showing 2 changed files with 60 additions and 4 deletions.
64 changes: 60 additions & 4 deletions Notes/natural_model_univ/groupoid_model.tex
Original file line number Diff line number Diff line change
Expand Up @@ -841,14 +841,14 @@ \subsection{$\Pi$ and $\Si$ structure}
to get
\[\counit \circ (\al, \be) : \Ga \to \tp \times_{\Type} \tp_{*} \Type\]
then extract the type by composing with the projection to $\Type$
\[\Type^{*} \Term \circ \counit \circ (\al, \be) : \Ga \to \Type\]
\[\pi_{\Type} \circ \counit \circ (\al, \be) : \Ga \to \Type\]
Finally, this corresponds to a unique map
$\ev{\al}{B} : \Ga \to \grpd$.
\end{defn}

\medskip

\begin{defn}[Classifier for dependent pairs]
\begin{defn}[Classifier for dependent pairs]\label{dependent_pair_classifier}
Recall the following definition of composition of polynomial endofunctors,
specialized to our situation
% https://q.uiver.app/#q=WzAsMTEsWzMsMCwiXFxQb2x5e1xcdHB9IHtcXFR5cGV9Il0sWzMsMSwiXFxUeXBlIl0sWzIsMF0sWzIsMSwiXFxUZXJtIl0sWzEsMSwiXFxUZXJtIFxcdGltZXMgXFxUeXBlIl0sWzEsMiwiXFxUeXBlIl0sWzIsMiwiXFx0ZXJtaW5hbCJdLFswLDEsIlxcVGVybSBcXHRpbWVzIFxcVGVybSJdLFswLDIsIlxcVGVybSJdLFsxLDBdLFswLDAsIlEiXSxbMCwxLCJcXHRwXyogXFxUZXJtXiogXFxUeXBlIl0sWzIsMF0sWzIsM10sWzMsMSwiXFx0cCIsMl0sWzIsMSwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzQsM10sWzQsNV0sWzUsNl0sWzMsNl0sWzQsNiwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzcsNF0sWzcsOF0sWzgsNSwiXFx0cCIsMl0sWzcsNSwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzEwLDddLFsxMCw0LCIiLDEseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XSxbOSwyLCJcXFRlcm0gXFx0aW1lc197XFxUeXBlfSBcXFBvbHl7XFx0cH0gXFxUeXBlIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoibm9uZSJ9LCJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzEwLDldLFs5LDQsIlxcY291bml0IiwxXSxbMTAsMCwiXFx0cCBcXHRyaWFuZ2xlbGVmdCBcXHRwIiwxLHsiY3VydmUiOi0zfV1d
Expand Down Expand Up @@ -877,10 +877,66 @@ \subsection{$\Pi$ and $\Si$ structure}
\arrow["\tp"', from=3-1, to=3-2]
\arrow[from=3-2, to=3-3]
\end{tikzcd}\]
Then $Q$ classifies the data of a pair of dependent terms $(a, b)$,
\end{defn}

\medskip

\begin{prop}
$Q$ classifies the data of a pair of dependent terms $(a, b)$,
and $\tp \triangleleft \tp$
extracts the underlying type and dependent type $(A, B)$.
\end{defn}

\[ Q \, \Ga \iso \{ (\be : \ga \to \ptgrpd, \al : \Ga \to \ptgrpd, B : \Ga \cdot U \circ \al \to \grpd) \st U \circ \be = \ev{\al}{\be} \}\]
\end{prop}
\begin{proof}
Extending the diagram from \cref{dependent_pair_classifier}
% https://q.uiver.app/#q=WzAsMTIsWzQsMSwiXFxQb2x5e1xcdHB9IHtcXFR5cGV9Il0sWzQsMiwiXFxUeXBlIl0sWzMsMV0sWzMsMiwiXFxUZXJtIl0sWzIsMiwiXFxUZXJtIFxcdGltZXMgXFxUeXBlIl0sWzIsMywiXFxUeXBlIl0sWzMsMywiXFx0ZXJtaW5hbCJdLFsxLDIsIlxcVGVybSBcXHRpbWVzIFxcVGVybSJdLFsxLDMsIlxcVGVybSJdLFsyLDFdLFsxLDEsIlEiXSxbMCwwLCJcXEdhIl0sWzAsMSwiXFx0cF8qIFxcVGVybV4qIFxcVHlwZSJdLFsyLDBdLFsyLDNdLFszLDEsIlxcdHAiLDJdLFsyLDEsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dLFs0LDNdLFs0LDVdLFs1LDZdLFszLDZdLFs0LDYsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dLFs3LDRdLFs3LDhdLFs4LDUsIlxcdHAiLDJdLFs3LDUsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dLFsxMCw3XSxbMTAsNCwiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV0sWzksMiwiXFxUZXJtIFxcdGltZXNfe1xcVHlwZX0gXFxQb2x5e1xcdHB9IFxcVHlwZSIsMSx7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6Im5vbmUifSwiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dLFsxMCw5XSxbOSw0LCJcXGNvdW5pdCIsMV0sWzExLDgsIlxcYmUiLDJdLFsxMSwxMCwiXFxlcCIsMV0sWzExLDAsIlxcZ2EiLDFdLFsxMSwzLCJcXGFsIiwxLHsibGFiZWxfcG9zaXRpb24iOjIwfV0sWzExLDI4LCJcXGxhbmdsZSBcXGFsICwgXFxnYSBcXHJhbmdsZSIsMSx7InNob3J0ZW4iOnsidGFyZ2V0IjoyMH0sImxldmVsIjoxfV1d
\[\begin{tikzcd}
\Ga \\
& Q & {} & {} & {\Poly{\tp} {\Type}} \\
& {\Term \times \Term} & {\Term \times \Type} & \Term & \Type \\
& \Term & \Type & \terminal
\arrow["\ep"{description}, from=1-1, to=2-2]
\arrow["\ga"{description}, bend left, from=1-1, to=2-5]
\arrow["\al"{description, pos=0.2}, bend left = 20, from=1-1, to=3-4]
\arrow["\be"', from=1-1, bend right, to=4-2]
\arrow[from=2-2, to=2-3]
\arrow[from=2-2, to=3-2]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-2, to=3-3]
\arrow[""{name=0, anchor=center, inner sep=0}, "{\Term \times_{\Type} \Poly{\tp} \Type}"{description}, draw=none, from=2-3, to=2-4]
\arrow["\counit"{description}, from=2-3, to=3-3]
\arrow[from=2-4, to=2-5]
\arrow[from=2-4, to=3-4]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=2-4, to=3-5]
\arrow["{\tp_* \Term^* \Type}", from=2-5, to=3-5]
\arrow[from=3-2, to=3-3]
\arrow[from=3-2, to=4-2]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=3-2, to=4-3]
\arrow[from=3-3, to=3-4]
\arrow[from=3-3, to=4-3]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=3-3, to=4-4]
\arrow["\tp"', from=3-4, to=3-5]
\arrow[from=3-4, to=4-4]
\arrow["\tp"', from=4-2, to=4-3]
\arrow[from=4-3, to=4-4]
\arrow["{\langle \al , \ga \rangle}"{description}, bend left, shorten >=28pt, from=1-1, to=0]
\end{tikzcd}\]
By the universal property of pullbacks,
a data of a map with representable domain $\ep : \Ga \to Q$ corresponds to the
data of a triple of maps $\al, \be : \Ga \to \Term$
and $\ga : \Ga \to \Poly{\tp} \Type$ such that $\tp \circ \be = \pi_{\Type} \circ \counit \circ \langle \al, \ga \rangle$
and $\tp_{*}\Term^{*}\Type \circ \ga= \tp \circ \al$.

This in turn corresponds to three functors $\al, \be : \Ga \to \ptgrpd$ and
$B : \Ga \cdot U \circ \al \to \grpd$,
such that $U \circ \be = \ev{\al} B$.
Type theoretically $\al = (A , a : A)$ and $\ev{\al} B = B a$ and
$\be = (B a, b : B a)$.
Then composing $\ep$ with $\tp \triangleleft \tp$ returns $\ga$,
which consists of $(A, B)$.
It is in this sense that $Q$ classifies pairs of dependent terms,
and $\tp \triangleleft \tp$ extracts the underlying types.
\end{proof}

\medskip

Expand Down
Binary file modified Notes/natural_model_univ/main.pdf
Binary file not shown.

0 comments on commit 1fd5346

Please sign in to comment.