Skip to content

Commit

Permalink
natural model pi
Browse files Browse the repository at this point in the history
  • Loading branch information
Jlh18 committed Aug 7, 2024
1 parent 00cc04b commit 0b0945a
Show file tree
Hide file tree
Showing 3 changed files with 96 additions and 31 deletions.
126 changes: 95 additions & 31 deletions Notes/natural_model_univ/groupoid_model.tex
Original file line number Diff line number Diff line change
Expand Up @@ -430,7 +430,7 @@ \subsection{Groupoid fibrations}

\medskip

\begin{defn}[$\Pi$-former operation]
\begin{defn}[$\Pi$-former operation]\label{pi_classifier_op}
Given $A : \Ga \to \grpd$ and $B : \Ga \cdot A \to \grpd$
we will define $\Pi_{A} B : \Ga \to \grpd$ such that
for any $C : \Ga \to \grpd$ we have an isomorphism
Expand Down Expand Up @@ -648,7 +648,7 @@ \subsection{Polynomial endofunctors}

\medskip

\begin{prop}[$\Poly{\tp}\Type$ classifies dependent types]
\begin{prop}[$\Poly{\tp}\Type$ classifies dependent types]\label{tp_classifies}
Specialized to $\tp : \Term \to \Type$ in $\Pshgrpd$,
the previous proposition says that a map
from a representable
Expand All @@ -670,6 +670,18 @@ \subsection{Polynomial endofunctors}
B : \Ga \cdot A \to \grpd
\]

Furthermore, if $\si : \De \to \Ga$ were a representable map,
then we have a naturality square
% https://q.uiver.app/#q=WzAsNixbMywwLCJcXFBvbHl7XFx0cH0gW1xcR2EsXFxjYXRDXSAiXSxbMywxLCJcXFBvbHl7XFx0cH0gW1xcRGUsXFxjYXRDXSAiXSxbMCwxLCJcXERlIl0sWzAsMCwiXFxHYSJdLFsyLDAsIlxcU2lfe0EgXFxpbiBbXFxHYSxcXGdycGRdfSAgW1xcR2EuQSxcXGNhdENdIl0sWzIsMSwiXFxTaV97QSBcXGluIFtcXERlLFxcZ3JwZF19ICBbXFxEZS5BLFxcY2F0Q10iXSxbMiwzLCJcXHNpIl0sWzAsMSwiXFxQb2x5e1xcdHB9ey0gXFxjaXJjIFxcc2l9IiwxXSxbNCwwLCJcXGlzbyJdLFs1LDEsIlxcaXNvIiwyXSxbNCw1LCIoLSBcXGNpcmMgXFxzaSwtIFxcY2lyYyBcXHNpX0EpIiwxXV0=
\[\begin{tikzcd}
\Ga && {\Si_{A \in [\Ga,\grpd]} [\Ga.A,\catC]} & {\Poly{\tp} [\Ga,\catC] } \\
\De && {\Si_{A \in [\De,\grpd]} [\De.A,\catC]} & {\Poly{\tp} [\De,\catC] }
\arrow["\iso", from=1-3, to=1-4]
\arrow["{(- \circ \si,- \circ \si_A)}"{description}, from=1-3, to=2-3]
\arrow["{\Poly{\tp}{- \circ \si}}"{description}, from=1-4, to=2-4]
\arrow["\si", from=2-1, to=1-1]
\arrow["\iso"', from=2-3, to=2-4]
\end{tikzcd}\]
\end{prop}

\medskip
Expand All @@ -678,26 +690,40 @@ \subsection{$\Pi$ and $\Si$ structure}

\medskip

\begin{lemma}
\begin{lemma}\label{BC_iff_nat_trans}
Let $\catC$ be a large category,
and let $[-,\catC] \in \Pshgrpd$ be the restriction of the yoneda embedding
and let $[-,\catC] \in \Pshgrpd$ be the restriction of the Yoneda embedding
$\yo : \Cat \to \PshCat$.
Let $F$ be an operation that takes a groupoid $\Ga$,
a functor $A : \Ga \to \grpd$
and $B : \Ga \cdot A \to \catC$ and returns a functor
$F_{A} B : \Ga \to \catC$.

Then $F : \Poly{\tp} [-,\catC] \to [-,\catC]$
\[ F_{\Ga} (A,B) = F_{A}B \]
Then $\tilde{F} : \Poly{\tp} [-,\catC] \to [-,\catC]$
\[ \tilde{F}_{\Ga} (A,B) = F_{A}B \]
defines a natural transformation
if and only if $F$ satisfies strict the Beck-Chevalley condition
if and only if $F$ satisfies the strict Beck-Chevalley condition
\[ (F_{A} B) \circ \si = F_{A \circ \si} (B \circ \si_{A})\]
where $\si_{A}$ is given by
% https://q.uiver.app/#q=WzAsNixbMSwwLCJcXEdhXFxjZG90IEEiXSxbMSwxLCJcXEdhIl0sWzIsMSwiXFxncnBkIl0sWzIsMCwiXFxwdGdycGQiXSxbMCwxLCJcXERlIl0sWzAsMCwiXFxEZSBcXGNkb3QgQVxcY2lyYyBcXHNpIl0sWzAsMSwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzEsMiwiQSIsMl0sWzMsMl0sWzAsM10sWzQsMSwiXFxzaSIsMl0sWzUsNCwiIiwyLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoiZXBpIn19fV0sWzUsMCwiXFxzaV9BIiwwLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d
\[\begin{tikzcd}
{\De \cdot A\circ \si} & {\Ga\cdot A} & \ptgrpd \\
\De & \Ga & \grpd
\arrow["{\si_A}", dashed, from=1-1, to=1-2]
\arrow[two heads, from=1-1, to=2-1]
\arrow[from=1-2, to=1-3]
\arrow[two heads, from=1-2, to=2-2]
\arrow[from=1-3, to=2-3]
\arrow["\si"', from=2-1, to=2-2]
\arrow["A"', from=2-2, to=2-3]
\end{tikzcd}\]
\end{lemma}
\begin{proof}
% https://q.uiver.app/#q=WzAsOCxbMywwLCJcXFBvbHl7XFx0cH0gW1xcR2EsXFxjYXRDXSAiXSxbNCwwLCJbXFxHYSxcXGNhdENdIl0sWzMsMSwiXFxQb2x5e1xcdHB9IFtcXERlLFxcY2F0Q10gIl0sWzQsMSwiW1xcRGUsXFxjYXRDXSAiXSxbMCwxLCJcXERlIl0sWzAsMCwiXFxHYSJdLFsyLDAsIlxcU2lfe0EgXFxpbiBbXFxHYSxcXGdycGRdfSAgW1xcR2EuQSBcXHRvIFxcY2F0Q10iXSxbMiwxLCJcXFNpX3tBIFxcaW4gW1xcRGUsXFxncnBkXX0gIFtcXERlLkEgXFx0byBcXGNhdENdIl0sWzQsNSwiXFxzaSJdLFswLDIsIlxcUG9seXtcXHRwfXstIFxcY2lyYyBcXHNpfSIsMl0sWzEsMywiLSBcXGNpcmMgXFxzaSJdLFswLDEsIkZfXFxHYSIsMl0sWzIsMywiRl9cXERlIl0sWzYsMF0sWzcsMl0sWzYsNywiKC0gXFxjaXJjIFxcc2ksLSBcXGNpcmMgXFxzaV9BKSIsMV0sWzYsMSwiRiIsMSx7ImN1cnZlIjotMn1dLFs3LDMsIkYiLDEseyJjdXJ2ZSI6Mn1dXQ==
Using \cref{tp_classifies}
% https://q.uiver.app/#q=WzAsOCxbMywwLCJcXFBvbHl7XFx0cH0gW1xcR2EsXFxjYXRDXSAiXSxbNCwwLCJbXFxHYSxcXGNhdENdIl0sWzMsMSwiXFxQb2x5e1xcdHB9IFtcXERlLFxcY2F0Q10gIl0sWzQsMSwiW1xcRGUsXFxjYXRDXSAiXSxbMCwxLCJcXERlIl0sWzAsMCwiXFxHYSJdLFsyLDAsIlxcU2lfe0EgXFxpbiBbXFxHYSxcXGdycGRdfSAgW1xcR2EuQSxcXGNhdENdIl0sWzIsMSwiXFxTaV97QSBcXGluIFtcXERlLFxcZ3JwZF19ICBbXFxEZS5BLFxcY2F0Q10iXSxbNCw1LCJcXHNpIl0sWzAsMiwiXFxQb2x5e1xcdHB9ey0gXFxjaXJjIFxcc2l9IiwyXSxbMSwzLCItIFxcY2lyYyBcXHNpIl0sWzAsMSwiRl9cXEdhIiwyXSxbMiwzLCJGX1xcRGUiXSxbNiwwXSxbNywyXSxbNiw3LCIoLSBcXGNpcmMgXFxzaSwtIFxcY2lyYyBcXHNpX0EpIiwxXSxbNiwxLCJGIiwxLHsiY3VydmUiOi0yfV0sWzcsMywiRiIsMSx7ImN1cnZlIjoyfV1d
\[\begin{tikzcd}
\Ga && {\Si_{A \in [\Ga,\grpd]} [\Ga.A \to \catC]} & {\Poly{\tp} [\Ga,\catC] } & {[\Ga,\catC]} \\
\De && {\Si_{A \in [\De,\grpd]} [\De.A \to \catC]} & {\Poly{\tp} [\De,\catC] } & {[\De,\catC] }
\Ga && {\Si_{A \in [\Ga,\grpd]} [\Ga.A,\catC]} & {\Poly{\tp} [\Ga,\catC] } & {[\Ga,\catC]} \\
\De && {\Si_{A \in [\De,\grpd]} [\De.A,\catC]} & {\Poly{\tp} [\De,\catC] } & {[\De,\catC] }
\arrow[from=1-3, to=1-4]
\arrow["F"{description}, bend left, from=1-3, to=1-5]
\arrow["{(- \circ \si,- \circ \si_A)}"{description}, from=1-3, to=2-3]
Expand All @@ -711,32 +737,70 @@ \subsection{$\Pi$ and $\Si$ structure}
\end{tikzcd}\]
\end{proof}

\begin{defn}[Interpretation of $\Pi$ and $\la$]
\begin{defn}[Interpretation of $\Pi$ types]
We define the natural transformation
$\Pi : \Poly{\tp} \Type \to \Type$
by first taking some small groupoid $\Ga$ and defining
\[\Pi_{\Ga} : \Pshgrpd(\Ga, \Poly{\tp} \Type) \to \Pshgrpd(\Ga, \Type)\]
Let $(A,B) : \Ga \to \Poly{\tp} \Type$, corresponding to $A : \Ga \to \grpd$
and $B : \Ga \cdot A \to \grpd$.
Taking the pushforward of fibrations in $\grpd$
(formally defined as operations on the classifying maps),
we obtain $\Pi_{A}B : \Ga \to \grpd$ corresponding by Yoneda
to an element of $\Pshgrpd(\Ga, \Type)$.

As indicated in the diagram, we take this to be the pushforward of the
dependent display map $\disp{B}$ along the display map it depends on $\disp{A}$.
Note that this pushforward is in $\grpd$,
and this pushforward is only defined on fibrations.

TODO: define $\la$.
as that which is induced (\cref{BC_iff_nat_trans}) by the $\Pi$-former operation (\cref{pi_classifier_op}).

Then we define the natural transofrmation
$\la : \Poly{\tp} \Type \to \Type$
as the natural transformation induced by the following operation:
given $A : \Ga \to \grpd$ and $\be : \Ga \cdot A \to \ptgrpd$,
$\la_{A}\be : \Ga \to \ptgrpd$ will be the functor such that on objects
$x \in \Ga$
\[ \la_{A}\be \, (x) := (\Pi_{A} B \, (x) , a \mapsto (a, b (x , a)))\]
where $B := U \circ \be : \Ga \cdot A \to \grpd$
and $b (x , a)$ is the point in $\be (x , a)$.
On morphisms $f : x \to y$ in $\Ga$ we have
\[ \la_{A}\be \, (f) := (\Pi_{A} B \, (f) , \eta )\]
where $\eta : \Pi_{A} B \, f \, s_{x} \to s_{y}$ is a natural isomorphism
between functors $A_{y} \to \Si_{A} B y$ given on objects $a \in A_{y}$ by
\[ \eta_{a} := (\id_{a}, \id_{b (y , a)})\]

These combine to give us a pullback square
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXFBvbHl7XFx0cH17XFxUZXJtfSJdLFswLDEsIlxcUG9seXtcXHRwfXtcXFR5cGV9Il0sWzEsMCwiXFxUZXJtIl0sWzEsMSwiXFxUeXBlIl0sWzAsMSwiXFxQb2x5e1xcdHB9e1xcdHB9IiwyXSxbMCwyLCJcXGxhIl0sWzIsMywiXFx0cCJdLFsxLDMsIlxcUGkiLDJdLFswLDMsIiIsMSx7InN0eWxlIjp7Im5hbWUiOiJjb3JuZXIifX1dXQ==
\[\begin{tikzcd}
{\Poly{\tp}{\Term}} & \Term \\
{\Poly{\tp}{\Type}} & \Type
\arrow["\la", from=1-1, to=1-2]
\arrow["{\Poly{\tp}{\tp}}"', from=1-1, to=2-1]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=2-2]
\arrow["\tp", from=1-2, to=2-2]
\arrow["\Pi"', from=2-1, to=2-2]
\end{tikzcd}\]
\end{defn}
\begin{proof}
TODO: naturality.
% Beck-chevalley.
% Steve says the coherence problem is not an issue here -
% i.e. that our equalities are strict.
We should check that the $\la$ operation satisfied Beck-Chevalley.
This follows from the $\Pi$ satisfying Beck-Chevalley and extensionality
results for functors.

The square commutes and is a pullback if and only it pointwise
commutes and pointwise gives pullbacks, i.e.
for each groupoid $\Ga$
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXFBvbHl7XFx0cH17XFxUZXJtfSBcXEdhIl0sWzAsMSwiXFxQb2x5e1xcdHB9e1xcVHlwZX0gXFxHYSJdLFsxLDAsIltcXEdhLFxccHRncnBkXSJdLFsxLDEsIltcXEdhLFxcZ3JwZF0iXSxbMCwxLCJcXFBvbHl7XFx0cH17XFx0cH1fXFxHYSIsMl0sWzAsMiwiXFxsYV9cXEdhIl0sWzIsMywiVSBcXGNpcmMgLSJdLFsxLDMsIlxcUGlfXFxHYSIsMl0sWzAsMywiIiwxLHsic3R5bGUiOnsibmFtZSI6ImNvcm5lciJ9fV1d
\[\begin{tikzcd}
{\Poly{\tp}{\Term} \, \Ga} & {[\Ga,\ptgrpd]} \\
{\Poly{\tp}{\Type} \, \Ga} & {[\Ga,\grpd]}
\arrow["{\la_\Ga}", from=1-1, to=1-2]
\arrow["{\Poly{\tp}{\tp}_\Ga}"', from=1-1, to=2-1]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=2-2]
\arrow["{U \circ -}", from=1-2, to=2-2]
\arrow["{\Pi_\Ga}"', from=2-1, to=2-2]
\end{tikzcd}\]

TODO: prove pullback.
by \cref{tp_classifies} this holds if and only if
% https://q.uiver.app/#q=WzAsNCxbMCwwLCJcXFNpX3tBIFxcaW4gW1xcR2EsXFxncnBkXX0gIFtcXEdhLkEsXFxwdGdycGRdIl0sWzAsMSwiXFxTaV97QSBcXGluIFtcXEdhLFxcZ3JwZF19ICBbXFxHYS5BLFxcZ3JwZF0iXSxbMSwwLCJbXFxHYSxcXHB0Z3JwZF0iXSxbMSwxLCJbXFxHYSxcXGdycGRdIl0sWzAsMSwiKC0gXFxjaXJjIFxcc2ksLSBcXGNpcmMgXFxzaV9BKSIsMl0sWzAsMiwiXFxsYSJdLFsyLDMsIlUgXFxjaXJjIC0iXSxbMSwzLCJcXFBpIiwyXSxbMCwzLCIiLDAseyJzdHlsZSI6eyJuYW1lIjoiY29ybmVyIn19XV0=
\[\begin{tikzcd}
{\Si_{A \in [\Ga,\grpd]} [\Ga.A,\ptgrpd]} & {[\Ga,\ptgrpd]} \\
{\Si_{A \in [\Ga,\grpd]} [\Ga.A,\grpd]} & {[\Ga,\grpd]}
\arrow["\la", from=1-1, to=1-2]
\arrow["{(- \circ \si,- \circ \si_A)}"', from=1-1, to=2-1]
\arrow["\lrcorner"{anchor=center, pos=0.125}, draw=none, from=1-1, to=2-2]
\arrow["{U \circ -}", from=1-2, to=2-2]
\arrow["\Pi"', from=2-1, to=2-2]
\end{tikzcd}\]

which follows from the definitions of $\Pi$ and $\la$.
\end{proof}

\medskip
Expand Down
Binary file modified Notes/natural_model_univ/main.pdf
Binary file not shown.
1 change: 1 addition & 0 deletions Notes/natural_model_univ/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -242,6 +242,7 @@ \section{Groupoid Model of HoTT}




\bibliography{refs.bib}{}
\bibliographystyle{alpha}

Expand Down

0 comments on commit 0b0945a

Please sign in to comment.