-
Notifications
You must be signed in to change notification settings - Fork 0
/
cv.py
68 lines (50 loc) · 2.11 KB
/
cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/python
# -*- coding: utf-8 -*-
from __future__ import print_function
__author__ = "Prerana Singhal"
import numpy as np
import theano, sys, os
import theano.tensor as T
import cPickle
from random import shuffle
from datetime import datetime
from dataset_preparation import *
from neural_net_classes import *
from classification import *
import warnings
warnings.filterwarnings("ignore")
if __name__=="__main__":
if len(sys.argv)<5:
print ("Usage: cv.py")
print ("\t<configuration file path>")
print ("\t<network layers file path>")
print ("\t<folder to store information file>")
print ("\t<path(s) of 1 or more data files>")
exit(0)
config_file = sys.argv[1]
layer_file = sys.argv[2]
folder = sys.argv[3]
data_files = sys.argv[4:]
info_file_path = folder + '/cvinfo_' + str(datetime.now()).replace(' ','_').replace(':','-') + '.txt'
print ('The information will be stored in file : ' + info_file_path)
# read configurations from file
configs = load_configs(config_file)
# reading layers from file
layers, static_input, nonstatic_input = load_layers(layer_file)
'''
Extracting data from data files
'''
data_whole, labels = extract_data(filenames = data_files, preprocess = configs['preprocess'], delimiter=configs['delimiter'], labels_present=True)
'''
Calling cross_validation function
'''
print_status('\nCross-Validation information :', info_file_path)
print_status('Configuration --> ' + str(configs), info_file_path)
print_status('\nLabels are: ' + str(labels), info_file_path)
print_status('Total number of data-points: ' + str(len(data_whole)), info_file_path)
print_status('Number of cross-validation folds: ' + str(configs['cv_folds']), info_file_path)
print_status('Number of cross-validation repeats: ' + str(configs['cv_repeats']), info_file_path)
print_status('\nLayers of the Neural Network :', info_file_path)
print_status(str(layers), info_file_path)
cv(configs=configs, data_whole=data_whole, labels=labels, layers=layers, static_idx=static_input, nonstatic_idx=nonstatic_input, info_file_path=info_file_path)
print ('The information is stored in file : ' + info_file_path)