forked from influxdata/influxdb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
database.go
1550 lines (1335 loc) · 41.8 KB
/
database.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package influxdb
import (
"encoding/binary"
"encoding/json"
"fmt"
"math"
"regexp"
"sort"
"strings"
"time"
"github.com/influxdb/influxdb/influxql"
)
const (
maxStringLength = 64 * 1024
)
// database is a collection of retention policies and shards. It also has methods
// for keeping an in memory index of all the measurements, series, and tags in the database.
// Methods on this struct aren't goroutine safe. They assume that the server is handling
// any locking to make things safe.
type database struct {
name string
policies map[string]*RetentionPolicy // retention policies by name
continuousQueries []*ContinuousQuery // continuous queries
defaultRetentionPolicy string
// in memory indexing structures
measurements map[string]*Measurement // measurement name to object and index
series map[uint32]*Series // map series id to the Series object
names []string // sorted list of the measurement names
}
// newDatabase returns an instance of database.
func newDatabase() *database {
return &database{
policies: make(map[string]*RetentionPolicy),
continuousQueries: make([]*ContinuousQuery, 0),
measurements: make(map[string]*Measurement),
series: make(map[uint32]*Series),
names: make([]string, 0),
}
}
// shardGroupByTimestamp returns a shard group that owns a given timestamp.
func (db *database) shardGroupByTimestamp(policy string, timestamp time.Time) (*ShardGroup, error) {
p := db.policies[policy]
if p == nil {
return nil, ErrRetentionPolicyNotFound
}
return p.shardGroupByTimestamp(timestamp), nil
}
// Series takes a series ID and returns a series.
func (db *database) Series(id uint32) *Series {
return db.series[id]
}
// MarshalJSON encodes a database into a JSON-encoded byte slice.
func (db *database) MarshalJSON() ([]byte, error) {
// Copy over properties to intermediate type.
var o databaseJSON
o.Name = db.name
o.DefaultRetentionPolicy = db.defaultRetentionPolicy
for _, rp := range db.policies {
o.Policies = append(o.Policies, rp)
}
o.ContinuousQueries = db.continuousQueries
return json.Marshal(&o)
}
// UnmarshalJSON decodes a JSON-encoded byte slice to a database.
func (db *database) UnmarshalJSON(data []byte) error {
// Decode into intermediate type.
var o databaseJSON
if err := json.Unmarshal(data, &o); err != nil {
return err
}
// Copy over properties from intermediate type.
db.name = o.Name
db.defaultRetentionPolicy = o.DefaultRetentionPolicy
// Copy shard policies.
db.policies = make(map[string]*RetentionPolicy)
for _, rp := range o.Policies {
db.policies[rp.Name] = rp
}
// we need the parsed continuous queries to be in the in memory index
db.continuousQueries = make([]*ContinuousQuery, 0, len(o.ContinuousQueries))
for _, cq := range o.ContinuousQueries {
c, _ := NewContinuousQuery(cq.Query)
db.continuousQueries = append(db.continuousQueries, c)
}
return nil
}
// databaseJSON represents the JSON-serialization format for a database.
type databaseJSON struct {
Name string `json:"name,omitempty"`
DefaultRetentionPolicy string `json:"defaultRetentionPolicy,omitempty"`
Policies []*RetentionPolicy `json:"policies,omitempty"`
ContinuousQueries []*ContinuousQuery `json:"continuousQueries,omitempty"`
}
// Measurement represents a collection of time series in a database. It also contains in memory
// structures for indexing tags. These structures are accessed through private methods on the Measurement
// object. Generally these methods are only accessed from Index, which is responsible for ensuring
// go routine safe access.
type Measurement struct {
Name string `json:"name,omitempty"`
Fields []*Field `json:"fields,omitempty"`
// in-memory index fields
series map[string]*Series // sorted tagset string to the series object
seriesByID map[uint32]*Series // lookup table for series by their id
measurement *Measurement
seriesByTagKeyValue map[string]map[string]seriesIDs // map from tag key to value to sorted set of series ids
seriesIDs seriesIDs // sorted list of series IDs in this measurement
}
// NewMeasurement allocates and initializes a new Measurement.
func NewMeasurement(name string) *Measurement {
return &Measurement{
Name: name,
Fields: make([]*Field, 0),
series: make(map[string]*Series),
seriesByID: make(map[uint32]*Series),
seriesByTagKeyValue: make(map[string]map[string]seriesIDs),
seriesIDs: make(seriesIDs, 0),
}
}
// HasTagKey returns true if at least one eries in this measurement has written a value for the passed in tag key
func (m *Measurement) HasTagKey(k string) bool {
return m.seriesByTagKeyValue[k] != nil
}
// createFieldIfNotExists creates a new field with an autoincrementing ID.
// Returns an error if 255 fields have already been created on the measurement or
// the fields already exists with a different type.
func (m *Measurement) createFieldIfNotExists(name string, typ influxql.DataType) error {
// Ignore if the field already exists.
if f := m.FieldByName(name); f != nil {
if f.Type != typ {
return ErrFieldTypeConflict
}
return nil
}
// Only 255 fields are allowed. If we go over that then return an error.
if len(m.Fields)+1 > math.MaxUint8 {
return ErrFieldOverflow
}
// Create and append a new field.
f := &Field{
ID: uint8(len(m.Fields) + 1),
Name: name,
Type: typ,
}
m.Fields = append(m.Fields, f)
return nil
}
// Field returns a field by id.
func (m *Measurement) Field(id uint8) *Field {
if int(id) > len(m.Fields) {
return nil
}
return m.Fields[id-1]
}
// FieldByName returns a field by name.
func (m *Measurement) FieldByName(name string) *Field {
for _, f := range m.Fields {
if f.Name == name {
return f
}
}
return nil
}
// addSeries will add a series to the measurementIndex. Returns false if already present
func (m *Measurement) addSeries(s *Series) bool {
if _, ok := m.seriesByID[s.ID]; ok {
return false
}
m.seriesByID[s.ID] = s
tagset := string(marshalTags(s.Tags))
m.series[tagset] = s
m.seriesIDs = append(m.seriesIDs, s.ID)
// the series ID should always be higher than all others because it's a new
// series. So don't do the sort if we don't have to.
if len(m.seriesIDs) > 1 && m.seriesIDs[len(m.seriesIDs)-1] < m.seriesIDs[len(m.seriesIDs)-2] {
sort.Sort(m.seriesIDs)
}
// add this series id to the tag index on the measurement
for k, v := range s.Tags {
valueMap := m.seriesByTagKeyValue[k]
if valueMap == nil {
valueMap = make(map[string]seriesIDs)
m.seriesByTagKeyValue[k] = valueMap
}
ids := valueMap[v]
ids = append(ids, s.ID)
// most of the time the series ID will be higher than all others because it's a new
// series. So don't do the sort if we don't have to.
if len(ids) > 1 && ids[len(ids)-1] < ids[len(ids)-2] {
sort.Sort(ids)
}
valueMap[v] = ids
}
return true
}
// dropSeries will remove a series from the measurementIndex. Returns true if already removed
func (m *Measurement) dropSeries(seriesID uint32) bool {
if _, ok := m.seriesByID[seriesID]; !ok {
return true
}
s := m.seriesByID[seriesID]
tagset := string(marshalTags(s.Tags))
delete(m.series, tagset)
delete(m.seriesByID, seriesID)
var ids []uint32
for _, id := range m.seriesIDs {
if id != seriesID {
ids = append(ids, id)
}
}
m.seriesIDs = ids
// remove this series id to the tag index on the measurement
// s.seriesByTagKeyValue is defined as map[string]map[string]seriesIDs
for k, v := range m.seriesByTagKeyValue {
values := v
for kk, vv := range values {
var ids []uint32
for _, id := range vv {
if id != seriesID {
ids = append(ids, id)
}
}
// Check to see if we have any ids, if not, remove the key
if len(ids) == 0 {
delete(values, kk)
} else {
values[kk] = ids
}
}
// If we have no values, then we delete the key
if len(values) == 0 {
delete(m.seriesByTagKeyValue, k)
} else {
m.seriesByTagKeyValue[k] = values
}
}
return true
}
// seriesByTags returns the Series that matches the given tagset.
func (m *Measurement) seriesByTags(tags map[string]string) *Series {
return m.series[string(marshalTags(tags))]
}
// filters walks the where clause of a select statement and returns a map with all series ids
// matching the where clause and any filter expression that should be applied to each
func (m *Measurement) filters(stmt *influxql.SelectStatement) map[uint32]influxql.Expr {
seriesIdsToExpr := make(map[uint32]influxql.Expr)
if stmt.Condition == nil || stmt.OnlyTimeDimensions() {
for _, id := range m.seriesIDs {
seriesIdsToExpr[id] = nil
}
return seriesIdsToExpr
}
ids, _, _ := m.walkWhereForSeriesIds(stmt.Condition, seriesIdsToExpr)
// ensure every id is in the map
for _, id := range ids {
if _, ok := seriesIdsToExpr[id]; !ok {
seriesIdsToExpr[id] = nil
}
}
return seriesIdsToExpr
}
// tagSets returns the unique tag sets that exist for the given tag keys. This is used to determine
// what composite series will be created by a group by. i.e. "group by region" should return:
// {"region":"uswest"}, {"region":"useast"}
// or region, service returns
// {"region": "uswest", "service": "redis"}, {"region": "uswest", "service": "mysql"}, etc...
// This will also populate the TagSet objects with the series IDs that match each tagset and any
// influx filter expression that goes with the series
func (m *Measurement) tagSets(stmt *influxql.SelectStatement, dimensions []string) []*influxql.TagSet {
// get the unique set of series ids and the filters that should be applied to each
filters := m.filters(stmt)
// build the tag sets
tagStrings := make([]string, 0)
tagSets := make(map[string]*influxql.TagSet)
for id, filter := range filters {
// get the series and set the tag values for the dimensions we care about
s := m.seriesByID[id]
tags := make([]string, len(dimensions))
for i, dim := range dimensions {
tags[i] = s.Tags[dim]
}
// marshal it into a string and put this series and its expr into the tagSets map
t := strings.Join(tags, "")
set, ok := tagSets[t]
if !ok {
tagStrings = append(tagStrings, t)
set = &influxql.TagSet{}
// set the tags for this set
tagsForSet := make(map[string]string)
for i, dim := range dimensions {
tagsForSet[dim] = tags[i]
}
set.Tags = tagsForSet
set.Key = marshalTags(tagsForSet)
}
set.AddFilter(id, filter)
tagSets[t] = set
}
// return the tag sets in sorted order
a := make([]*influxql.TagSet, 0, len(tagSets))
sort.Strings(tagStrings)
for _, s := range tagStrings {
a = append(a, tagSets[s])
}
return a
}
// idsForExpr will return a collection of series ids, a bool indicating if the result should be
// used (it'll be false if it's a time expr) and a field expression if the passed in expression is against a field.
func (m *Measurement) idsForExpr(n *influxql.BinaryExpr) (seriesIDs, bool, influxql.Expr) {
name, ok := n.LHS.(*influxql.VarRef)
value := n.RHS
if !ok {
name, _ = n.RHS.(*influxql.VarRef)
value = n.LHS
}
// ignore time literals
if _, ok := value.(*influxql.TimeLiteral); ok || name.Val == "time" {
return nil, false, nil
}
// if it's a field we can't collapse it so we have to look at all series ids for this
if m.FieldByName(name.Val) != nil {
return m.seriesIDs, true, n
}
tagVals, ok := m.seriesByTagKeyValue[name.Val]
if !ok {
return nil, true, nil
}
// if we're looking for series with a specific tag value
if str, ok := value.(*influxql.StringLiteral); ok {
return tagVals[str.Val], true, nil
}
// if we're looking for series with tag values that match a regex
if re, ok := value.(*influxql.RegexLiteral); ok {
var ids seriesIDs
for k := range tagVals {
match := re.Val.MatchString(k)
if (match && n.Op == influxql.EQREGEX) || (!match && n.Op == influxql.NEQREGEX) {
ids = ids.union(tagVals[k])
}
}
return ids, true, nil
}
return nil, true, nil
}
// walkWhereForSeriesIds will recursively walk the where clause and return a collection of series ids, a boolean indicating if this return
// value should be included in the resulting set, and an expression if the return is a field expression.
// The map that it takes maps each series id to the field expression that should be used to evaluate it when iterating over its cursor.
// Series that have no field expressions won't be in the map
func (m *Measurement) walkWhereForSeriesIds(expr influxql.Expr, filters map[uint32]influxql.Expr) (seriesIDs, bool, influxql.Expr) {
switch n := expr.(type) {
case *influxql.BinaryExpr:
// if it's EQ then it's either a field expression or against a tag. we can return this
if n.Op == influxql.EQ || n.Op == influxql.LT || n.Op == influxql.LTE || n.Op == influxql.GT ||
n.Op == influxql.GTE || n.Op == influxql.EQREGEX || n.Op == influxql.NEQREGEX {
ids, shouldInclude, expr := m.idsForExpr(n)
for _, id := range ids {
filters[id] = expr
}
return ids, shouldInclude, expr
} else if n.Op == influxql.AND || n.Op == influxql.OR { // if it's an AND or OR we need to union or intersect the results
var ids seriesIDs
l, il, lexpr := m.walkWhereForSeriesIds(n.LHS, filters)
r, ir, rexpr := m.walkWhereForSeriesIds(n.RHS, filters)
if il && ir { // we should include both the LHS and RHS of the BinaryExpr in the return
if n.Op == influxql.AND {
ids = l.intersect(r)
} else if n.Op == influxql.OR {
ids = l.union(r)
}
} else if !il && !ir { // we don't need to include either so return nothing
return nil, false, nil
} else if il { // just include the left side
ids = l
} else { // just include the right side
ids = r
}
if n.Op == influxql.OR && il && ir && (lexpr == nil || rexpr == nil) {
// if it's an OR and we're going to include both sides and one of those expression is nil,
// we need to clear out restrictive filters on series that don't need them anymore
idsToClear := l.intersect(r)
for _, id := range idsToClear {
delete(filters, id)
}
} else {
// put the LHS field expression into the filters
if lexpr != nil {
for _, id := range ids {
f := filters[id]
if f == nil {
filters[id] = lexpr
} else {
filters[id] = &influxql.BinaryExpr{LHS: f, RHS: lexpr, Op: n.Op}
}
}
}
// put the RHS field expression into the filters
if rexpr != nil {
for _, id := range ids {
f := filters[id]
if f == nil {
filters[id] = rexpr
} else {
filters[id] = &influxql.BinaryExpr{LHS: f, RHS: rexpr, Op: n.Op}
}
}
}
// if the op is AND and we include both, clear out any of the non-intersecting ids.
// that is, filters that are no longer part of the end result set
if n.Op == influxql.AND && il && ir {
filtersToClear := l.union(r).reject(ids)
for _, id := range filtersToClear {
delete(filters, id)
}
}
}
// finally return the ids and say that we should include them
return ids, true, nil
}
return m.idsForExpr(n)
case *influxql.ParenExpr:
// walk down the tree
return m.walkWhereForSeriesIds(n.Expr, filters)
default:
return nil, false, nil
}
}
// expandExpr returns a list of expressions expanded by all possible tag combinations.
func (m *Measurement) expandExpr(expr influxql.Expr) []tagSetExpr {
// Retrieve list of unique values for each tag.
valuesByTagKey := m.uniqueTagValues(expr)
// Convert keys to slices.
keys := make([]string, 0, len(valuesByTagKey))
for key := range valuesByTagKey {
keys = append(keys, key)
}
sort.Strings(keys)
// Order uniques by key.
uniques := make([][]string, len(keys))
for i, key := range keys {
uniques[i] = valuesByTagKey[key]
}
// Reduce a condition for each combination of tag values.
return expandExprWithValues(expr, keys, []tagExpr{}, uniques, 0)
}
func expandExprWithValues(expr influxql.Expr, keys []string, tagExprs []tagExpr, uniques [][]string, index int) []tagSetExpr {
// If we have no more keys left then execute the reduction and return.
if index == len(keys) {
// Create a map of tag key/values.
m := make(map[string]*string, len(keys))
for i, key := range keys {
if tagExprs[i].op == influxql.EQ {
m[key] = &tagExprs[i].values[0]
} else {
m[key] = nil
}
}
// TODO: Rewrite full expressions instead of VarRef replacement.
// Reduce using the current tag key/value set.
// Ignore it if reduces down to "false".
e := influxql.Reduce(expr, &tagValuer{tags: m})
if e, ok := e.(*influxql.BooleanLiteral); ok && e.Val == false {
return nil
}
return []tagSetExpr{{values: copyTagExprs(tagExprs), expr: e}}
}
// Otherwise expand for each possible equality value of the key.
var exprs []tagSetExpr
for _, v := range uniques[index] {
exprs = append(exprs, expandExprWithValues(expr, keys, append(tagExprs, tagExpr{keys[index], []string{v}, influxql.EQ}), uniques, index+1)...)
}
exprs = append(exprs, expandExprWithValues(expr, keys, append(tagExprs, tagExpr{keys[index], uniques[index], influxql.NEQ}), uniques, index+1)...)
return exprs
}
// seriesIDsAllOrByExpr walks an expressions for matching series IDs
// or, if no expressions is given, returns all series IDs for the measurement.
func (m *Measurement) seriesIDsAllOrByExpr(expr influxql.Expr) (seriesIDs, error) {
// If no expression given or the measurement has no series,
// we can take just return the ids or nil accordingly.
if expr == nil {
return m.seriesIDs, nil
} else if len(m.seriesIDs) == 0 {
return nil, nil
}
// Get series IDs that match the WHERE clause.
filters := map[uint32]influxql.Expr{}
ids, _, _ := m.walkWhereForSeriesIds(expr, filters)
return ids, nil
}
// tagValuer is used during expression expansion to evaluate all sets of tag values.
type tagValuer struct {
tags map[string]*string
}
// Value returns the string value of a tag and true if it's listed in the tagset.
func (v *tagValuer) Value(name string) (interface{}, bool) {
if value, ok := v.tags[name]; ok {
if value == nil {
return nil, true
}
return *value, true
}
return nil, false
}
// tagSetExpr represents a set of tag keys/values and associated expression.
type tagSetExpr struct {
values []tagExpr
expr influxql.Expr
}
// tagExpr represents one or more values assigned to a given tag.
type tagExpr struct {
key string
values []string
op influxql.Token // EQ or NEQ
}
func copyTagExprs(a []tagExpr) []tagExpr {
other := make([]tagExpr, len(a))
copy(other, a)
return other
}
// uniqueTagValues returns a list of unique tag values used in an expression.
func (m *Measurement) uniqueTagValues(expr influxql.Expr) map[string][]string {
// Track unique value per tag.
tags := make(map[string]map[string]struct{})
// Find all tag values referenced in the expression.
influxql.WalkFunc(expr, func(n influxql.Node) {
switch n := n.(type) {
case *influxql.BinaryExpr:
// Ignore operators that are not equality.
if n.Op != influxql.EQ {
return
}
// Extract ref and string literal.
var key, value string
switch lhs := n.LHS.(type) {
case *influxql.VarRef:
if rhs, ok := n.RHS.(*influxql.StringLiteral); ok {
key, value = lhs.Val, rhs.Val
}
case *influxql.StringLiteral:
if rhs, ok := n.RHS.(*influxql.VarRef); ok {
key, value = rhs.Val, lhs.Val
}
}
if key == "" {
return
}
// Add value to set.
if tags[key] == nil {
tags[key] = make(map[string]struct{})
}
tags[key][value] = struct{}{}
}
})
// Convert to map of slices.
out := make(map[string][]string)
for k, values := range tags {
out[k] = make([]string, 0, len(values))
for v := range values {
out[k] = append(out[k], v)
}
sort.Strings(out[k])
}
return out
}
// Measurements represents a list of *Measurement.
type Measurements []*Measurement
func (a Measurements) Len() int { return len(a) }
func (a Measurements) Less(i, j int) bool { return a[i].Name < a[j].Name }
func (a Measurements) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a Measurements) intersect(other Measurements) Measurements {
l := a
r := other
// we want to iterate through the shortest one and stop
if len(other) < len(a) {
l = other
r = a
}
// they're in sorted order so advance the counter as needed.
// That is, don't run comparisons against lower values that we've already passed
var i, j int
result := make(Measurements, 0, len(l))
for i < len(l) && j < len(r) {
if l[i].Name == r[j].Name {
result = append(result, l[i])
i++
j++
} else if l[i].Name < r[j].Name {
i++
} else {
j++
}
}
return result
}
func (a Measurements) union(other Measurements) Measurements {
result := make(Measurements, 0, len(a)+len(other))
var i, j int
for i < len(a) && j < len(other) {
if a[i].Name == other[j].Name {
result = append(result, a[i])
i++
j++
} else if a[i].Name < other[j].Name {
result = append(result, a[i])
i++
} else {
result = append(result, other[j])
j++
}
}
// now append the remainder
if i < len(a) {
result = append(result, a[i:]...)
} else if j < len(other) {
result = append(result, other[j:]...)
}
return result
}
// Field represents a series field.
type Field struct {
ID uint8 `json:"id,omitempty"`
Name string `json:"name,omitempty"`
Type influxql.DataType `json:"type,omitempty"`
}
// Fields represents a list of fields.
type Fields []*Field
// FieldCodec providecs encoding and decoding functionality for the fields of a given
// Measurement. It is a distinct type to avoid locking writes on this node while
// potentially long-running queries are executing.
//
// It is not affected by changes to the Measurement object after codec creation.
type FieldCodec struct {
fieldsByID map[uint8]*Field
fieldsByName map[string]*Field
}
// NewFieldCodec returns a FieldCodec for the given Measurement. Must be called with
// a RLock that protects the Measurement.
func NewFieldCodec(m *Measurement) *FieldCodec {
fieldsByID := make(map[uint8]*Field, len(m.Fields))
fieldsByName := make(map[string]*Field, len(m.Fields))
for _, f := range m.Fields {
fieldsByID[f.ID] = f
fieldsByName[f.Name] = f
}
return &FieldCodec{fieldsByID: fieldsByID, fieldsByName: fieldsByName}
}
// EncodeFields converts a map of values with string keys to a byte slice of field
// IDs and values.
//
// If a field exists in the codec, but its type is different, an error is returned. If
// a field is not present in the codec, the system panics.
func (f *FieldCodec) EncodeFields(values map[string]interface{}) ([]byte, error) {
// Allocate byte slice
b := make([]byte, 0, 10)
for k, v := range values {
field := f.fieldsByName[k]
if field == nil {
panic(fmt.Sprintf("field does not exist for %s", k))
} else if influxql.InspectDataType(v) != field.Type {
return nil, fmt.Errorf("field \"%s\" is type %T, mapped as type %s", k, k, field.Type)
}
var buf []byte
switch field.Type {
case influxql.Number:
var value float64
// Convert integers to floats.
if intval, ok := v.(int); ok {
value = float64(intval)
} else {
value = v.(float64)
}
buf = make([]byte, 9)
binary.BigEndian.PutUint64(buf[1:9], math.Float64bits(value))
case influxql.Boolean:
value := v.(bool)
// Only 1 byte need for a boolean.
buf = make([]byte, 2)
if value {
buf[1] = byte(1)
}
case influxql.String:
value := v.(string)
if len(value) > maxStringLength {
value = value[:maxStringLength]
}
// Make a buffer for field ID (1 bytes), the string length (2 bytes), and the string.
buf = make([]byte, len(value)+3)
// Set the string length, then copy the string itself.
binary.BigEndian.PutUint16(buf[1:3], uint16(len(value)))
for i, c := range []byte(value) {
buf[i+3] = byte(c)
}
default:
panic(fmt.Sprintf("unsupported value type: %T", v))
}
// Always set the field ID as the leading byte.
buf[0] = field.ID
// Append temp buffer to the end.
b = append(b, buf...)
}
return b, nil
}
// DecodeByID scans a byte slice for a field with the given ID, converts it to its
// expected type, and return that value.
func (f *FieldCodec) DecodeByID(targetID uint8, b []byte) (interface{}, error) {
if len(b) == 0 {
return 0, ErrFieldNotFound
}
for {
if len(b) < 1 {
// No more bytes.
break
}
field, ok := f.fieldsByID[b[0]]
if !ok {
panic(fmt.Sprintf("field ID %d has no mapping", b[0]))
}
var value interface{}
switch field.Type {
case influxql.Number:
// Move bytes forward.
value = math.Float64frombits(binary.BigEndian.Uint64(b[1:9]))
b = b[9:]
case influxql.Boolean:
if b[1] == 1 {
value = true
} else {
value = false
}
// Move bytes forward.
b = b[2:]
case influxql.String:
size := binary.BigEndian.Uint16(b[1:3])
value = string(b[3 : 3+size])
// Move bytes forward.
b = b[size+3:]
default:
panic(fmt.Sprintf("unsupported value type: %T", field.Type))
}
if field.ID == targetID {
return value, nil
}
}
return 0, ErrFieldNotFound
}
// DecodeFields decodes a byte slice into a set of field ids and values.
func (f *FieldCodec) DecodeFields(b []byte) map[uint8]interface{} {
if len(b) == 0 {
return nil
}
// Create a map to hold the decoded data.
values := make(map[uint8]interface{}, 0)
for {
if len(b) < 1 {
// No more bytes.
break
}
// First byte is the field identifier.
fieldID := b[0]
field := f.fieldsByID[fieldID]
if field == nil {
panic(fmt.Sprintf("field ID %d has no mapping", fieldID))
}
var value interface{}
switch field.Type {
case influxql.Number:
value = math.Float64frombits(binary.BigEndian.Uint64(b[1:9]))
// Move bytes forward.
b = b[9:]
case influxql.Boolean:
if b[1] == 1 {
value = true
} else {
value = false
}
// Move bytes forward.
b = b[2:]
case influxql.String:
size := binary.BigEndian.Uint16(b[1:3])
value = string(b[3 : size+3])
// Move bytes forward.
b = b[size+3:]
default:
panic(fmt.Sprintf("unsupported value type: %T", f.fieldsByID[fieldID]))
}
values[fieldID] = value
}
return values
}
// DecodeFieldsWithNames decodes a byte slice into a set of field names and values
func (f *FieldCodec) DecodeFieldsWithNames(b []byte) map[string]interface{} {
fields := f.DecodeFields(b)
m := make(map[string]interface{})
for id, v := range fields {
field := f.fieldsByID[id]
if field != nil {
m[field.Name] = v
}
}
return m
}
// FieldByName returns the field by its name. It will return a nil if not found
func (f *FieldCodec) FieldByName(name string) *Field {
return f.fieldsByName[name]
}
// Series belong to a Measurement and represent unique time series in a database
type Series struct {
ID uint32
Tags map[string]string
measurement *Measurement
}
// match returns true if all tags match the series' tags.
func (s *Series) match(tags map[string]string) bool {
for k, v := range tags {
if s.Tags[k] != v {
return false
}
}
return true
}
// seriesIDs is a convenience type for sorting, checking equality, and doing
// union and intersection of collections of series ids.
type seriesIDs []uint32
func (a seriesIDs) Len() int { return len(a) }
func (a seriesIDs) Less(i, j int) bool { return a[i] < a[j] }
func (a seriesIDs) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// equals assumes that both are sorted.
func (a seriesIDs) equals(other seriesIDs) bool {
if len(a) != len(other) {
return false
}
for i, s := range other {
if a[i] != s {
return false
}
}
return true
}
// intersect returns a new collection of series ids in sorted order that is the intersection of the two.
// The two collections must already be sorted.
func (a seriesIDs) intersect(other seriesIDs) seriesIDs {
l := a
r := other
// we want to iterate through the shortest one and stop
if len(other) < len(a) {
l = other
r = a
}
// they're in sorted order so advance the counter as needed.
// That is, don't run comparisons against lower values that we've already passed
var i, j int
ids := make([]uint32, 0, len(l))
for i < len(l) && j < len(r) {
if l[i] == r[j] {
ids = append(ids, l[i])
i++
j++
} else if l[i] < r[j] {
i++
} else {
j++
}
}
return seriesIDs(ids)
}
// union returns a new collection of series ids in sorted order that is the union of the two.