forked from younghwanoh/impl-pruning-TF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·252 lines (205 loc) · 9.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#!/usr/bin/python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
sys.dont_write_bytecode = True
import tensorflow as tf
import numpy as np
import argparse
import papl
import scipy.sparse as sp
argparser = argparse.ArgumentParser()
argparser.add_argument("-1", "--first_round", action="store_true",
help="Run 1st-round: train with 20000 iterations")
argparser.add_argument("-2", "--second_round", action="store_true",
help="Run 2nd-round: apply pruning and its additional training")
argparser.add_argument("-3", "--third_round", action="store_true",
help="Run 3rd-round: transform model to a sparse format and save it")
argparser.add_argument("-m", "--checkpoint", default="./model_ckpt_dense",
help="Target checkpoint model file for 2nd and 3rd round")
args = argparser.parse_args()
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('/tmp/data/', one_hot=True)
if (args.first_round or args.second_round or args.third_round) == False:
argparser.print_help()
sys.exit()
sess = tf.InteractiveSession()
def apply_prune(weights):
total_fc_byte = 0
total_fc_csr_byte = 0
total_nnz_elem = 0
total_origin_elem = 0
dict_nzidx = {}
for target in papl.config.target_layer:
wl = "w_" + target
print(wl + " threshold:\t" + str(papl.config.th[wl]))
# Get target layer's weights
weight_obj = weights[wl]
weight_arr = weight_obj.eval()
# Apply pruning
weight_arr, w_nzidx, w_nnz = papl.prune_dense(weight_arr, name=wl,
thresh=papl.config.th[wl])
# Store pruned weights as tensorflow objects
dict_nzidx[wl] = w_nzidx
sess.run(weight_obj.assign(weight_arr))
return dict_nzidx
def apply_prune_on_grads(grads_and_vars, dict_nzidx):
# Mask gradients with pruned elements
for key, nzidx in dict_nzidx.items():
count = 0
for grad, var in grads_and_vars:
if var.name == key+":0":
nzidx_obj = tf.cast(tf.constant(nzidx), tf.float32)
grads_and_vars[count] = (tf.mul(nzidx_obj, grad), var)
count += 1
return grads_and_vars
def gen_sparse_dict(dense_w):
sparse_w = dense_w
for target in papl.config.target_all_layer:
target_arr = np.transpose(dense_w[target].eval())
sparse_arr = papl.prune_tf_sparse(target_arr, name=target)
sparse_w[target+"_idx"]=tf.Variable(tf.constant(sparse_arr[0],dtype=tf.int32),
name=target+"_idx")
sparse_w[target]=tf.Variable(tf.constant(sparse_arr[1],dtype=tf.float32),
name=target)
sparse_w[target+"_shape"]=tf.Variable(tf.constant(sparse_arr[2],dtype=tf.int32),
name=target+"_shape")
return sparse_w
dense_w={
"w_conv1": tf.Variable(tf.truncated_normal([5,5,1,32],stddev=0.1), name="w_conv1"),
"b_conv1": tf.Variable(tf.constant(0.1,shape=[32]), name="b_conv1"),
"w_conv2": tf.Variable(tf.truncated_normal([5,5,32,64],stddev=0.1), name="w_conv2"),
"b_conv2": tf.Variable(tf.constant(0.1,shape=[64]), name="b_conv2"),
"w_fc1": tf.Variable(tf.truncated_normal([7*7*64,1024],stddev=0.1), name="w_fc1"),
"b_fc1": tf.Variable(tf.constant(0.1,shape=[1024]), name="b_fc1"),
"w_fc2": tf.Variable(tf.truncated_normal([1024,10],stddev=0.1), name="w_fc2"),
"b_fc2": tf.Variable(tf.constant(0.1,shape=[10]), name="b_fc2")
}
def dense_cnn_model(weights):
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, weights["w_conv1"]) + weights["b_conv1"])
tf.add_to_collection("in_conv1", x_image)
h_pool1 = max_pool_2x2(h_conv1)
tf.add_to_collection("in_conv2", h_pool1)
h_conv2 = tf.nn.relu(conv2d(h_pool1, weights["w_conv2"]) + weights["b_conv2"])
h_pool2 = max_pool_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
tf.add_to_collection("in_fc1", h_pool2_flat)
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, weights["w_fc1"]) + weights["b_fc1"])
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
tf.add_to_collection("in_fc2", h_fc1_drop)
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, weights["w_fc2"]) + weights["b_fc2"])
return y_conv
def test(y_infer, message="None."):
correct_prediction = tf.equal(tf.argmax(y_infer,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# To avoid OOM, run validation with 500/10000 test dataset
result = 0
for i in range(20):
batch = mnist.test.next_batch(500)
result += accuracy.eval(feed_dict={x: batch[0],
y_: batch[1],
keep_prob: 1.0})
result /= 20
print(message+" %g\n" % result)
return result
def check_file_exists(key):
import os
fileList = os.listdir(".")
count = 0
for elem in fileList:
if elem.find(key) >= 0:
count += 1
return key + ("-"+str(count) if count>0 else "")
# Construct a dense model
x = tf.placeholder("float", shape=[None, 784], name="x")
y_ = tf.placeholder("float", shape=[None, 10], name="y_")
keep_prob = tf.placeholder("float", name="keep_prob")
y_conv = dense_cnn_model(dense_w)
tf.add_to_collection("y_conv", y_conv)
saver = tf.train.Saver()
if args.first_round == True:
# First round: Train baseline dense model
cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y_conv,1e-10,1.0)))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
tf.add_to_collection("accuracy", accuracy)
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
# Test
score = test(y_conv, message="First-round prune-only test accuracy")
papl.log("baseline_accuracy.log", score)
# Save model objects to readable format
papl.print_weight_vars(dense_w, papl.config.target_all_layer,
papl.config.target_dat, show_zero=papl.config.show_zero)
# Save model objects to serialized format
saver.save(sess, "./model_ckpt_dense")
if args.second_round == True:
# Second round: Retrain pruned model, start with default model: model_ckpt_dense
saver.restore(sess, args.checkpoint)
# Apply pruning on this context
dict_nzidx = apply_prune(dense_w)
# save model objects to readable format
papl.print_weight_vars(dense_w, papl.config.target_all_layer,
papl.config.target_p_dat, show_zero=papl.config.show_zero)
# Test prune-only networks
score = test(y_conv, message="Second-round prune-only test accuracy")
papl.log("prune_accuracy.log", score)
# save model objects to serialized format
saver.save(sess, "./model_ckpt_dense_pruned")
# Retrain networks
cross_entropy = -tf.reduce_sum(y_*tf.log(tf.clip_by_value(y_conv,1e-10,1.0)))
trainer = tf.train.AdamOptimizer(1e-4)
grads_and_vars = trainer.compute_gradients(cross_entropy)
grads_and_vars = apply_prune_on_grads(grads_and_vars, dict_nzidx)
train_step = trainer.apply_gradients(grads_and_vars)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# Initialize firstly touched variables (mostly from accuracy calc.)
for var in tf.all_variables():
if tf.is_variable_initialized(var).eval() == False:
sess.run(tf.initialize_variables([var]))
# Train x epochs additionally
for i in range(papl.config.retrain_iterations):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
# Save retrained variables to a desne form
# key = check_file_exists("model_ckpt_dense_retrained")
# saver.save(sess, key)
saver.save(sess, "model_ckpt_dense_retrained")
# Test the retrained model
score = test(y_conv, message="Second-round final test accuracy")
papl.log("final_accuracy.log", score)
if args.third_round == True:
# Third round: Transform iteratively pruned model to a sparse format and save it
if args.second_round == False:
saver.restore(sess, "./model_ckpt_dense_pruned")
# Transform final weights to a sparse form
sparse_w = gen_sparse_dict(dense_w)
# Initialize new variables in a sparse form
for var in tf.all_variables():
if tf.is_variable_initialized(var).eval() == False:
sess.run(tf.initialize_variables([var]))
# Save model objects to readable format
papl.print_weight_vars(dense_w, papl.config.target_all_layer,
papl.config.target_tp_dat, show_zero=papl.config.show_zero)
# Save model objects to serialized format
final_saver = tf.train.Saver(sparse_w)
final_saver.save(sess, "./model_ckpt_sparse_retrained")