-
Notifications
You must be signed in to change notification settings - Fork 11
/
chart.py
378 lines (315 loc) · 14.1 KB
/
chart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
"""
ptolemy.py
Generate & Plot Dataset Maps from the output of `cartograph.py` -- additionally, after active learning has been run,
visualize acquisitions relative to maps (plots of Easy, Medium, Hard, and Impossible examples).
"""
from math import floor, log10
from tap import Tap
from tqdm import tqdm
from typing import List
import json
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import os
import seaborn as sns
import pickle
# Define Average Confidence Thresholds for Bucketing
BUCKETS = {"easy": 0.75, "medium": 0.50, "hard": 0.25, "impossible": 0.0}
DECISION_THRESHOLD = 0.5
# Matplotlib Colors + Fonts
matplotlib.rcParams["font.sans-serif"] = "Raleway"
matplotlib.rcParams["font.family"] = "sans-serif"
matplotlib.rcParams["font.size"] = 18
matplotlib.rcParams["axes.spines.right"] = False
matplotlib.rcParams["axes.spines.top"] = False
matplotlib.rcParams["xtick.bottom"] = True
matplotlib.rcParams["ytick.left"] = True
matplotlib.rcParams["legend.loc"] = "lower right"
# Colors
cmap = sns.color_palette("coolwarm_r", as_cmap=True)
# Readable Names
datasets = {"vqa2-sports": "VQA-Sports", "vqa2-food": "VQA-Food", "vqa2-all": "VQA-2", "gqa-all": "GQA"}
models = {
"glreg": "LogReg (ResNet-101)",
"olreg": "LogReg (Faster R-CNN)",
"cnn": "LSTM-CNN",
"butd": "BUTD",
"lxmert": "LXMERT",
}
strat2string = {
"baseline": "Random Baseline",
"least-conf": "Least-Confidence",
"entropy": "Entropy",
"mc-entropy": "MC-Dropout Entropy",
"mc-bald": "BALD",
"coreset-fused": "Core-Set (Fused)",
"coreset-language": "Core-Set (Language)",
"coreset-vision": "Core-Set (Vision)",
}
# Dataset Statistics -- Specify Different Datasets and Active Learning Splits...
n_examples = {
"vqa2": {
# Total of 443,757 (400K) Training Examples --> 214,354 Validation Examples
"all": {
# Burn-In + Iterations
"p05": [20000, 60000, 100000, 140000, 180000, 220000, 260000, 300000, 340000, 380000, 400000],
"p10": [40000, 80000, 120000, 160000, 200000, 240000, 280000, 320000, 360000, 400000],
"p25": [100000, 140000, 180000, 220000, 260000, 300000, 340000, 380000, 400000],
"p50": [200000, 240000, 280000, 320000, 360000, 400000],
},
# Total of 5411 (5000) Training Examples --> 2481 Validation Examples
"sports": {
# Burn-In + Iterations
"p05": [250, 750, 1250, 1750, 2250, 2750, 3250, 3750, 4250, 4750, 5000],
"p10": [500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000],
"p25": [1250, 1750, 2250, 2750, 3250, 3750, 4250, 4750, 5000],
"p50": [2500, 3000, 3500, 4000, 4500, 5000],
},
# Total of 4082 Train Examples --> 2049 Validation Examples
"food": {
# Burn-In + Iterations
"p05": [200, 600, 1000, 1400, 1800, 2200, 2600, 3000, 3400, 3800, 4000],
"p10": [400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, 4000],
"p25": [1000, 1400, 1800, 2200, 2600, 3000, 3400, 3800, 4000],
"p50": [2000, 2400, 2800, 3200, 3600, 4000],
},
},
"gqa": {
# Total of 943,000 (900K) Questions --> 1944 TestDev Questions
"all": {
# Burn-In + Iterations
"p05": [45000, 135000, 225000, 315000, 405000, 495000, 585000, 675000, 765000, 855000, 900000],
"p10": [90000, 180000, 270000, 360000, 450000, 540000, 630000, 720000, 810000, 900000],
"p25": [225000, 315000, 405000, 495000, 585000, 675000, 765000, 855000, 900000],
"p50": [450000, 540000, 630000, 720000, 810000, 900000],
}
},
}
max_lengths = {"vqa2": {"food": 4000, "sports": 5000, "moderated": 250000, "all": 400000}, "gqa": {"all": 900000}}
class ArgumentParser(Tap):
# fmt: off
# Checkpoint Parameters (Map)
maps: str = 'checkpoints/map/metrics' # Path to Dataset Cartography (Mapping) Outputs (Metrics Files)
active: str = 'checkpoints/active/active-indices' # Path to Active Indices
out: str = 'data/Maps' # Local Path (on Cluster --> write to data/Maps!)
# Mode
mode: str = "map" # Mode to run with: "map" (Map only) or "acquisitions"
# Dataset and Split Parameters
dataset: str = 'vqa2' # Core VQA Dataset to run with :: < vqa2 | gqa >
split: str = 'all' # Split for Map Generation :: < sports | food | all >
# Model Parameters
model: str = 'butd' # Generate Map with respect to this Model
# Burn to Plot
burn: str = 'p10'
# Strategies to Plot
strategies: List[str] = [
"baseline",
"least-conf",
"entropy",
"mc-entropy",
"mc-bald",
"coreset-fused",
"coreset-language",
"coreset-vision",
]
# Random Seed
seed: int = 7 # Seed for Map Generation (Should always be 7)
# fmt: on
def mapmake(cart_conf, dataset, split, model, out="data/Maps"):
"""Core Dataset Cartography Logic -- take in logged confidences/variances during training, build Map!"""
# Create Output Directory if it doesn't exist
if not os.path.exists(out):
os.makedirs(out)
# Save ourselves some time and load from file if it exists
cfile = os.path.join(out, "%s-%s-%s-map.pkl" % (dataset, split, model))
# Short-Circuit and Return Early if Possible
if os.path.exists(cfile):
with open(cfile, "rb") as f:
confidence, correctness, variability, buckets = pickle.load(f)
return confidence, correctness, variability, buckets
# Compute the necessary charting information
index = sorted(map(int, list(cart_conf[0].keys())))
confidence, correctness, variability = np.zeros(len(index)), np.zeros(len(index)), np.zeros(len(index))
# Compute Mean Confidence, Correctness
print("\n[*] Computing Confidence and Correctness...")
for i, entry_id in tqdm(enumerate(index), total=len(index)):
for ep in cart_conf:
correct_conf, max_conf = ep[str(entry_id)]
confidence[i] += correct_conf
correctness[i] += 1 if correct_conf == max_conf else 0
# Normalize by Epochs
confidence /= len(cart_conf)
correctness /= len(cart_conf)
# Compute Variability
print("\n[*] Computing Variability...")
for i, entry_id in tqdm(enumerate(index), total=len(index)):
for ep in cart_conf:
variability[i] += (ep[str(entry_id)][0] - confidence[i]) ** 2
# Normalize by Epochs then Sqrt
variability /= len(cart_conf)
variability = np.sqrt(variability)
# Create Buckets
buckets = {bucket: [] for bucket in BUCKETS}
print("\n[*] Bucketing...")
for idx, c in tqdm(enumerate(correctness), total=len(correctness)):
for b in ["easy", "medium", "hard", "impossible"]:
if c >= BUCKETS[b]:
buckets[b].append(index[idx])
break
# Pickle
with open(cfile, "wb") as f:
pickle.dump((confidence, correctness, variability, buckets), f)
return confidence, correctness, variability, buckets
def human_format(num):
num = float("{:.3g}".format(num))
magnitude = 0
while abs(num) >= 1000:
magnitude += 1
num /= 1000.0
return "{}{}".format("{:f}".format(num).rstrip("0").rstrip("."), ["", "K", "M", "B", "T"][magnitude])
def chart():
# Parse Args
print("[*] Starting Expedition...")
args = ArgumentParser().parse_args()
print('\t> "Now, we enter uncharted territory..." (Anonymous)')
# Mode Check
assert args.mode in ["map", "acquisitions"], "%s is not a valid mode!" % args.mode
# Open Up Map File and Generate Dataset Map via Dataset Cartography (Swayamdipta et. al. 2020)
print("\n[*] Opening Cartography File...")
mfile = [x for x in os.listdir(args.maps) if "%s-%s-%s-map" % (args.dataset, args.split, args.model) in x]
assert len(mfile) == 1, "Why do we have more than one valid map?"
with open(os.path.join(args.maps, mfile[0]), "r") as f:
data = json.load(f)
confidence, correctness, variability, buckets = mapmake(
data["cartography"], args.dataset, args.split, args.model, out=args.out
)
# Start Plotting
fig, (ax1) = plt.subplots(1, 1, figsize=(10, 8))
p = ax1.scatter(variability, confidence, c=correctness, cmap=cmap, alpha=0.77)
# Labeling
ax1.set_xlabel("Variability", fontname="Raleway", fontsize=21)
ax1.set_ylabel("Confidence", fontname="Raleway", fontsize=21)
# Axis Handling
ax1.set_xlim([0, 0.5])
ax1.set_ylim([0, 1])
# Styling
ax1.spines["right"].set_visible(False)
ax1.spines["top"].set_visible(False)
ax1.xaxis.set_ticks_position("bottom")
ax1.xaxis.set_ticks(np.arange(0, 0.51, 0.05))
ax1.yaxis.set_ticks_position("left")
ax1.yaxis.set_ticks(np.arange(0, 1.01, 0.1))
# Colorbar
cbar = fig.colorbar(p, ax=ax1, fraction=0.043, pad=0.00, shrink=0.9, aspect=50, orientation="vertical")
cbar.solids.set(alpha=1)
cbar.ax.set_title("Correctness", fontsize=21, pad=7)
# Book-Keeping
path = os.path.join("visualizations", "atlas", "%s-%s" % (args.dataset, args.split))
if not os.path.exists(path):
os.makedirs(path)
plt.savefig(os.path.join(path, "%s-%s-%s.pdf" % (args.model, args.dataset, args.split)), bbox_inches="tight")
# Only Visualize Acquisitions in Given Mode
if args.mode in ["acquisitions"]:
for strat in args.strategies:
plt.figure(figsize=(8, 6))
# No Monte-Carlo for Logistic Regression
if args.model in ["glreg", "olreg"] and "mc-" in strat:
continue
# Retrieve Active Indices in Order
afile = [
x
for x in os.listdir(args.active)
if args.model in x
and args.dataset in x
and args.split in x
and ("x%d" % args.seed) in x
and strat in x
and ("nex-%d" % max_lengths[args.dataset][args.split]) in x
and args.burn in x
]
# Error-Handling
if len(afile) == 0:
continue
else:
afile = afile[0]
# Grab Indices
with open(os.path.join(args.active, afile, "active-indices.json"), "r") as f:
indices = json.load(f)
# Make Set of Buckets
checkable_bucket = {b: set(buckets[b]) for b in buckets}
# Plot Moving Time-Series of Various Difficulties
easy, medium = [0 for _ in range(len(indices))], [0 for _ in range(len(indices))]
hard, impossible = [0 for _ in range(len(indices))], [0 for _ in range(len(indices))]
for i, nex in enumerate(n_examples[args.dataset][args.split][args.burn]):
# Skip Iteration 1
if i == 0:
continue
# Only Visualize Newly Chosen Examples
prev_active_indices = indices[str(i - 1)]
curr_active_indices = indices[str(i)]
active_indices = set(curr_active_indices) - set(prev_active_indices)
# Active Colors
for aidx in list(active_indices):
for b in ["easy", "medium", "hard", "impossible"]:
if aidx in checkable_bucket[b]:
if b == "easy":
easy[i] += 1
elif b == "medium":
medium[i] += 1
elif b == "hard":
hard[i] += 1
elif b == "impossible":
impossible[i] += 1
# Book-Keeping
path = os.path.join("visualizations", "atlas", "%s-%s" % (args.dataset, args.split), "acquisitions")
if not os.path.exists(path):
os.makedirs(path)
# Create X-Axis
x_axis = n_examples[args.dataset][args.split][args.burn][:-1]
easy, medium, hard, impossible = (
np.array(easy[1:]),
np.array(medium[1:]),
np.array(hard[1:]),
np.array(impossible[1:]),
)
# Bar Graph (Easy on the Bottom)
plt.bar(list(range(len(x_axis))), easy, color=cmap(1.0), label="Easy [p > 0.75]", alpha=0.7)
plt.bar(list(range(len(x_axis))), medium, bottom=easy, color=cmap(0.66), label="Medium [p > 0.5]", alpha=0.7)
plt.bar(
list(range(len(x_axis))),
hard,
bottom=easy + medium,
color=cmap(0.33),
label="Hard [p > 0.25]",
alpha=0.7,
)
plt.bar(
list(range(len(x_axis))),
impossible,
bottom=easy + medium + hard,
color=cmap(0.0),
label="Impossible [p > 0.0]",
alpha=0.7,
)
def format_func(value, tick_number=None):
num_thousands = 0 if abs(value) < 1000 else floor(log10(abs(value)) / 3)
value = round(value / 1000 ** num_thousands, 2)
return f"{value:g}" + " KMGTPEZY"[num_thousands]
plt.title("%s" % (strat2string[strat]), fontsize=25)
plt.xlabel("Number of Training Examples", fontsize=25)
plt.ylabel("Acquisitions by Difficulty", fontsize=25)
# Get Axis & Format Y
ax = plt.axes()
ax.yaxis.set_major_formatter(plt.FuncFormatter(format_func))
plt.xticks(list(range(len(x_axis))), list(map(human_format, x_axis)), fontsize=21, rotation=45)
# Show Legend & Save
if strat == "baseline":
handles, labels = ax.get_legend_handles_labels()
ax.legend(handles[::-1], labels[::-1], framealpha=0.95)
plt.savefig(
os.path.join(path, "%s-%s-%s-acquired.pdf" % (args.model, strat, args.burn)), bbox_inches="tight"
)
plt.clf()
if __name__ == "__main__":
chart()