diff --git a/hierarc/Likelihood/hierarchy_likelihood.py b/hierarc/Likelihood/hierarchy_likelihood.py index ecd5d8a..48fab51 100644 --- a/hierarc/Likelihood/hierarchy_likelihood.py +++ b/hierarc/Likelihood/hierarchy_likelihood.py @@ -247,8 +247,9 @@ def log_likelihood_single( kappa_ext=kappa_ext, mag_source=mag_source, ) - scaling_param_array = self.draw_scaling_params(kwargs_lens=kwargs_lens, - **kwargs_kin) + scaling_param_array = self.draw_scaling_params( + kwargs_lens=kwargs_lens, **kwargs_kin + ) kin_scaling = self.param_scaling(scaling_param_array) lnlikelihood = self.log_likelihood( @@ -274,7 +275,8 @@ def draw_scaling_params(self, kwargs_lens=None, **kwargs_kin): else: return ani_param - def draw_lens_scaling_params(self, + def draw_lens_scaling_params( + self, lambda_mst=1, lambda_mst_sigma=0, kappa_ext=0, @@ -289,7 +291,8 @@ def draw_lens_scaling_params(self, alpha_gamma_in=0, m2l=1, m2l_sigma=0, - alpha_m2l=0,): + alpha_m2l=0, + ): """Draws a realization of the anisotropy parameter scaling from the distribution. @@ -319,10 +322,11 @@ def draw_lens_scaling_params(self, if self._gamma_in_array is not None and self._m2l_array is not None: gamma_in_draw = np.random.normal( gamma_in + alpha_gamma_in * self._lambda_scaling_property, - gamma_in_sigma) + gamma_in_sigma, + ) m2l_draw = np.random.normal( - m2l + alpha_m2l * self._lambda_scaling_property, - m2l_sigma) + m2l + alpha_m2l * self._lambda_scaling_property, m2l_sigma + ) return gamma_in_draw, m2l_draw else: return None, None