diff --git a/hierarc/Likelihood/LensLikelihood/kin_likelihood.py b/hierarc/Likelihood/LensLikelihood/kin_likelihood.py index c4da0d5..acee56f 100644 --- a/hierarc/Likelihood/LensLikelihood/kin_likelihood.py +++ b/hierarc/Likelihood/LensLikelihood/kin_likelihood.py @@ -84,7 +84,6 @@ def log_likelihood( "error covariance matrix needs to be positive definite" ) lnlikelihood -= 1 / 2.0 * (self.num_data * np.log(2 * np.pi) + lndet) - print(lnlikelihood) return lnlikelihood def sigma_v_measurement_mean(self, sigma_v_sys_offset=None): diff --git a/hierarc/Likelihood/hierarchy_likelihood.py b/hierarc/Likelihood/hierarchy_likelihood.py index ecd5d8a..dfca9c4 100644 --- a/hierarc/Likelihood/hierarchy_likelihood.py +++ b/hierarc/Likelihood/hierarchy_likelihood.py @@ -142,7 +142,7 @@ def lens_log_likelihood( delta_lum_dist = self.luminosity_distance_modulus(cosmo, z_apparent_m_anchor) # here we effectively change the posteriors of the lens, but rather than changing the instance of the KDE we # displace the predicted angular diameter distances in the opposite direction - return self.hyper_param_likelihood( + a = self.hyper_param_likelihood( ddt, dd, delta_lum_dist, @@ -151,6 +151,7 @@ def lens_log_likelihood( kwargs_source=kwargs_source, cosmo=cosmo, ) + return a def hyper_param_likelihood( self, @@ -258,7 +259,6 @@ def log_likelihood_single( sigma_v_sys_error=sigma_v_sys_error, mu_intrinsic=mag_source_, ) - print(scaling_param_array, kin_scaling, lnlikelihood) return np.nan_to_num(lnlikelihood) def draw_scaling_params(self, kwargs_lens=None, **kwargs_kin):