diff --git a/hierarc/Sampling/ParamManager/kin_param.py b/hierarc/Sampling/ParamManager/kin_param.py index 155e2a6..812e088 100644 --- a/hierarc/Sampling/ParamManager/kin_param.py +++ b/hierarc/Sampling/ParamManager/kin_param.py @@ -17,8 +17,8 @@ def __init__( :param anisotropy_sampling: bool, if True, makes use of this module, else ignores it's functionalities :param anisotropy_model: string, name of anisotropy model to consider - :param distribution_function: string, 'NONE', 'GAUSSIAN', description of the distribution function of the - anisotropy model parameters + :param distribution_function: string, 'NONE', 'GAUSSIAN', 'GAUSSIAN_SCALED', description of the distribution + function of the anisotropy model parameters :param sigma_v_systematics: bool, if True samples parameters relative to systematics in the velocity dispersion measurement :param log_scatter: boolean, if True, samples the Gaussian scatter amplitude in log space (and thus flat prior in log) @@ -99,7 +99,7 @@ def args2kwargs(self, args, i=0): else: kwargs["a_ani"] = args[i] i += 1 - if self._distribution_function in ["GAUSSIAN"]: + if self._distribution_function in ["GAUSSIAN", "GAUSSIAN_SCALED"]: if "a_ani_sigma" in self._kwargs_fixed: kwargs["a_ani_sigma"] = self._kwargs_fixed["a_ani_sigma"] else: @@ -114,7 +114,7 @@ def args2kwargs(self, args, i=0): else: kwargs["beta_inf"] = args[i] i += 1 - if self._distribution_function in ["GAUSSIAN"]: + if self._distribution_function in ["GAUSSIAN", "GAUSSIAN_SCALED"]: if "beta_inf_sigma" in self._kwargs_fixed: kwargs["beta_inf_sigma"] = self._kwargs_fixed["beta_inf_sigma"] else: @@ -145,7 +145,7 @@ def kwargs2args(self, kwargs): if self._anisotropy_model in ["OM", "GOM", "const"]: if "a_ani" not in self._kwargs_fixed: args.append(kwargs["a_ani"]) - if self._distribution_function in ["GAUSSIAN"]: + if self._distribution_function in ["GAUSSIAN", "GAUSSIAN_SCALED"]: if "a_ani_sigma" not in self._kwargs_fixed: if self._log_scatter is True: args.append(np.log10(kwargs["a_ani_sigma"])) @@ -154,7 +154,7 @@ def kwargs2args(self, kwargs): if self._anisotropy_model in ["GOM"]: if "beta_inf" not in self._kwargs_fixed: args.append(kwargs["beta_inf"]) - if self._distribution_function in ["GAUSSIAN"]: + if self._distribution_function in ["GAUSSIAN", "GAUSSIAN_SCALED"]: if "beta_inf_sigma" not in self._kwargs_fixed: if self._log_scatter is True: args.append(np.log10(kwargs["beta_inf_sigma"]))