EOS的钱包其实主要就是管理密钥对,因为他不负责产生地址,也就是说,不会像以前的以太坊或者比特币,要通过密钥来产生钱包地址。它主要是提供对帐户的签名管理,也就是前面说的签名需要的密钥进行管理。
EOS使用是非UTXO机制,即帐户机制,这点和以太坊相同,但是他们又有不同之处,EOS为了使用安全方便,引入了权限和角色的功能。通过不同的帐户和私钥进行组合,可以达到创建不同的权限的帐户动作。举一个例子,你可以把你自己的帐户处理动作分配给任意的人,那么那个人就拥有了你的所有的帐户动作,但是它仍然是使用自己的密钥对来对你分配的动作进行签名。
要创建帐户,首先要创建钱包,因为创建帐户需要创建钱包时产生的密钥对。
//创建钱包
string wallet_name = "default";
auto createWallet = wallet->add_subcommand("create", localized("Create a new wallet locally"), false);
createWallet->add_option("-n,--name", wallet_name, localized("The name of the new wallet"), true);
createWallet->set_callback([&wallet_name] {
// wait for keosd to come up
try_port(uint16_t(std::stoi(parse_url(wallet_url).port)), 2000);
const auto& v = call(wallet_url, wallet_create, wallet_name);
std::cout << localized("Creating wallet: ${wallet_name}", ("wallet_name", wallet_name)) << std::endl;
std::cout << localized("Save password to use in the future to unlock this wallet.") << std::endl;
std::cout << localized("Without password imported keys will not be retrievable.") << std::endl;
std::cout << fc::json::to_pretty_string(v) << std::endl;
});
//因为创建帐户需要创建钱包时产生的密钥对
// create key
create->add_subcommand("key", localized("Create a new keypair and print the public and private keys"))->set_callback( [](){
auto pk = private_key_type::generate();
auto privs = string(pk);
auto pubs = string(pk.get_public_key());
std::cout << localized("Private key: ${key}", ("key", privs) ) << std::endl;
std::cout << localized("Public key: ${key}", ("key", pubs ) ) << std::endl;
});
//创建帐户
struct create_account_subcommand {
string creator;
string account_name;
string owner_key_str;
string active_key_str;
string stake_net;
string stake_cpu;
uint32_t buy_ram_bytes_in_kbytes = 0;
string buy_ram_eos;
bool transfer;
bool simple;
create_account_subcommand(CLI::App* actionRoot, bool s) : simple(s) {
auto createAccount = actionRoot->add_subcommand( (simple ? "account" : "newaccount"), localized("Create an account, buy ram, stake for bandwidth for the account"));
createAccount->add_option("creator", creator, localized("The name of the account creating the new account"))->required();
createAccount->add_option("name", account_name, localized("The name of the new account"))->required();
//这里需要两个KEY
createAccount->add_option("OwnerKey", owner_key_str, localized("The owner public key for the new account"))->required();
createAccount->add_option("ActiveKey", active_key_str, localized("The active public key for the new account"));
......
add_standard_transaction_options(createAccount);
createAccount->set_callback([this] {
if( !active_key_str.size() )
active_key_str = owner_key_str;
public_key_type owner_key, active_key;
try {
owner_key = public_key_type(owner_key_str);
} EOS_RETHROW_EXCEPTIONS(public_key_type_exception, "Invalid owner public key: ${public_key}", ("public_key", owner_key_str));
try {
active_key = public_key_type(active_key_str);
} EOS_RETHROW_EXCEPTIONS(public_key_type_exception, "Invalid active public key: ${public_key}", ("public_key", active_key_str));
auto create = create_newaccount(creator, account_name, owner_key, active_key);//创建一个帐户
.......
});
}
};
chain::action create_newaccount(const name& creator, const name& newaccount, public_key_type owner, public_key_type active) {
return action {
tx_permission.empty() ? vector<chain::permission_level>{{creator,config::active_name}} : get_account_permissions(tx_permission),
eosio::chain::newaccount{//调用帐户创建
.creator = creator,
.name = newaccount,
.owner = eosio::chain::authority{1, {{owner, 1}}, {}},
.active = eosio::chain::authority{1, {{active, 1}}, {}}
}
};
}
整体的步骤来说就是创建钱包,创建密钥,导入密钥到钱包,由密钥来创建帐户。看代码中还有一个直接在钱包中创建密钥的命令。
旧的帐户的管理在插件account_history_plugin中。它提供了一个接口插件account_history_api_plugin用来更方便的管理帐户的历史记录。同样,在历史记录的类管理里中,使用了account_history_plugin_impl类来真正提供历史记录的控制。
但是在新的版本中,用history_plugin替代了它,相应的接口也替换成了history_api_plugin.这里面主要涉及到了以下几个类(排除api接口类):history_plugin_impl,这个类是真正的操作数据的类,所有的关于历史记录的动作,最终都要落在这个类中。history_plugin是插件增加的实体类,是调用history_plugin_impl的入口点。read_only类是真正处理数据的类。
这里看一个帐户的交易记录读取:
read_only::get_transaction_result read_only::get_transaction( const read_only::get_transaction_params& p )const {
auto& chain = history->chain_plug->chain();//获得当前指定的Controller
get_transaction_result result;
result.id = p.id;
result.last_irreversible_block = chain.last_irreversible_block_num();
const auto& db = chain.db();//获得当前数据库的句柄
//得到并处理multiindex的结果
const auto& idx = db.get_index<action_history_index, by_trx_id>();
auto itr = idx.lower_bound( boost::make_tuple(p.id) );
if( itr == idx.end() ) {
return result;
}
result.id = itr->trx_id;
result.block_num = itr->block_num;
result.block_time = itr->block_time;
if( fc::variant(result.id).as_string().substr(0,8) != fc::variant(p.id).as_string().substr(0,8) )
return result;
//处理事务action内容
while( itr != idx.end() && itr->trx_id == result.id ) {
fc::datastream<const char*> ds( itr->packed_action_trace.data(), itr->packed_action_trace.size() );
action_trace t;
fc::raw::unpack( ds, t );
result.traces.emplace_back( chain.to_variant_with_abi(t) );
++itr;
}
//处理块
auto blk = chain.fetch_block_by_number( result.block_num );
if( blk == nullptr ) { // still in pending
auto blk_state = chain.pending_block_state();
if( blk_state != nullptr ) {
blk = blk_state->block;
}
}
//得到交易内容
if( blk != nullptr ) {
for (const auto &receipt: blk->transactions) {
if (receipt.trx.contains<packed_transaction>()) {
auto &pt = receipt.trx.get<packed_transaction>();
auto mtrx = transaction_metadata(pt);
if (mtrx.id == result.id) {
fc::mutable_variant_object r("receipt", receipt);
r("trx", chain.to_variant_with_abi(mtrx.trx));
result.trx = move(r);
break;
}
} else {
auto &id = receipt.trx.get<transaction_id_type>();
if (id == result.id) {
fc::mutable_variant_object r("receipt", receipt);
result.trx = move(r);
break;
}
}
}
}
return result;
}
//chainbase.hpp
template<typename MultiIndexType>
const generic_index<MultiIndexType>& get_index()const
{
CHAINBASE_REQUIRE_READ_LOCK("get_index", typename MultiIndexType::value_type);
typedef generic_index<MultiIndexType> index_type;
typedef index_type* index_type_ptr;
assert( \_index_map.size() > index_type::value_type::type_id );
assert( \_index_map[index_type::value_type::type_id] );
return *index_type_ptr( \_index_map[index_type::value_type::type_id]->get() );//返回一个multiindex的容器指针
}
这个函数会在history_api_plugin.cpp中由:
void history_api_plugin::plugin_startup() {
ilog( "starting history_api_plugin" );
auto ro_api = app().get_plugin<history_plugin>().get_read_only_api();
//auto rw_api = app().get_plugin<history_plugin>().get_read_write_api();
app().get_plugin<http_plugin>().add_api({
// CHAIN_RO_CALL(get_transaction),
CHAIN_RO_CALL(get_actions),
CHAIN_RO_CALL(get_transaction),
CHAIN_RO_CALL(get_key_accounts),
CHAIN_RO_CALL(get_controlled_accounts)
});
}
提供HTTP的调用,并封装成JSON格式回传给相关调用方。
在前边创建帐户时提到了owner 和 active,它们的权限分别有一个值为1的阈值。owner 和 active 所绑定的 公钥 , 则分别有一个值为1的权重。阈值和权重是什么呢?
阈值是指操作的最小权限,而权重指权限量。简单的说明一下,比如打开保险柜的阈值是3,然后有三个角色权重:1,2,3.则3权重的可以自己直接打开。2和1权重的需要向其它两个角色申请,当权重总和>=3时,才可以打开。
owner是自己的根本权限,可以用来授权给别人的权限。而active是被授予的相关的权限。网上举得例子比较好理解:
owner这个权限比作一扇门,打开这扇门需要一把正确的钥匙。 而 owner 所绑定的那个公钥 对应的那把私钥 就是正确的钥匙。那么二者到底有什么具体的关系和内容呢?
owner:啥都能干,还可以做冷备份。
active:除了不能修改owner之外的所有权限。其它所有的权限都是基于active产生出来的。
帐户的权限在EOS中功能相对来说是比较全的。在EOS中分为单签名帐户和多签名帐户。
因此单签名账户就是权限的阈值和钥匙的权重都为1的一种账户类型。使用某个权限,只需要一把对应的私钥就行了.
struct newaccount {
account_name creator;
account_name name;
authority owner;
authority active;
......
};
单签名其实好理解,其实就是一句话,自己的事情自己干,当然,如果你授权给了别人,别人也可以干,不过不用二者合作,一个即可。
多签名帐户其实就是一个权限绑定了多个帐户或者公钥。要想使用一个权限得需要大于1个以上的签名了。
还是举一个例子,比如有一个权限可以从帐户转走一笔钱,转钱的权限阈值设定为3,有三个角色bob,alice,joe,他们对应的权重为2,2,3.那么joe自己就可以直接操作转钱,而bob,alice由于权重不足,只能二者互相合作或者去向joe申请合作。
它对应到EOS的区块链上,其实就是对帐户的授权,比如某个智能合约需要权限才能操作,那么它会在执行前检查当前帐户的权限,如果不足,则直接退出。否则,完成。
在EOS中,有一个比较重要的特点就是被盗窃的密钥可以恢复,不会像比特币那样,密钥丢失后所有的一切都永远的消失在区块链中。不过恢复也不是没有条件的:
首先,使用任何30天内的owner权限的密钥和指定的合作伙伴才能恢复。
其次,合作伙伴不参成任何日常交易。合作伙伴其实就是指你的关联帐户。
最后,在恢复的过程中,也可以设置一些类似QQ的恢复机制中的问题机制。
既然前面提到了签名需要验证,分析一下验证的过程,从push_transcations中对比一下:
void apply_context::schedule_deferred_transaction( const uint128_t& sender_id, account_name payer, transaction&& trx, bool replace_existing ) {
......
if( !control.skip_auth_check() && !privileged ) { // Do not need to check authorization if replayng irreversible block or if contract is privileged
if( payer != receiver ) {
require_authorization(payer); /// uses payer's storage
}
// if a contract is deferring only actions to itself then there is no need
// to check permissions, it could have done everything anyway.
bool check_auth = false;
for( const auto& act : trx.actions ) {
if( act.account != receiver ) {
check_auth = true;
break;
}
}
if( check_auth ) {
control.get_authorization_manager()
.check_authorization( trx.actions,
{},
{{receiver, config::eosio_code_name}},
delay,
std::bind(&transaction_context::checktime, &this->trx_context),
false
);
}
}
uint32_t trx_size = 0;
auto& d = control.db();
......
trx_context.add_ram_usage( payer, (config::billable_size_v<generated_transaction_object> + trx_size) );
}
void apply_context::require_authorization(const account_name& account,
const permission_name& permission) {
for( uint32_t i=0; i < act.authorization.size(); i++ )
if( act.authorization[i].actor == account ) {
if( act.authorization[i].permission == permission ) {
used_authorizations[i] = true;
return;
}
}
EOS_ASSERT( false, missing_auth_exception, "missing authority of ${account}/${permission}",
("account",account)("permission",permission) );
}
void
authorization_manager::check_authorization( const vector<action>& actions,
const flat_set<public_key_type>& provided_keys,
const flat_set<permission_level>& provided_permissions,
fc::microseconds provided_delay,
const std::function<void()>& \_checktime,
bool allow_unused_keys
)const
{
const auto& checktime = ( static_cast<bool>(\_checktime) ? \_checktime : \_noop_checktime );
auto delay_max_limit = fc::seconds( \_control.get_global_properties().configuration.max_transaction_delay );
auto effective_provided_delay = (provided_delay >= delay_max_limit) ? fc::microseconds::maximum() : provided_delay;
auto checker = make_auth_checker( [&](const permission_level& p){ return get_permission(p).auth; },
\_control.get_global_properties().configuration.max_authority_depth,
provided_keys,
provided_permissions,
effective_provided_delay,
checktime
);
map<permission_level, fc::microseconds> permissions_to_satisfy;
for( const auto& act : actions ) {
bool special_case = false;
fc::microseconds delay = effective_provided_delay;
if( act.account == config::system_account_name ) {
special_case = true;
if( act.name == updateauth::get_name() ) {
check_updateauth_authorization( act.data_as<updateauth>(), act.authorization );
} else if( act.name == deleteauth::get_name() ) {
check_deleteauth_authorization( act.data_as<deleteauth>(), act.authorization );
} else if( act.name == linkauth::get_name() ) {
check_linkauth_authorization( act.data_as<linkauth>(), act.authorization );
} else if( act.name == unlinkauth::get_name() ) {
check_unlinkauth_authorization( act.data_as<unlinkauth>(), act.authorization );
} else if( act.name == canceldelay::get_name() ) {
delay = std::max( delay, check_canceldelay_authorization(act.data_as<canceldelay>(), act.authorization) );
} else {
special_case = false;
}
}
for( const auto& declared_auth : act.authorization ) {
checktime();
if( !special_case ) {
auto min_permission_name = lookup_minimum_permission(declared_auth.actor, act.account, act.name);
if( min_permission_name ) { // since special cases were already handled, it should only be false if the permission is eosio.any
const auto& min_permission = get_permission({declared_auth.actor, \*min_permission_name});
EOS_ASSERT( get_permission(declared_auth).satisfies( min_permission,
\_db.get_index<permission_index>().indices() ),
irrelevant_auth_exception,
"action declares irrelevant authority '${auth}'; minimum authority is ${min}",
("auth", declared_auth)("min", permission_level{min_permission.owner, min_permission.name}) );
}
}
auto res = permissions_to_satisfy.emplace( declared_auth, delay );
if( !res.second && res.first->second > delay) { // if the declared_auth was already in the map and with a higher delay
res.first->second = delay;
}
}
}
// Now verify that all the declared authorizations are satisfied:
// Although this can be made parallel (especially for input transactions) with the optimistic assumption that the
// CPU limit is not reached, because of the CPU limit the protocol must officially specify a sequential algorithm
// for checking the set of declared authorizations.
// The permission_levels are traversed in ascending order, which is:
// ascending order of the actor name with ties broken by ascending order of the permission name.
for( const auto& p : permissions_to_satisfy ) {
checktime(); // TODO: this should eventually move into authority_checker instead
EOS_ASSERT( checker.satisfied( p.first, p.second ), unsatisfied_authorization,
"transaction declares authority '${auth}', "
"but does not have signatures for it under a provided delay of ${provided_delay} ms",
("auth", p.first)("provided_delay", provided_delay.count()/1000)
("delay_max_limit_ms", delay_max_limit.count()/1000)
);
}
if( !allow_unused_keys ) {
EOS_ASSERT( checker.all_keys_used(), tx_irrelevant_sig,
"transaction bears irrelevant signatures from these keys: ${keys}",
("keys", checker.unused_keys()) );
}
}
不过上面的英文注释很搞笑,说其实不必检查,这也是有谁没谁的了。在controller.cpp中push_transcation中也有类似的调用,可以对比分析。这样的情况下基本上帐户和钱包也就分析的差不多了。