-
Notifications
You must be signed in to change notification settings - Fork 2
/
EntityToSimClustersEmbeddingsJob.scala
354 lines (308 loc) · 12.9 KB
/
EntityToSimClustersEmbeddingsJob.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
package com.twitter.simclusters_v2.scalding.embedding
import com.twitter.dal.client.dataset.KeyValDALDataset
import com.twitter.recos.entities.thriftscala.Entity
import com.twitter.recos.entities.thriftscala.Hashtag
import com.twitter.recos.entities.thriftscala.SemanticCoreEntity
import com.twitter.scalding._
import com.twitter.scalding_internal.dalv2.DALWrite._
import com.twitter.scalding_internal.multiformat.format.keyval.KeyVal
import com.twitter.simclusters_v2.common.ModelVersions
import com.twitter.simclusters_v2.common.SimClustersEmbedding
import com.twitter.simclusters_v2.hdfs_sources._
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil
import com.twitter.simclusters_v2.scalding.embedding.common.EmbeddingUtil._
import com.twitter.simclusters_v2.scalding.embedding.common.EntityEmbeddingUtil
import com.twitter.simclusters_v2.scalding.embedding.common.SimClustersEmbeddingJob
import com.twitter.simclusters_v2.thriftscala.{
SimClustersEmbedding => ThriftSimClustersEmbedding,
_
}
import com.twitter.wtf.entity_real_graph.common.EntityUtil
import com.twitter.wtf.entity_real_graph.thriftscala.EntityType
import com.twitter.wtf.scalding.jobs.common.AdhocExecutionApp
import com.twitter.wtf.scalding.jobs.common.DataSources
import com.twitter.wtf.scalding.jobs.common.ScheduledExecutionApp
import java.util.TimeZone
/**
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embeddings_job-adhoc
*
* ---------------------- Deploy to atla ----------------------
* $ scalding remote run \
--main-class com.twitter.simclusters_v2.scalding.embedding.EntityToSimClustersEmbeddingAdhocApp \
--target src/scala/com/twitter/simclusters_v2/scalding/embedding:entity_embeddings_job-adhoc \
--user recos-platform \
-- --date 2019-09-09 --model-version 20M_145K_updated --entity-type SemanticCore
*/
object EntityToSimClustersEmbeddingAdhocApp extends AdhocExecutionApp {
import EmbeddingUtil._
import EntityEmbeddingUtil._
import EntityToSimClustersEmbeddingsJob._
import EntityUtil._
import SimClustersEmbeddingJob._
def writeOutput(
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
jobConfig: EntityEmbeddingsJobConfig
): Execution[Unit] = {
val toSimClusterEmbeddingExec = topKEmbeddings
.mapValues(SimClustersEmbedding.apply(_).toThrift)
.writeExecution(
AdhocKeyValSources.entityToClustersSource(
EntityToSimClustersEmbeddingsJob.getHdfsPath(
isAdhoc = true,
isManhattanKeyVal = true,
isReverseIndex = false,
jobConfig.modelVersion,
jobConfig.entityType)))
val fromSimClusterEmbeddingExec =
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
.writeExecution(
AdhocKeyValSources.clusterToEntitiesSource(
EntityToSimClustersEmbeddingsJob.getHdfsPath(
isAdhoc = true,
isManhattanKeyVal = true,
isReverseIndex = true,
jobConfig.modelVersion,
jobConfig.entityType)))
Execution.zip(toSimClusterEmbeddingExec, fromSimClusterEmbeddingExec).unit
}
override def runOnDateRange(
args: Args
)(
implicit dateRange: DateRange,
timeZone: TimeZone,
uniqueID: UniqueID
): Execution[Unit] = {
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = true)
val numReducers = args.getOrElse("m", "1000").toInt
/*
Using the ERG daily dataset in the adhoc job for quick prototyping, note that there may be
issues with scaling the job when productionizing on ERG aggregated dataset.
*/
val entityRealGraphSource = DataSources.entityRealGraphDailyDataSetSource
val entityUserMatrix: TypedPipe[(Entity, (UserId, Double))] =
(jobConfig.entityType match {
case EntityType.SemanticCore =>
getEntityUserMatrix(entityRealGraphSource, jobConfig.halfLife, EntityType.SemanticCore)
case EntityType.Hashtag =>
getEntityUserMatrix(entityRealGraphSource, jobConfig.halfLife, EntityType.Hashtag)
case _ =>
throw new IllegalArgumentException(
s"Argument [--entity-type] must be provided. Supported options [${EntityType.SemanticCore.name}, ${EntityType.Hashtag.name}]")
}).forceToDisk
val normalizedUserEntityMatrix =
getNormalizedTransposeInputMatrix(entityUserMatrix, numReducers = Some(numReducers))
//determine which data source to use based on model version
val simClustersSource = jobConfig.modelVersion match {
case ModelVersion.Model20m145kUpdated =>
InterestedInSources.simClustersInterestedInUpdatedSource(dateRange, timeZone)
case _ =>
InterestedInSources.simClustersInterestedInDec11Source(dateRange, timeZone)
}
val embeddings = computeEmbeddings(
simClustersSource,
normalizedUserEntityMatrix,
scoreExtractors,
ModelVersion.Model20m145kUpdated,
toSimClustersEmbeddingId(jobConfig.modelVersion),
numReducers = Some(numReducers * 2)
)
val topKEmbeddings =
embeddings.group
.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
.withReducers(numReducers)
writeOutput(embeddings, topKEmbeddings, jobConfig)
}
}
/**
* $ ./bazel bundle src/scala/com/twitter/simclusters_v2/scalding/embedding:semantic_core_entity_embeddings_2020_job
* $ capesospy-v2 update \
--build_locally \
--start_cron semantic_core_entity_embeddings_2020_job src/scala/com/twitter/simclusters_v2/capesos_config/atla_proc3.yaml
*/
object SemanticCoreEntityEmbeddings2020App extends EntityToSimClustersEmbeddingApp
trait EntityToSimClustersEmbeddingApp extends ScheduledExecutionApp {
import EmbeddingUtil._
import EntityEmbeddingUtil._
import EntityToSimClustersEmbeddingsJob._
import EntityUtil._
import SimClustersEmbeddingJob._
override val firstTime: RichDate = RichDate("2023-01-01")
override val batchIncrement: Duration = Days(7)
private def writeOutput(
embeddings: TypedPipe[(SimClustersEmbeddingId, (ClusterId, EmbeddingScore))],
topKEmbeddings: TypedPipe[(SimClustersEmbeddingId, Seq[(ClusterId, EmbeddingScore)])],
jobConfig: EntityEmbeddingsJobConfig,
clusterEmbeddingsDataset: KeyValDALDataset[
KeyVal[SimClustersEmbeddingId, ThriftSimClustersEmbedding]
],
entityEmbeddingsDataset: KeyValDALDataset[KeyVal[SimClustersEmbeddingId, InternalIdEmbedding]]
): Execution[Unit] = {
val toSimClustersEmbeddings =
topKEmbeddings
.mapValues(SimClustersEmbedding.apply(_).toThrift)
.map {
case (entityId, topSimClusters) => KeyVal(entityId, topSimClusters)
}
.writeDALVersionedKeyValExecution(
clusterEmbeddingsDataset,
D.Suffix(
EntityToSimClustersEmbeddingsJob.getHdfsPath(
isAdhoc = false,
isManhattanKeyVal = true,
isReverseIndex = false,
jobConfig.modelVersion,
jobConfig.entityType))
)
val fromSimClustersEmbeddings =
toReverseIndexSimClusterEmbedding(embeddings, jobConfig.topK)
.map {
case (embeddingId, internalIdsWithScore) =>
KeyVal(embeddingId, internalIdsWithScore)
}
.writeDALVersionedKeyValExecution(
entityEmbeddingsDataset,
D.Suffix(
EntityToSimClustersEmbeddingsJob.getHdfsPath(
isAdhoc = false,
isManhattanKeyVal = true,
isReverseIndex = true,
jobConfig.modelVersion,
jobConfig.entityType))
)
Execution.zip(toSimClustersEmbeddings, fromSimClustersEmbeddings).unit
}
override def runOnDateRange(
args: Args
)(
implicit dateRange: DateRange,
timeZone: TimeZone,
uniqueID: UniqueID
): Execution[Unit] = {
val jobConfig = EntityEmbeddingsJobConfig(args, isAdhoc = false)
val embeddingsDataset = EntityEmbeddingsSources.getEntityEmbeddingsDataset(
jobConfig.entityType,
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion)
)
val reverseIndexEmbeddingsDataset =
EntityEmbeddingsSources.getReverseIndexedEntityEmbeddingsDataset(
jobConfig.entityType,
ModelVersions.toKnownForModelVersion(jobConfig.modelVersion)
)
val entityRealGraphSource =
DataSources.entityRealGraphAggregationDataSetSource(dateRange.embiggen(Days(7)))
val entityUserMatrix: TypedPipe[(Entity, (UserId, Double))] =
getEntityUserMatrix(
entityRealGraphSource,
jobConfig.halfLife,
jobConfig.entityType).forceToDisk
val normalizedUserEntityMatrix = getNormalizedTransposeInputMatrix(entityUserMatrix)
val simClustersEmbedding = jobConfig.modelVersion match {
case ModelVersion.Model20m145k2020 =>
val simClustersSource2020 =
InterestedInSources.simClustersInterestedIn2020Source(dateRange, timeZone)
computeEmbeddings(
simClustersSource2020,
normalizedUserEntityMatrix,
scoreExtractors,
ModelVersion.Model20m145k2020,
toSimClustersEmbeddingId(ModelVersion.Model20m145k2020)
)
case modelVersion =>
throw new IllegalArgumentException(s"Model Version ${modelVersion.name} not supported")
}
val topKEmbeddings =
simClustersEmbedding.group.sortedReverseTake(jobConfig.topK)(Ordering.by(_._2))
val simClustersEmbeddingsExec =
writeOutput(
simClustersEmbedding,
topKEmbeddings,
jobConfig,
embeddingsDataset,
reverseIndexEmbeddingsDataset)
// We don't support embeddingsLite for the 2020 model version.
val embeddingsLiteExec = if (jobConfig.modelVersion == ModelVersion.Model20m145kUpdated) {
topKEmbeddings
.collect {
case (
SimClustersEmbeddingId(
EmbeddingType.FavBasedSematicCoreEntity,
ModelVersion.Model20m145kUpdated,
InternalId.EntityId(entityId)),
clustersWithScores) =>
entityId -> clustersWithScores
}
.flatMap {
case (entityId, clustersWithScores) =>
clustersWithScores.map {
case (clusterId, score) => EmbeddingsLite(entityId, clusterId, score)
}
case _ => Nil
}.writeDALSnapshotExecution(
SimclustersV2EmbeddingsLiteScalaDataset,
D.Daily,
D.Suffix(embeddingsLitePath(ModelVersion.Model20m145kUpdated, "fav_based")),
D.EBLzo(),
dateRange.end)
} else {
Execution.unit
}
Execution
.zip(simClustersEmbeddingsExec, embeddingsLiteExec).unit
}
}
object EntityToSimClustersEmbeddingsJob {
def toSimClustersEmbeddingId(
modelVersion: ModelVersion
): (Entity, ScoreType.ScoreType) => SimClustersEmbeddingId = {
case (Entity.SemanticCore(SemanticCoreEntity(entityId, _)), ScoreType.FavScore) =>
SimClustersEmbeddingId(
EmbeddingType.FavBasedSematicCoreEntity,
modelVersion,
InternalId.EntityId(entityId))
case (Entity.SemanticCore(SemanticCoreEntity(entityId, _)), ScoreType.FollowScore) =>
SimClustersEmbeddingId(
EmbeddingType.FollowBasedSematicCoreEntity,
modelVersion,
InternalId.EntityId(entityId))
case (Entity.Hashtag(Hashtag(hashtag)), ScoreType.FavScore) =>
SimClustersEmbeddingId(
EmbeddingType.FavBasedHashtagEntity,
modelVersion,
InternalId.Hashtag(hashtag))
case (Entity.Hashtag(Hashtag(hashtag)), ScoreType.FollowScore) =>
SimClustersEmbeddingId(
EmbeddingType.FollowBasedHashtagEntity,
modelVersion,
InternalId.Hashtag(hashtag))
case (scoreType, entity) =>
throw new IllegalArgumentException(
s"(ScoreType, Entity) ($scoreType, ${entity.toString}) not supported")
}
/**
* Generates the output path for the Entity Embeddings Job.
*
* Example Adhoc: /user/recos-platform/processed/adhoc/simclusters_embeddings/hashtag/model_20m_145k_updated
* Example Prod: /atla/proc/user/cassowary/processed/simclusters_embeddings/semantic_core/model_20m_145k_dec11
*
*/
def getHdfsPath(
isAdhoc: Boolean,
isManhattanKeyVal: Boolean,
isReverseIndex: Boolean,
modelVersion: ModelVersion,
entityType: EntityType
): String = {
val reverseIndex = if (isReverseIndex) "reverse_index/" else ""
val entityTypeSuffix = entityType match {
case EntityType.SemanticCore => "semantic_core"
case EntityType.Hashtag => "hashtag"
case _ => "unknown"
}
val pathSuffix = s"$reverseIndex$entityTypeSuffix"
EmbeddingUtil.getHdfsPath(isAdhoc, isManhattanKeyVal, modelVersion, pathSuffix)
}
def embeddingsLitePath(modelVersion: ModelVersion, pathSuffix: String): String = {
s"/user/cassowary/processed/entity_real_graph/simclusters_embedding/lite/$modelVersion/$pathSuffix/"
}
}