-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
288 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
import collections | ||
import statsmodels.formula.api as smf | ||
|
||
|
||
def aggregate_digit_span(data, sub_num): | ||
digit_correct_count = data["correct"].sum() | ||
digit_correct_num_items = data.shape[0] | ||
digit_correct_prop = digit_correct_count / digit_correct_num_items | ||
|
||
return [sub_num, digit_correct_count, digit_correct_prop, digit_correct_num_items] | ||
|
||
|
||
def aggregate_mrt(data, sub_num): | ||
mrt_count = data["correct"].sum() | ||
mrt_num_items = data.shape[0] | ||
mrt_prop = mrt_count / mrt_num_items | ||
|
||
return [sub_num, mrt_count, mrt_prop, mrt_num_items] | ||
|
||
|
||
def aggregate_ravens(data, sub_num): | ||
ravens_rt = data["RT"].mean() | ||
ravens_count = data["correct"].sum() | ||
ravens_num_items = data.shape[0] | ||
ravens_prop = ravens_count / ravens_num_items | ||
|
||
return [sub_num, ravens_rt, ravens_count, ravens_prop, ravens_num_items] | ||
|
||
|
||
def aggregate_sart(data, sub_num): | ||
# Calculate times following errors and correct responses | ||
follow_error_rt = data.loc[data.accuracy.shift() == 0, "RT"].mean() | ||
follow_correct_rt = data.loc[data.accuracy.shift() == 1, "RT"].mean() | ||
|
||
total_rt = data["RT"].mean() | ||
total_rtsd = data["RT"].std() | ||
total_rtcov = total_rtsd / total_rt | ||
|
||
frequent_rt = data[data["stimulus"] != 3]["RT"].mean() | ||
frequent_rtsd = data[data["stimulus"] != 3]["RT"].std() | ||
frequent_rtcov = frequent_rtsd / frequent_rt | ||
|
||
infrequent_rt = data[data["stimulus"] == 3]["RT"].mean() | ||
infrequent_rtsd = data[data["stimulus"] == 3]["RT"].std() | ||
infrequent_rtcov = infrequent_rtsd / infrequent_rt | ||
|
||
sart_error_count = data[data["stimulus"] == 3]["key press"].sum() | ||
sart_errors_num_items = collections.Counter(data['stimulus'])[3] | ||
sart_errors_prop = sart_error_count / sart_errors_num_items | ||
|
||
return [sub_num, follow_error_rt, follow_correct_rt, | ||
total_rt, total_rtsd, total_rtcov, | ||
frequent_rt, frequent_rtsd, frequent_rtcov, | ||
infrequent_rt, infrequent_rtsd, infrequent_rtcov, | ||
sart_error_count, sart_errors_prop, sart_errors_num_items] | ||
|
||
|
||
def aggregate_ant(data, sub_num, response_type="full"): | ||
|
||
# Calculate times following errors and correct responses | ||
df = data | ||
follow_error_rt = df.loc[df.correct.shift() == 0, "RT"].mean() | ||
follow_correct_rt = df.loc[df.correct.shift() == 1, "RT"].mean() | ||
|
||
if response_type == "correct": | ||
df = data[data["correct"] == 1] | ||
elif response_type == "incorrect": | ||
df = data[data["correct"] == 0] | ||
elif response_type == "full": | ||
df = data | ||
|
||
# Aggregated descriptives | ||
|
||
## congruency conditions | ||
grouped_congruency = df.groupby("congruency") | ||
neutral_rt = grouped_congruency.mean().get_value("neutral", "RT") | ||
congruent_rt = grouped_congruency.mean().get_value("congruent", "RT") | ||
incongruent_rt = grouped_congruency.mean().get_value("incongruent", "RT") | ||
|
||
neutral_rtsd = grouped_congruency.std().get_value("neutral", "RT") | ||
congruent_rtsd = grouped_congruency.std().get_value("congruent", "RT") | ||
incongruent_rtsd = grouped_congruency.std().get_value("incongruent", "RT") | ||
|
||
neutral_rtcov = neutral_rtsd / neutral_rt | ||
congruent_rtcov = congruent_rtsd / congruent_rt | ||
incongruent_rtcov = incongruent_rtsd / incongruent_rt | ||
|
||
neutral_correct = grouped_congruency.sum().get_value("neutral", "correct") | ||
congruent_correct = grouped_congruency.sum().get_value("congruent", "correct") | ||
incongruent_correct = grouped_congruency.sum().get_value("incongruent", "correct") | ||
|
||
## cue conditions | ||
grouped_cue = df.groupby("cue") | ||
nocue_rt = grouped_cue.mean().get_value("nocue", "RT") | ||
center_rt = grouped_cue.mean().get_value("center", "RT") | ||
spatial_rt = grouped_cue.mean().get_value("spatial", "RT") | ||
double_rt = grouped_cue.mean().get_value("double", "RT") | ||
|
||
nocue_rtsd = grouped_cue.std().get_value("nocue", "RT") | ||
center_rtsd = grouped_cue.std().get_value("center", "RT") | ||
spatial_rtsd = grouped_cue.std().get_value("spatial", "RT") | ||
double_rtsd = grouped_cue.std().get_value("double", "RT") | ||
|
||
nocue_rtcov = nocue_rtsd / nocue_rt | ||
center_rtcov = center_rtsd / center_rt | ||
spatial_rtcov = spatial_rtsd / spatial_rt | ||
double_rtcov = double_rtsd / double_rt | ||
|
||
nocue_correct = grouped_cue.sum().get_value("nocue", "correct") | ||
center_correct = grouped_cue.sum().get_value("center", "correct") | ||
spatial_correct = grouped_cue.sum().get_value("spatial", "correct") | ||
double_correct = grouped_cue.sum().get_value("double", "correct") | ||
|
||
# OLS regression | ||
conflict_df = df[(df["congruency"] == "congruent") | (df["congruency"] == "incongruent")] | ||
formula_conflict = "RT ~ C(congruency, Treatment(reference='congruent'))" | ||
ols_results = smf.ols(formula_conflict, conflict_df).fit() | ||
conflict_intercept, conflict_slope = ols_results.params | ||
conflict_slope_norm = conflict_slope / congruent_rt | ||
|
||
alerting_df = df[(df["cue"] == "double") | (df["cue"] == "nocue")] | ||
formula_alerting = "RT ~ C(cue, Treatment(reference='double'))" | ||
ols_results = smf.ols(formula_alerting, alerting_df).fit() | ||
alerting_intercept, alerting_slope = ols_results.params | ||
alerting_slope_norm = alerting_slope / double_rt | ||
|
||
orienting_df = df[(df["cue"] == "spatial") | (df["cue"] == "center")] | ||
formula_orienting = "RT ~ C(cue, Treatment(reference='spatial'))" | ||
ols_results = smf.ols(formula_orienting, orienting_df).fit() | ||
orienting_intercept, orienting_slope = ols_results.params | ||
orienting_slope_norm = orienting_slope / spatial_rt | ||
|
||
return [sub_num, | ||
follow_error_rt, follow_correct_rt, | ||
neutral_rt, congruent_rt, incongruent_rt, | ||
neutral_rtsd, congruent_rtsd, incongruent_rtsd, | ||
neutral_rtcov, congruent_rtcov, incongruent_rtcov, | ||
neutral_correct, congruent_correct, incongruent_correct, | ||
nocue_rt, center_rt, spatial_rt, double_rt, | ||
nocue_rtsd, center_rtsd, spatial_rtsd, double_rtsd, | ||
nocue_rtcov, center_rtcov, spatial_rtcov, double_rtcov, | ||
nocue_correct, center_correct, spatial_correct, double_correct, | ||
conflict_intercept, conflict_slope, conflict_slope_norm, | ||
alerting_intercept, alerting_slope, alerting_slope_norm, | ||
orienting_intercept, orienting_slope, orienting_slope_norm] | ||
|
||
|
||
def aggregate_sternberg(data, sub_num, response_type="full"): | ||
|
||
# Calculate times following errors and correct responses | ||
df = data | ||
follow_error_rt = df.loc[df.correct.shift() == 0, "RT"].mean() | ||
follow_correct_rt = df.loc[df.correct.shift() == 1, "RT"].mean() | ||
|
||
if response_type == "correct": | ||
df = data[data["correct"] == 1] | ||
elif response_type == "incorrect": | ||
df = data[data["correct"] == 0] | ||
elif response_type == "full": | ||
df = data | ||
|
||
# Aggregated descriptives | ||
grouped_set_size = df.groupby("setSize") | ||
set_2_rt = grouped_set_size.mean().get_value(2, "RT") | ||
set_2_rtsd = grouped_set_size.std().get_value(2, "RT") | ||
set_2_rtcov = set_2_rtsd / set_2_rt | ||
set_2_correct = grouped_set_size.sum().get_value(2, "correct") | ||
|
||
set_6_rt = grouped_set_size.mean().get_value(6, "RT") | ||
set_6_rtsd = grouped_set_size.std().get_value(6, "RT") | ||
set_6_rtcov = set_6_rtsd / set_6_rt | ||
set_6_correct = grouped_set_size.sum().get_value(6, "correct") | ||
|
||
# OLS regression | ||
formula = "RT ~ C(setSize, Treatment(reference=2))" | ||
ols_results = smf.ols(formula, df).fit() | ||
intercept, slope = ols_results.params | ||
slope_norm = slope / set_2_rt | ||
|
||
return [sub_num, | ||
follow_error_rt, follow_correct_rt, | ||
set_2_rt, set_6_rt, | ||
set_2_rtsd, set_6_rtsd, | ||
set_2_rtcov, set_6_rtcov, | ||
set_2_correct, set_6_correct, | ||
intercept, slope, slope_norm] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
import os | ||
import pandas as pd | ||
import analysis | ||
|
||
dir_data = os.path.join("path", | ||
"to", | ||
"data", | ||
"directory") | ||
|
||
dir_output = os.path.join("path", | ||
"to", | ||
"output", | ||
"file") | ||
|
||
# Create dataframes | ||
df_info = pd.DataFrame(columns=["sub_num", "datetime", | ||
"condition", "age", "sex", "RA"]) | ||
|
||
df_ant = pd.DataFrame(columns=["sub_num", | ||
"ant_follow_error_rt", "ant_follow_correct_rt", | ||
"ant_neutral_rt", "ant_congruent_rt", "ant_incongruent_rt", | ||
"ant_neutral_rtsd", "ant_congruent_rtsd", "ant_incongruent_rtsd", | ||
"ant_neutral_rtcov", "ant_congruent_rtcov", "ant_incongruent_rtcov", | ||
"ant_neutral_correct", "ant_congruent_correct", "ant_incongruent_correct", | ||
"ant_nocue_rt", "ant_center_rt", "ant_spatial_rt", "ant_double_rt", | ||
"ant_nocue_rtsd", "ant_center_rtsd", "ant_spatial_rtsd", "ant_double_rtsd", | ||
"ant_nocue_rtcov", "ant_center_rtcov", "ant_spatial_rtcov", "ant_double_rtcov", | ||
"ant_nocue_correct", "ant_center_correct", "ant_spatial_correct", "ant_double_correct", | ||
"ant_conflict_intercept", "ant_conflict_slope", "ant_conflict_slope_norm", | ||
"ant_alerting_intercept", "ant_alerting_slope", "ant_alerting_slope_norm", | ||
"ant_orienting_intercept", "ant_orienting_slope", "ant_orienting_slope_norm" | ||
]) | ||
|
||
df_digit = pd.DataFrame(columns=["sub_num", "digit_correct_count", | ||
"digit_correct_prop", "digit_num_items"]) | ||
|
||
df_mrt = pd.DataFrame(columns=["sub_num", "mrt_count", | ||
"mrt_prop", "mrt_num_items"]) | ||
|
||
df_ravens = pd.DataFrame(columns=["sub_num", "ravens_rt", | ||
"ravens_count", "ravens_prop", "ravens_num_items"]) | ||
|
||
df_sart = pd.DataFrame( | ||
columns=["sub_num", "sart_follow_error_rt", "sart_follow_correct_rt", | ||
"sart_total_rt", "sart_total_rtsd", "sart_total_rtcov", | ||
"sart_frequent_rt", "sart_frequent_rtsd", "sart_frequent_rtcov", | ||
"sart_infrequent_rt", "sart_infrequent_rtsd", "sart_infrequent_rtcov", | ||
"sart_error_count"," sart_errors_prop", "sart_errors_num_items"]) | ||
|
||
df_sternberg = pd.DataFrame( | ||
columns=["sub_num", | ||
"stern_follow_error_rt", "stern_follow_correct_rt", | ||
"stern_set_2_rt", "stern_set_6_rt", | ||
"stern_set_2_rtsd", "stern_set_6_rtsd", | ||
"stern_set_2_rtcov", "stern_set_6_rtcov", | ||
"stern_set_2_correct", "stern_set_6_correct", | ||
"stern_intercept", "stern_slope", "stern_slope_norm"]) | ||
|
||
# Aggregate all data | ||
for f in os.listdir(dir_data): | ||
if f.endswith(".xls"): | ||
print("Summarizing {}".format(f)) | ||
|
||
sub = pd.read_excel(os.path.join(dir_data, f), None) | ||
|
||
sub_num = int(sub["info"]["sub_num"]) | ||
datetime = sub["info"].loc[0,"datetime"] | ||
condition = int(sub["info"]["condition"]) | ||
age = int(sub["info"]["age"]) | ||
sex = sub["info"].loc[0,"sex"] | ||
ra = sub["info"].loc[0,"RA"] | ||
|
||
for task, data in sub.items(): | ||
if task == "info": | ||
df_info.loc[df_info.shape[0]] = [sub_num, datetime, condition, age, sex, ra] | ||
elif task == "ANT": | ||
# full / correct / incorrect | ||
df_ant.loc[df_ant.shape[0]] = analysis.aggregate_ant(data, sub_num, "full") | ||
elif task == "Digit span (backwards)": | ||
df_digit.loc[df_digit.shape[0]] = analysis.aggregate_digit_span(data, sub_num) | ||
elif task == "MRT": | ||
df_mrt.loc[df_mrt.shape[0]] = analysis.aggregate_mrt(data, sub_num) | ||
elif task == "Ravens Matrices": | ||
df_ravens.loc[df_ravens.shape[0]] = analysis.aggregate_ravens(data, sub_num) | ||
elif task == "SART": | ||
df_sart.loc[df_sart.shape[0]] = analysis.aggregate_sart(data, sub_num) | ||
elif task == "Sternberg": | ||
# full / correct / incorrect | ||
df_sternberg.loc[df_sternberg.shape[0]] = analysis.aggregate_sternberg(data, sub_num, "full") | ||
|
||
# Merge task data | ||
## Only merge tasks that were used | ||
tasks = [df_ant, df_digit, df_mrt, df_ravens, df_sart, df_sternberg] | ||
|
||
all_data = df_info | ||
for task in tasks: | ||
if task.shape[0] != 0: | ||
all_data = all_data.merge(task, on="sub_num") | ||
|
||
# Save output csv | ||
all_data = all_data.sort_values("sub_num").reset_index(drop=True) | ||
all_data.to_csv(os.path.join(dir_output, "summary_data.csv"), index=False, sep=",") |