forked from anonymous47823493/EagleEye
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
executable file
·79 lines (71 loc) · 2.51 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# ------------------------------------------------------------------
# Author: Bowen Wu
# Email: [email protected]
# Affiliation: Sun Yat-sen University, Guangzhou
# Date: 13 JULY 2020
# ------------------------------------------------------------------
import os
import torch
from options.base_options import BaseOptions
from models.wrapper import ModelWrapper
from report import model_summary
from data import custom_get_dataloaders
import torch.nn as nn
from tqdm import tqdm
import random
import numpy as np
def main():
# get options
opt = BaseOptions().parse()
# basic settings
os.environ["CUDA_VISIBLE_DEVICES"] = str(opt.gpu_ids)[1:-1]
if torch.cuda.is_available():
device = "cuda"
torch.backends.cudnn.benchmark = True
else:
device = "cpu"
##################### Get Dataloader ####################
_, dataloader_test = custom_get_dataloaders(opt)
# dummy_input is sample input of dataloaders
if hasattr(dataloader_test, "dataset"):
dummy_input = dataloader_test.dataset.__getitem__(0)
dummy_input = dummy_input[0]
dummy_input = dummy_input.unsqueeze(0)
else:
# for imagenet dali loader
dummy_input = torch.rand(1, 3, 224, 224)
##################### Evaluate Baseline Model ####################
net = ModelWrapper(opt)
net = net.to(device)
net.parallel(opt.gpu_ids)
flops_before, params_before = model_summary(net.get_compress_part(), dummy_input)
del net
##################### Evaluate Pruned Model ####################
net = ModelWrapper(opt)
net.load_checkpoint(opt.checkpoint)
net = net.to(device)
flops_after, params_after = model_summary(net.get_compress_part(), dummy_input)
net.parallel(opt.gpu_ids)
acc_after = net.get_eval_scores(dataloader_test)
#################### Report #####################
print("######### Report #########")
print("Model:{}".format(opt.model_name))
print("Checkpoint:{}".format(opt.checkpoint))
print(
"FLOPs of Original Model:{:.3f}G;Params of Original Model:{:.2f}M".format(
flops_before / 1e9, params_before / 1e6
)
)
print(
"FLOPs of Pruned Model:{:.3f}G;Params of Pruned Model:{:.2f}M".format(
flops_after / 1e9, params_after / 1e6
)
)
print(
"Top-1 Acc of Pruned Model on {}:{}".format(
opt.dataset_name, acc_after["accuracy"]
)
)
print("##########################")
if __name__ == "__main__":
main()