[ALGORITHM]
@article{shelhamer2017fully,
title={Fully convolutional networks for semantic segmentation},
author={Shelhamer, Evan and Long, Jonathan and Darrell, Trevor},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={39},
number={4},
pages={640--651},
year={2017},
publisher={IEEE Trans Pattern Anal Mach Intell}
}
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
---|---|---|---|---|---|---|---|---|
FCN | R-50-D8 | 512x1024 | 40000 | 5.7 | 4.17 | 72.25 | 73.36 | model | log |
FCN | R-101-D8 | 512x1024 | 40000 | 9.2 | 2.66 | 75.45 | 76.58 | model | log |
FCN | R-50-D8 | 769x769 | 40000 | 6.5 | 1.80 | 71.47 | 72.54 | model | log |
FCN | R-101-D8 | 769x769 | 40000 | 10.4 | 1.19 | 73.93 | 75.14 | model | log |
FCN | R-18-D8 | 512x1024 | 80000 | 1.7 | 14.65 | 71.11 | 72.91 | model | log |
FCN | R-50-D8 | 512x1024 | 80000 | - | 73.61 | 74.24 | model | log | |
FCN | R-101-D8 | 512x1024 | 80000 | - | - | 75.13 | 75.94 | model | log |
FCN | R-18-D8 | 769x769 | 80000 | 1.9 | 6.40 | 70.80 | 73.16 | model | log |
FCN | R-50-D8 | 769x769 | 80000 | - | - | 72.64 | 73.32 | model | log |
FCN | R-101-D8 | 769x769 | 80000 | - | - | 75.52 | 76.61 | model | log |
FCN | R-18b-D8 | 512x1024 | 80000 | 1.6 | 16.74 | 70.24 | 72.77 | model | log |
FCN | R-50b-D8 | 512x1024 | 80000 | 5.6 | 4.20 | 75.65 | 77.59 | model | log |
FCN | R-101b-D8 | 512x1024 | 80000 | 9.1 | 2.73 | 77.37 | 78.77 | model | log |
FCN | R-18b-D8 | 769x769 | 80000 | 1.7 | 6.70 | 69.66 | 72.07 | model | log |
FCN | R-50b-D8 | 769x769 | 80000 | 6.3 | 1.82 | 73.83 | 76.60 | model | log |
FCN | R-101b-D8 | 769x769 | 80000 | 10.3 | 1.15 | 77.02 | 78.67 | model | log |
FCN-D6 | R-50-D16 | 512x1024 | 40000 | 3.4 | 10.22 | 77.06 | 78.85 | model | log |
FCN-D6 | R-50-D16 | 512x1024 | 80000 | - | 10.35 | 77.27 | 78.88 | model | log |
FCN-D6 | R-50-D16 | 769x769 | 40000 | 3.7 | 4.17 | 76.82 | 78.22 | model | log |
FCN-D6 | R-50-D16 | 769x769 | 80000 | - | 4.15 | 77.04 | 78.40 | model | log |
FCN-D6 | R-101-D16 | 512x1024 | 40000 | 4.5 | 8.04 | 77.36 | 79.18 | model | log |
FCN-D6 | R-101-D16 | 512x1024 | 80000 | - | 8.26 | 78.46 | 80.42 | model | log |
FCN-D6 | R-101-D16 | 769x769 | 40000 | 5.0 | 3.12 | 77.28 | 78.95 | model | log |
FCN-D6 | R-101-D16 | 769x769 | 80000 | - | 3.21 | 78.06 | 79.58 | model | log |
FCN-D6 | R-50b-D16 | 512x1024 | 80000 | 3.2 | 10.16 | 76.99 | 79.03 | model | log |
FCN-D6 | R-50b-D16 | 769x769 | 80000 | 3.6 | 4.17 | 76.86 | 78.52 | model | log |
FCN-D6 | R-101b-D16 | 512x1024 | 80000 | 4.3 | 8.46 | 77.72 | 79.53 | model | log |
FCN-D6 | R-101b-D16 | 769x769 | 80000 | 4.8 | 3.32 | 77.34 | 78.91 | model | log |
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
---|---|---|---|---|---|---|---|---|
FCN | R-50-D8 | 512x512 | 80000 | 8.5 | 23.49 | 35.94 | 37.94 | model | log |
FCN | R-101-D8 | 512x512 | 80000 | 12 | 14.78 | 39.61 | 40.83 | model | log |
FCN | R-50-D8 | 512x512 | 160000 | - | - | 36.10 | 38.08 | model | log |
FCN | R-101-D8 | 512x512 | 160000 | - | - | 39.91 | 41.40 | model | log |
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
---|---|---|---|---|---|---|---|---|
FCN | R-50-D8 | 512x512 | 20000 | 5.7 | 23.28 | 67.08 | 69.94 | model | log |
FCN | R-101-D8 | 512x512 | 20000 | 9.2 | 14.81 | 71.16 | 73.57 | model | log |
FCN | R-50-D8 | 512x512 | 40000 | - | - | 66.97 | 69.04 | model | log |
FCN | R-101-D8 | 512x512 | 40000 | - | - | 69.91 | 72.38 | model | log |
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
---|---|---|---|---|---|---|---|---|
FCN | R-101-D8 | 480x480 | 40000 | - | 9.93 | 44.14 | 45.67 | model | log |
FCN | R-101-D8 | 480x480 | 80000 | - | - | 44.47 | 45.74 | model | log |