-
Notifications
You must be signed in to change notification settings - Fork 196
/
test_caffe_manual.cpp
184 lines (167 loc) · 6.32 KB
/
test_caffe_manual.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#include <string>
#include <vector>
#include "caffe/caffe.hpp"
using namespace caffe;
unsigned int get_layer_index(boost::shared_ptr< Net<float> > & net, char *query_layer_name)
{
std::string str_query(query_layer_name);
vector< string > const & layer_names = net->layer_names();
for( unsigned int i = 0; i != layer_names.size(); ++i )
{
if( str_query == layer_names[i] )
{
return i;
}
}
LOG(FATAL) << "Unknown layer name: " << str_query;
}
unsigned int get_blob_index(boost::shared_ptr< Net<float> > & net, char *query_blob_name)
{
std::string str_query(query_blob_name);
vector< string > const & blob_names = net->blob_names();
for( unsigned int i = 0; i != blob_names.size(); ++i )
{
if( str_query == blob_names[i] )
{
return i;
}
}
LOG(FATAL) << "Unknown blob name: " << str_query;
}
void get_blob_features(boost::shared_ptr< Net<float> > & net, float *data_ptr, char* layer_name)
{
unsigned int id = get_layer_index(net, layer_name);
const vector<Blob<float>*>& output_blobs = net->top_vecs()[id];
for (unsigned int i = 0; i < output_blobs.size(); ++i)
{
switch (Caffe::mode()) {
case Caffe::CPU:
memcpy(data_ptr, output_blobs[i]->cpu_data(),
sizeof(float) * output_blobs[i]->count());
break;
case Caffe::GPU:
cudaMemcpy(data_ptr, output_blobs[i]->gpu_data(),
sizeof(float) * output_blobs[i]->count(), cudaMemcpyDeviceToHost);
break;
default:
LOG(FATAL) << "Unknown Caffe mode.";
}
}
}
#define PRINT_SHAPE1(x) \
std::cout << (x).num() << "\t" << (x).channels() << "\t" << (x).height() << "\t" << (x).width() << "\n";
#define PRINT_SHAPE2(x) \
std::cout << (x)->num() << "\t" << (x)->channels() << "\t" << (x)->height() << "\t" << (x)->width() << "\n";
#define PRINT_DATA(x) \
std::cout << (x)[0] << "\t" << (x)[1] << "\n";
int main(int argc, char** argv) {
char *proto = "H:\\Models\\Caffe\\deploy.prototxt";
char *model = "H:\\Models\\Caffe\\bvlc_reference_caffenet.caffemodel";
char *mean_file = "H:\\Models\\Caffe\\imagenet_mean.binaryproto";
Phase phase = TEST;
//Caffe::set_mode(Caffe::CPU);
Caffe::set_mode(Caffe::GPU);
Caffe::SetDevice(0);
// processing mean
Blob<float> image_mean;
BlobProto blob_proto;
const float *mean_ptr;
bool succeed = ReadProtoFromBinaryFile(mean_file, &blob_proto);
if (succeed)
{
std::cout << "read image mean succeeded" << std::endl;
image_mean.FromProto(blob_proto);
mean_ptr = (const float *) image_mean.cpu_data();
unsigned int num_pixel = image_mean.count();
std::cout << num_pixel << "\n";
PRINT_SHAPE1(image_mean);
PRINT_DATA(mean_ptr);
}
else
{
LOG(FATAL) << "read image mean failed";
}
// load net model
boost::shared_ptr<Net<float> > net(new caffe::Net<float>(proto, phase));
net->CopyTrainedLayersFrom(model);
const std::vector<boost::shared_ptr<Layer<float> >> layers = net->layers();
std::vector<boost::shared_ptr<Blob<float> >> net_blobs = net->blobs();
std::vector<string> layer_names = net->layer_names();
std::vector<string> blob_names = net->blob_names();
boost::shared_ptr<Layer<float> > layer;
boost::shared_ptr<Blob<float> > blob;
// show input blob size
Blob<float>* input_blobs = net->input_blobs()[0];
std::cout << "\nInput blob size:\n";
PRINT_SHAPE2(input_blobs);
// processing blobs of each layer, namely, weights and bias
const float *mem_ptr;
CHECK(layers.size() == layer_names.size());
std::cout << "\n#Layers: " << layers.size() << std::endl;
std::vector<boost::shared_ptr<Blob<float> >> layer_blobs;
for (int i = 0; i < layers.size(); ++i)
{
layer_blobs = layers[i]->blobs();
std::cout << "\n[" << i+1 << "] layer name: " << layer_names[i] << ", type: " << layers[i]->type() << std::endl;
std::cout << "#Blobs: " << layer_blobs.size() << std::endl;
for (int j = 0; j < layer_blobs.size(); ++j)
{
blob = layer_blobs[j];
PRINT_SHAPE2(blob);
mem_ptr = (const float *) blob->cpu_data();
PRINT_DATA(mem_ptr);
}
}
// get weights and bias from layer name
char *query_layer_name = "conv1";
const float *weight_ptr, *bias_ptr;
unsigned int layer_id = get_layer_index(net, query_layer_name);
layer = net->layers()[layer_id];
std::vector<boost::shared_ptr<Blob<float> >> blobs = layer->blobs();
if (blobs.size() > 0)
{
std::cout << "\nweights and bias from layer: " << query_layer_name << "\n";
weight_ptr = (const float *) blobs[0]->cpu_data();
PRINT_DATA(weight_ptr);
bias_ptr = (const float *) blobs[1]->cpu_data();
PRINT_DATA(bias_ptr);
}
// modify weights from layer name
blob = net->layers()[layer_id]->blobs()[0];
unsigned int data_size = blob->count();
float *data_ptr = new float[data_size];
caffe_copy(blob->count(), weight_ptr, data_ptr);
float *w_ptr = NULL;
data_ptr[0] = 1.1111f;
data_ptr[1] = 2.2222f;
switch (Caffe::mode())
{
case Caffe::CPU:
w_ptr = blob->mutable_cpu_data();
break;
case Caffe::GPU:
w_ptr = blob->mutable_gpu_data();
break;
default:
LOG(FATAL) << "Unknown Caffe mode";
}
caffe_copy(blob->count(), data_ptr, w_ptr);
weight_ptr = (const float *) blob->cpu_data();
delete [] data_ptr;
std::cout << "\nnew weights and bias from layer: " << query_layer_name << "\n";
PRINT_DATA(weight_ptr);
// get features from name
char *query_blob_name = "conv1"; /* data, conv1, pool1, norm1, fc6, prob, etc */
unsigned int blob_id = get_blob_index(net, query_blob_name);
blob = net->blobs()[blob_id];
unsigned int num_data = blob->count(); /* NCHW=10x96x55x55 */
mem_ptr = (const float *) blob->cpu_data();
std::cout << "\n#Features: " << num_data << "\n";
PRINT_DATA(mem_ptr);
char* weights_file = "bvlc_reference_caffenet_new.caffemodel";
NetParameter net_param;
net->ToProto(&net_param, false);
WriteProtoToBinaryFile(net_param, weights_file);
std::cout << "END" << std::endl;
return 0;
}