forked from itamblyn/itamblyn.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresearch.html
344 lines (286 loc) · 19 KB
/
research.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- DW6 -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Isaac Tamblyn</title>
<link rel="stylesheet" href="emx_nav_left.css" type="text/css">
<script type="text/javascript">
<!--
var time = 3000;
var numofitems = 7;
//menu constructor
function menu(allitems,thisitem,startstate){
callname= "gl"+thisitem;
divname="subglobal"+thisitem;
this.numberofmenuitems = 7;
this.caller = document.getElementById(callname);
this.thediv = document.getElementById(divname);
this.thediv.style.visibility = startstate;
}
//menu methods
function ehandler(event,theobj){
for (var i=1; i<= theobj.numberofmenuitems; i++){
var shutdiv =eval( "menuitem"+i+".thediv");
shutdiv.style.visibility="hidden";
}
theobj.thediv.style.visibility="visible";
}
function closesubnav(event){
if ((event.clientY <48)||(event.clientY > 107)){
for (var i=1; i<= numofitems; i++){
var shutdiv =eval('menuitem'+i+'.thediv');
shutdiv.style.visibility='hidden';
}
}
}
// -->
</script>
<script type="text/javascript">
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-91911-12']);
_gaq.push(['_trackPageview']);
(function() {
var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async = true;
ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www') + '.google-analytics.com/ga.js';
var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga, s);
})();
</script>
</head>
<body onmousemove="closesubnav(event);">
<div class="skipLinks">skip to: <a href="#content">page content</a> | <a href="pageNav">links on this page</a> | <a href="#globalNav">site navigation</a> | <a href="#siteInfo">footer (site information)</a> </div>
<!-- top_head -->
<div id="masthead">
<h1 id="siteName"><big><b>C</b></big>omputational <big><b>L</b></big>aboratory for <big><b>E</b></big>nergy <big><b>A</b></big>nd <big><b>N</b></big>anoscience</h1>
<div id="globalNav">
<img alt="" src="gblnav_left.gif" height="32" width="4" id="gnl"> <img alt="" src="glbnav_right.gif" height="32" width="4" id="gnr">
<div id="globalLink">
<a href="http://www.nrc-cnrc.gc.ca" target="nrc.ca" class="glink" id="gl1" onmouseover="ehandler(event,menuitem1);">National Research Council of Canada</a>
<a href="https://www.google.com/maps/place/100+Sussex+Dr,+Ottawa,+ON+K1N+5A2,+Canada/@45.4386156,-75.6997435,17z/data=!3m1!4b1!4m5!3m4!1s0x4cce04e68d038529:0x6b054ea5149c1915!8m2!3d45.4386119!4d-75.6975495" target="map" id="gl3" class="glink" onmouseover="ehandler(event,menuitem3);">Ottawa, Ontario, Canada</a>
</div>
<!--end globalLinks-->
</div>
<!-- end globalNav -->
<div id="subglobal1" class="subglobalNav">
<a href="https://www.uottawa.ca" target="www.uottawa.ca">University Homepage</a> |
<a href="https://science.uottawa.ca/physics" target="www.uottawa.ca">Department of Physics</a> |
</div>
<div id="subglobal2" class="subglobalNav">
<a href="http://www.science.uoit.ca/people/physics-faculty-and-staff.php" target="physics.uoit.ca">Physics Homepage</a> |
<a href=http://www.science.uoit.ca/people/administration.php" target="contact department">Department contact information</a>
</div>
<div id="subglobal3" class="subglobalNav">
<a href="https://maps.google.com/maps?q=2000+Simcoe+St+N,+Oshawa,+ON,+Canada&hl=en&sll=37.857901,-122.252357&sspn=0.011571,0.016351&oq=2000+sim&t=h&hnear=2000+Simcoe+St+N,+Oshawa,+Ontario+L1H+7K4,+Canada&z=16">Map it</a> |
<a href="http://www.ottawa.ca/" target="HRM homepage">City of Ottawa</a> |
<a href="http://www.cbc.ca/ottawa/" target="http://www.cbc.ca/toronto/">Regional News</a> |
<a href="https://weather.gc.ca/city/pages/on-118_metric_e.html" target="weatheroffice.ec.gc.ca">Local Weather</a> |
<a href="http://www.gc.ca/" target="gc.ca">Government of Canada</a>
</div>
<div id="subglobal4" class="subglobalNav">
<a href="#">subglobal4 link</a> | <a href="#">subglobal4 link</a> | <a href="#">subglobal4
link</a> | <a href="#">subglobal4 link</a> | <a href="#">subglobal4 link</a> | <a href="#">subglobal4
link</a> | <a href="#">subglobal4 link</a>
</div>
<div id="subglobal5" class="subglobalNav">
<a href="#">subglobal5 link</a> | <a href="#">subglobal5 link</a> | <a href="#">subglobal5
link</a> | <a href="#">subglobal5 link</a> | <a href="#">subglobal5 link</a> | <a href="#">subglobal5
link</a> | <a href="#">subglobal5 link</a>
</div>
<div id="subglobal6" class="subglobalNav">
<a href="#">subglobal6 link</a> | <a href="#">subglobal6 link</a> | <a href="#">subglobal6
link</a> | <a href="#">subglobal6 link</a> | <a href="#">subglobal6 link</a> | <a href="#">subglobal6
link</a> | <a href="#">subglobal6 link</a>
</div>
<div id="subglobal7" class="subglobalNav">
<a href="#">subglobal7 link</a> | <a href="#">subglobal7 link</a> | <a href="#">subglobal7
link</a> | <a href="#">subglobal7 link</a> | <a href="#">subglobal7 link</a> | <a href="#">subglobal7
link</a> | <a href="#">subglobal7 link</a>
</div>
<div id="subglobal8" class="subglobalNav">
<a href="#">subglobal8 link</a> | <a href="#">subglobal8 link</a> | <a href="#">subglobal8
link</a> | <a href="#">subglobal8 link</a> | <a href="#">subglobal8 link</a> | <a href="#">subglobal8
link</a> | <a href="#">subglobal8 link</a>
</div>
</div>
<div id="pagecell1">
<img alt="" src="tl_curve_white.gif" height="6" width="6" id="tl"> <img alt="" src="tr_curve_white.gif" height="6" width="6" id="tr">
<div id="breadCrumb">
</div>
<div id="pageName">
<h2><font color=white>Home</font></h2>
</div>
<div id="pageNav">
<div id="sectionLinks">
<a href="index.html">Home</a>
<a href="research.html">Research</a>
<a href="group/index.html">Group Members</a>
<a href="collaborators.html">Collaborators</a>
<a href="codes.html">Codes and Computing</a>
<a href="teaching.html">Teaching</a>
<a href="funding.html">Funding</a>
<a href="publications.html">Publications</a>
<a href="prospective_students.html">Prospective Students</a>
<a href="classroom_tech.html">Classroom Tech</a>
<a href="policy.html">Policy</a>
</div>
</div>
<!-- bottom_head -->
<div id="content">
<div class="story">
<table width="*">
<tr>
<td>
<img src="images/quad_display.jpg" height=200px>
</td>
<td>
<img src="images/VOLF.png" height=200px>
</td>
</tr>
</table>
</div>
<hr>
<div class="story">
<h3>Machine Learning for Advanced Materials</h3>
<table width="*">
<tr>
<td>Using a combination of theoretical tools (multi-scale modelling), our group is exploring and designing advanced materials. Our goal is to make materials that are, in the words of <a href="https://www.bell-labs.com/about/presidents/mervin-j-kelly/" target="away">Mervin Kelly</a>, "better, cheaper, or both".
<p>The long term objective of my research is to teach a computer physical and chemical intuition. A trained artificial intelligence (AI) should be able to make informed decisions about how to solve problems in chemistry, physics, and nanoscience without human intervention. We are approaching an era where machines will learn chemical and physical design rules based on a combination of theoretical models and experience, both simulated and real. Simulation and modelling are used throughout chemistry and physics research - the central question of my research program is how we can enhance these tools using modern AI and deep learning.</p>
<p>So far, we have shown that deep neural networks have the ability to replace both classical [J33, S1] and quantum mechanical operators [J32, J34, J36, S2, S3] (see my CV for full ref). In comparison to other machine learning methods, we demonstrated that convolutional deep neural networks prevailed as the most accurate and best parallel-scaling method for all but the most simple physical problems [J30]. Specifically, we demonstrated the ability of deep neural networks to learn both the mapping from spin-configuration-to-energy (for the case of the ferromagnetic Ising model and screened Coulomb interaction) as well as magnetization for a classical system. We are able to reproduce the temperature-induced order-to-disorder phase transition the Ising model is famous for (at the correct critical temperature, Tc) [J33].
We also showed that generative adversarial networks can be used to efficiently explore phase space (for the case of the spin models), and can be used to provide a confidence level for property prediction [S1]. For a confined quantum particle, our deep neural networks successfully learned the energy of the ground state, first excited state, and kinetic energy [J32]. We then used a similar approach to map the structure of a two dimensional hexagonal crystal lattice to energies computed within the density functional theory [J34, S2], where we trained the system to learn the mapping between a pseudopotential and total energy. Extending this to 3d [S2], we were able to scan through over a billion compositions of a potential light harvesting material (perovskites). All of this was accomplished via “featureless” deep learning, meaning we presented the network with raw, spatial data, without any form of manual feature selection. Overcoming a scaling limitation with traditional deep neural networks, we developed a new architecture and training protocol which naturally enforces extensivity onto the system [J36]. Our new extensive deep neural networks (EDNN) are able to naturally learn the locality length-scales of operators and look extremely promising for providing efficient alternative electronic structure methods to density functional theory [J36], a widely used theoretical and computational framework used in physics, chemistry, and nanoscience. This architecture is an example of how physical insight can be used to improve neural network topology and design - subsequently we showed that it can be used with weakly-supervised data to learn how to localize and count objects within a scene [S5]. I believe that the “inserting physics” into the design of deep networks is a particularly rich area which needs to be further explored.
We have also generated and released several open source datasets and reinforcement learning environments for the community (http://clean.energyscience.ca/datasets). These are aimed at exposing these important problems to the wider AI community.</p>
<p>Most recently, our efforts have been focused on understanding and applying techniques from reinforcement learning to physics and chemistry. These include heat engines [S4], chemical reactions, and non-equilibrium self-assembly of nanostructure materials (topics I have previously published on, see CV).</p>
<p>To do this, we are developing deep learning methods which can rapidly approximate the properties of materials based on first principles training data. Ultimately, our goal is to develop a model which is transferrable, generalizable, reliable, and scalable.
<p><b>Transferability</b> means that the network is able to accurately predict properties for structures which it has not observed during training.
<p><b>Generalizability</b> means that the approach can be used for arbitrary observables, and that it is not sensitive to the details of the physical system to which it applies. For example, we would like to be able to work with fluids, continuum models, and atomistic systems using the same basic methodologies, model architectures, and training protocols.
<p>By <b>reliable</b>, we mean that the model is able to provide accurate estimates for a property, and, perhaps more importantly, provide the user with a warning or signal when it is uncertain. In our experience, neural networks are much better at interpolating than extrapolating. We have found that whenever a model has difficulty with a particular configuration (i.e. the error is high), the configuration is far away from the training set (in weight space). In practice, one obviously would not have access to the “ground truth” value, therefore a reliable model should be able to signal not only its prediction, but also a measure of confidence.
<p>The final property, scalability, relates to the extent to which the computational cost of evaluating the model can be distributed (e.g. across nodes in a cluster or multiple GPU).
<p>Our latest approaches are generalizable, scalable, and transferrable. Their reliability can be ensured through a GAN-like training procedure
<br>
<br>
<h1>Recent articles</h1>
<ul>
<li><a href="publications/036.html">Phase space sampling and operator confidence with generative adversarial networks</a>
<li><a href="publications/035.html">Extensive deep neural networks</a>
<li><a href="publications/034.html">Convolutional neural networks for atomistic systems</a>
<li><a href="publications/033.html">Deep neural networks for learning operators through observation</a>
<li><a href="publications/032.html">Deep learning and the Schrodinger equation</a>
<li><a href="publications/029.html">Sampling algorithms for validation of supervised learning models for Ising-like systems</a>
</ul>
</td>
<td>
<img src="images/materials.png" height=150px>
</td>
</tr>
</table>
</div>
<hr>
<div class="story">
<h3>Ab initio electrolysis</h3>
<table width="*">
<tr>
<td>
Given the ubiquity of electrochemistry as an analytical and industrial tool, the importance of developing a fully first principles description of this system cannot be overstated.
At the same time, the complexity of the problem poses a significant obstacle to the development of an accurate atomistic description.
Obtaining the correct physical picture will require the union of several areas of theory.
A complete treatment will require an accurate description of the electrode-solution interface, both in terms of local geometry and electronic structure.
<a href="codes.html">Methodological development</a> will be important in this field.
<br>
<br>
<h1>Recent articles</h1>
<ul>
<li><a href="publications/037.html">Beneficial effect of iron addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction</a>
<li><a href="publications/028.html">Electronic Structure of Liquid Water and a Platinum Surface</a>
</ul>
</td>
<td>
<iframe width="448" height="252" src="https://www.youtube.com/embed/ZEYPtYJEnm8" frameborder="0" allowfullscreen></iframe>
</td>
</tr>
</table>
</div>
<hr>
<div class="story">
<h3>Energy harvesting materials</h3>
<table width="*">
<tr>
<td>
<img src="images/artificial_photosynthesis.png" height=150px>
</td>
<td>
<p> Light from the sun provides an unlimited supply of energy. Our challenge is to harness this energy in an efficient and scalable manner.
Using metal-to-metal charge transfer complexes as light absorbers, an integrated, inorganic device shows promise for applications in <a href="http://solarfuelshub.org">water splitting and CO<sub>2</sub> sequestration.</a></p>
<p>Through computational modelling, we aim to elucidate electronic processes which occur on the nanoscale, with the ultimate goal of improving efficiency and durability.
<br>
<br>
<h1>Recent articles</h1>
<ul>
<li><a href="publications/037.html"> Beneficial effect of iron addition on the catalytic activity of electrodeposited MnOx films in the water oxidation reaction</a>
<li><a href="publications/024.html">Vibrational trapping of excited 3d electrons leads to long lived LMCT in a d0 V Complex</a>
</ul>
</td>
</tr>
</table>
</div>
<hr>
<!-- <div class="story">
<h3>ICF: Inertial confinement fusion</h3>
<table width="*">
<tr>
<td>
<img src="images/NIF_interface.png" height=300px></td>
<td>
I am interested in the study and design of energy related materials, especially their properties under extreme conditions. The realization of nuclear fusion as viable source of energy will require advanced materials. Modeling the behavior of both the fuel used in reactions and the vessels in which they are contained is one of the most important problems facing energy research today. </p>
</td>
</tr>
</table>
</div>
<hr>
--!>
<div class="story">
<h3> Networks and self assembly</h3>
<table width="*">
<tr>
<td>
<img src="images/self_assembly.png" height=150px>
</td>
<td>
Organic-metallic interfaces offer the possibility of novel next-generation photovoltaic devices.
Producing these devices reliably and cheaply poses many challenges, however.
Understanding and controlling self-assembly processes is an important aspect of the realization of this technology. Interestingly, this work has recently spun off in a very different direction: Online social Networks. See our open source tool, #k@ (<a href="http://hashkat.org">http://hashkat.org</a>), for more information.
<br>
<br>
<h1>Recent articles</h1>
<ul>
<li><a href="http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.115702" target="away">Emergent rhombus tilings from molecular interactions with M-fold rotational symmetry</a>
<li><a href="https://journals.aps.org/prx/abstract/10.1103/PhysRevX.4.011044" target="away">Common physical framework explains phase behavior and dynamics of atomic, molecular and polymeric network-formers</a>
</ul>
</td>
</tr>
</table>
</div>
</div>
<div id="siteInfo">
<img src="images/space.GIF" width="25" height="31"> <img src="images/clean_logo.png" alt="UOIT" border="0" height="50"> <img src="images/space.GIF" width="25" height="31">
<a href="http://www.uottawa.ca" target="uottawa.ca"><img src="images/uottawa.png" alt="uOttawa" border="0" height="50"></a> <img src="images/space.GIF" width="25" height="31">
<a href="http://www.uoit.ca" target="uoit.ca"><img src="images/uoit.jpg" alt="UOIT" border="0"></a> <img src="images/space.GIF" width="25" height="31">
<a href="http://www.nserc.gc.ca" target="nserc" border="0"><img src="images/nserc.gif" width="75" height="31" border="0"></a> <img src="images/space.GIF" width="25" height="31">
<a href="http://computecanada.ca" target="computecanada"><img src="images/compute_canada.png" height="31"> <a href="http://www.computecanada.org"></a><img src="images/space.GIF" width="25" height="31">
<a href="http://www.soscip.org" target="soscip" border="0"><img src="images/soscip_logo.png" height="31" border="0"></a> <img src="images/space.GIF" width="25" height="31">
</div>
</div></div>
</di>
<br>
<script type="text/javascript">
<!--
var menuitem1 = new menu(7,1,"hidden");
var menuitem2 = new menu(7,2,"hidden");
var menuitem3 = new menu(7,3,"hidden");
var menuitem4 = new menu(7,4,"hidden");
var menuitem5 = new menu(7,5,"hidden");
var menuitem6 = new menu(7,6,"hidden");
var menuitem7 = new menu(7,7,"hidden");
// -->
</script>
</body>
</html>