In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Aquila models. For illustration purposes, we utilize the BAAI/AquilaChat-7B as a reference Aquila model.
Note: If you want to download the Hugging Face Transformers model, please refer to here.
BigDL-LLM optimizes the Transformers model in INT4 precision at runtime, and thus no explicit conversion is needed.
To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to here for more information.
In the example generate.py, we show a basic use case for a Aquila model to predict the next N tokens using generate()
API, with BigDL-LLM INT4 optimizations.
We suggest using conda to manage environment:
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
source /opt/intel/oneapi/setvars.sh
For optimal performance on Arc, it is recommended to set several environment variables.
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
Arguments Info In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path
: str, argument defining the huggingface repo id for the Aquila model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'BAAI/AquilaChat-7B'
.--prompt
: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to be'AI是什么?'
.--n-predict
: int, argument defining the max number of tokens to predict. It is default to be32
.
Inference time: xxxx s
-------------------- Prompt --------------------
Human: AI是什么?###Assistant:
-------------------- Output --------------------
Human: AI是什么?###Assistant: AI是人工智能的缩写。人工智能是一种技术,旨在使计算机能够像人类一样思考、学习和执行任务。AI包括许多不同的技术和方法,例如机器