Skip to content

Single Frame Semantic Segmentation Using Multi-Modal Spherical Images

License

Notifications You must be signed in to change notification settings

sguttikon/SFSS-MMSI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SFSS-MMSI

Single Frame Semantic Segmentation Using Multi-Modal Spherical Images

Description

The official implementation of Single Frame Semantic Segmentation Using Multi-Modal Spherical Images, Accepted to WACV 2024: More details can be found in our paper [PDF]. sfss-mmsi

Getting started

<root>$ git clone git@github.com:sguttikon/SFSS-MMSI.git
<root>$ git clone -b sfss_mmsi git@github.com:sguttikon/matterport_utils.git
<root>$ git clone -b sfss_mmsi git@github.com:sguttikon/py360convert.git

Installation

(base) <root>$ conda create --name sfss_mmsi
(base) <root>$ conda activate sfss_mmsi
(sfss_mmsi) <root>$ conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
(sfss_mmsi) <root>$ conda install -c "nvidia/label/cuda-11.7.0" cuda-toolkit
(sfss_mmsi) <root>$ export CUDA_HOME=$CONDA_PREFIX
(sfss_mmsi) <root>$ python -m pip install timm==0.6.12 fvcore==0.1.5.post20221221 open3d==0.16.0 easydict==1.10 opencv-python==4.7.0.68 tensorboardx==2.5.1 notebook==7.0.2
(sfss_mmsi) <root>$ python -m pip install -U openmim==0.3.5
(sfss_mmsi) <root>$ mim install mmcv-full==1.6.2
(sfss_mmsi) <root>$ python -m pip install mmsegmentation==0.30.0
(sfss_mmsi) <root>$ python -m pip install -e py360convert
(sfss_mmsi) <root>$ cd SFSS-MMSI
(sfss_mmsi) <repo_path>$

Usage

README.md
LICENSE
train.py
eval.py
/configs
    /mp
    /sct
    /sid
/data_processing
/dataloader
/datasets
    /2D-3D-Semantics-1K
    /Structured3D-1K
    /Matterport3D-1K
/engine
/models
/utils
/visualization
/pretrained
    /segformers
/workdirs
    /Stanford2D3DS_1024x512
    /Structured3D_1024x512
    /Matterport3D_1024x512

Datapreparation

After installing the dependencies, we download and preprocess the datasets: Stanford2D3DS, Structured3D and Matterport3D. Refer to data_processing/.

Train

Refer RGBX_Semantic_Segmentation for the pretrained segformer weights and place it under pretrained/segformers.

(sfss_mmsi) <repo_path>$ python -m train --config configs.sid.unimodal --devices 1
(sfss_mmsi) <repo_path>$ python -m train --config configs.sid.bimodal --devices 1
(sfss_mmsi) <repo_path>$ python -m train --config configs.sid.trimodal --devices 1

(sfss_mmsi) <repo_path>$ python -m train --config configs.sct.unimodal --devices 1
(sfss_mmsi) <repo_path>$ python -m train --config configs.sct.bimodal --devices 1
(sfss_mmsi) <repo_path>$ python -m train --config configs.sct.trimodal --devices 1

Eval

(sfss_mmsi) <repo_path>$ python -m eval --config configs.sid.unimodal --split validation --epochs epoch-best.pth
(sfss_mmsi) <repo_path>$ python -m eval --config configs.sid.bimodal --split validation --epochs epoch-best.pth
(sfss_mmsi) <repo_path>$ python -m eval --config configs.sid.trimodal --split validation --epochs epoch-best.pth

(sfss_mmsi) <repo_path>$ python -m eval --config configs.sct.unimodal --split <validation/test> --epochs epoch-best.pth
(sfss_mmsi) <repo_path>$ python -m eval --config configs.sct.bimodal --split <validation/test> --epochs epoch-best.pth
(sfss_mmsi) <repo_path>$ python -m eval --config configs.sct.trimodal --split <validation/test> --epochs epoch-best.pth

Result

Stanford2D3DS trained model(s)

Network Fold mAcc aAcc mIoU Download
Unimodal (RGB) avg 63.955 80.417 52.873 Fold1, Fold2, Fold3
Bimodal (RGB-D) avg 66.021 84.889 55.492 Fold1, Fold2, Fold3
Bimodal (RGB-N) avg 68.787 86.686 58.239 Fold1, Fold2, Fold3
Bimodal (RGB-H) avg 70.683 88.066 60.603 Fold1, Fold2, Fold3
Trimodal (RGB-D-N) avg 69.031 87.322 59.426 Fold1, Fold2, Fold3

Structured3D trained model(s)

Network valid mAcc valid aAcc valid mIoU test mAcc test aAcc test mIoU Download
Unimodal (RGB) 80.476 95.729 71.941 76.099 95.388 68.343 model
Bimodal (RGB-D) 82.043 96.253 73.775 77.881 95.670 70.169 model
Bimodal (RGB-N) 83.247 96.500 74.378 78.683 96.115 71.001 model
Trimodal (RGB-D-N) 84.466 96.851 75.863 79.671 96.340 71.971 model

Matterport3D trained model(s)

Network valid mAcc valid aAcc valid mIoU test mAcc test aAcc test mIoU Download
Unimodal (RGB) 46.739 76.694 35.154 43.655 69.169 31.301 model
Bimodal (RGB-D) 51.395 78.763 39.191 49.242 71.592 35.921 model
Bimodal (RGB-N) 51.136 78.738 38.912 50.387 71.239 35.773 model
Trimodal (RGB-D-N) 51.563 78.937 39.263 50.007 71.422 35.520 model

Visuals

Segmentation-Results

In infer_pano_sem.ipynb, we use an out-of-training-distribution 360 image from PanoContext as an example.

Additionally, see infer_s2d3d_sem.ipynb, infer_s2d3d_sem.ipynb, and infer_mp3d_sem.ipynb for interactive demo and visualization.

Contributing

If you are willing to contribute to this project, please contact with the authors.

Authors and acknowledgment

Our code is heavily based on Trans4PASS+ and RGBX_Semantic_Segmentation, thanks for their excellent work!

We also appreciate the open-source works:

This work was partially funded by the EU Horizon Europe Framework Program under grant agreement 101058236 (HumanTech).

License

This repository is under the MIT license. For commercial use, please contact with the authors.

Citations

If you find this repo useful, please consider referencing the following paper:

@inproceedings{DBLP:conf/wacv/GuttikondaR24,
  author       = {Suresh Guttikonda and
                  Jason R. Rambach},
  title        = {Single Frame Semantic Segmentation Using Multi-Modal Spherical Images},
  booktitle    = {{WACV}},
  pages        = {3210--3219},
  publisher    = {{IEEE}},
  year         = {2024}
}

Project status

We are working on releasing the code and trained models, but no guarantee when the code will be released.

The code and trained models are released.

About

Single Frame Semantic Segmentation Using Multi-Modal Spherical Images

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published