-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathcommon.py
157 lines (122 loc) · 5.51 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
"""Provides flags that are common to scripts.
Common flags from train/eval/vis/export_model.py are collected in this script.
"""
import collections
import copy
import json
import tensorflow as tf
flags = tf.app.flags
# Flags for input preprocessing.
flags.DEFINE_integer('min_resize_value', None,
'Desired size of the smaller image side.')
flags.DEFINE_integer('max_resize_value', None,
'Maximum allowed size of the larger image side.')
flags.DEFINE_integer('resize_factor', None,
'Resized dimensions are multiple of factor plus one.')
# Model dependent flags.
flags.DEFINE_integer('logits_kernel_size', 1,
'The kernel size for the convolutional kernel that '
'generates logits.')
# When using 'mobilenet_v2' and `shufflenet_v2`, we set atrous_rates = decoder_output_stride = None.
flags.DEFINE_string('model_variant', 'shufflenet_v2', 'DeepLab model variant.')
flags.DEFINE_multi_float('image_pyramid', None,
'Input scales for multi-scale feature extraction.')
flags.DEFINE_boolean('add_image_level_feature', True,
'Add image level feature.')
flags.DEFINE_multi_integer(
'image_pooling_crop_size', None,
'Image pooling crop size [height, width] used in the ASPP module. When '
'value is None, the model performs image pooling with "crop_size". This'
'flag is useful when one likes to use different image pooling sizes.')
flags.DEFINE_boolean('aspp_with_batch_norm', True,
'Use batch norm parameters for ASPP or not.')
flags.DEFINE_boolean('aspp_with_separable_conv', True,
'Use separable convolution for ASPP or not.')
# Defaults to None. Set multi_grid = [1, 2, 4] when using provided
# 'resnet_v1_{50,101}_beta' checkpoints.
flags.DEFINE_multi_integer('multi_grid', None,
'Employ a hierarchy of atrous rates for ResNet.')
flags.DEFINE_float('depth_multiplier', 1.0,
'Multiplier for the depth (number of channels) for all '
'convolution ops used in MobileNet and ShuffleNet.')
# For `mobilenet_v2` and `shufflenet_v2`, use decoder_output_stride = None.
# TODO implemented decoder option for mobilenets
flags.DEFINE_integer('decoder_output_stride', None,
'The ratio of input to output spatial resolution when '
'employing decoder to refine segmentation results.')
flags.DEFINE_boolean('decoder_use_separable_conv', True,
'Employ separable convolution for decoder or not.')
flags.DEFINE_enum('merge_method', 'max', ['max', 'avg'],
'Scheme to merge multi scale features.')
flags.DEFINE_string(
'dense_prediction_cell_json',
'',
'A JSON file that specifies the dense prediction cell.')
FLAGS = flags.FLAGS
# Constants
# Perform semantic segmentation predictions.
OUTPUT_TYPE = 'semantic'
# Semantic segmentation item names.
LABELS_CLASS = 'labels_class'
IMAGE = 'image'
HEIGHT = 'height'
WIDTH = 'width'
IMAGE_NAME = 'image_name'
LABEL = 'label'
ORIGINAL_IMAGE = 'original_image'
# Test set name.
TEST_SET = 'test'
class ModelOptions(
collections.namedtuple('ModelOptions', [
'outputs_to_num_classes',
'crop_size',
'atrous_rates',
'output_stride',
'merge_method',
'add_image_level_feature',
'image_pooling_crop_size',
'aspp_with_batch_norm',
'aspp_with_separable_conv',
'multi_grid',
'decoder_output_stride',
'decoder_use_separable_conv',
'logits_kernel_size',
'model_variant',
'depth_multiplier',
'dense_prediction_cell_config',
])):
"""Immutable class to hold model options."""
__slots__ = ()
def __new__(cls,
outputs_to_num_classes,
crop_size=None,
atrous_rates=None,
output_stride=8):
"""Constructor to set default values.
Args:
outputs_to_num_classes: A dictionary from output type to the number of
classes. For example, for the task of semantic segmentation with 21
semantic classes, we would have outputs_to_num_classes['semantic'] = 21.
crop_size: A tuple [crop_height, crop_width].
atrous_rates: A list of atrous convolution rates for ASPP.
output_stride: The ratio of input to output spatial resolution.
Returns:
A new ModelOptions instance.
"""
dense_prediction_cell_config = None
if FLAGS.dense_prediction_cell_json:
with tf.gfile.Open(FLAGS.dense_prediction_cell_json, 'r') as f:
dense_prediction_cell_config = json.load(f)
return super(ModelOptions, cls).__new__(
cls, outputs_to_num_classes, crop_size, atrous_rates, output_stride,
FLAGS.merge_method, FLAGS.add_image_level_feature,
FLAGS.image_pooling_crop_size, FLAGS.aspp_with_batch_norm,
FLAGS.aspp_with_separable_conv, FLAGS.multi_grid,
FLAGS.decoder_output_stride, FLAGS.decoder_use_separable_conv,
FLAGS.logits_kernel_size, FLAGS.model_variant, FLAGS.depth_multiplier,
dense_prediction_cell_config)
def __deepcopy__(self, memo):
return ModelOptions(copy.deepcopy(self.outputs_to_num_classes),
self.crop_size,
self.atrous_rates,
self.output_stride)