forked from MaayanLab/Zika-RNAseq-Pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_sra_kallisto.sh
executable file
·190 lines (168 loc) · 4.65 KB
/
analyze_sra_kallisto.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#!/bin/bash
# This script start the pipeline from .sra files assuming
# .sra files are located in SR*/SRR*.sra relative to WORKDIR.
########## Step 0: check command line args and make sure files exist ##########
## Initialize variables with default values:
WORKDIR="data/"
GENOME="$HOME/genomes/Homo_sapiens/UCSC/hg19"
skip_qc=false
n_cpus=8
## Parse command line args
while [[ $# -gt 0 ]]; do
key="$1"
case $key in
-g|--genome)
GENOME="$2"
shift # past argument
;;
-w|--workdir)
WORKDIR="$2"
shift # past argument
;;
-t|--cpus)
n_cpus="$2"
shift # past argument
;;
--skip-qc)
skip_qc=true
shift # past argument
;;
-h|--help)
echo "Usage: ./analyze_sra.sh -g <GENOME> -w <WORKDIR>"
echo "Options:"
echo " --skip-qc: Skip fastQC steps for the fastq files"
echo " -t, --cpus: Number of CPUs to use, default to 8"
exit
;;
*)
# unknown option
echo "Unknown option: $key, exiting."
echo "Usage: ./analyze_sra.sh -g <GENOME> -w <WORKDIR>"
echo "Options:"
echo " --skip-qc: Skip fastQC steps for the fastq files"
echo " -t, --cpus: Number of CPUs to use, default to 8"
exit
;;
esac
shift # past argument or value
done
## Detect number of CPUs and use min(N_CPUS, n_cpus) for jobs
N_CPUS=$(nproc)
N_CPUS=$(($N_CPUS>n_cpus?n_cpus:$N_CPUS))
echo "Number of CPUs to be used: $N_CPUS"
## Check $WORKDIR
if [[ ! -d $WORKDIR ]]; then
echo "Could not find working directory: $WORKDIR, exiting. Please make sure the working directory exists"
exit 1
else
## Convert to absolute paths
GENOME=$(readlink -e $GENOME)
WORKDIR=$(readlink -e $WORKDIR)
echo "GENOME=$GENOME"
echo "WORKDIR=$WORKDIR"
fi
## Check $GENOME
if [[ ! -d $GENOME ]]; then
echo "Could not find reference genome: $GENOME, exiting. Please make sure the working directory exists"
exit 1
else
GENOME_GTF="$GENOME/Homo_sapiens.GRCh38.92.gtf.gz"
GENOME_FA="$GENOME/Homo_sapiens.GRCh38.cdna.all.fa.gz"
if [[ ! -f $GENOME_GTF ]]; then
echo "$GENOME_GTF not found, exiting"
exit 1
fi
if [[ ! -f $GENOME_FA ]]; then
echo "$GENOME_FA not found, exiting"
exit 1
fi
KALLISTO_INDEX="$GENOME/Homo_sapiens.GRCh38.cdna.all.idx"
fi
## Make kallisto index if not exists
if [ ! -f $KALLISTO_INDEX ]; then
echo "kallisto index does not exist, building kallisto index"
kallisto index \
-i $KALLISTO_INDEX \
$GENOME_FA
fi
is_paired() {
# function to examine whether a .sra file is paired-end sequencing
# ref: https://www.biostars.org/p/139422/
local SRA="$1"
local x=$(
fastq-dump -I -X 1 -Z --split-spot "$SRA" 2>/dev/null \
| awk '{if(NR % 2 == 1) print substr($1,length($1),1)}' \
| uniq \
| wc -l
)
# echo $SRA $x
# $x should be 2 if paired-end, 1 if single-end
if [ $x == 2 ]; then
return 0 # true
else
return 1 # false
fi
}
dump_sra() {
# function to dump sra to fastq file with auto-detecting
# whether reads are from single-end or paired-end
local sra="$1"
if is_paired $sra; then
echo "$sra is detected as paired-end sequencing reads"
# Note that paired-end sequencing reads should be dumped into two fastq files
fastq-dump --gzip -I --split-files -O paired_fastqs "$sra"
else
echo "$sra is detected as single-end sequencing reads"
fastq-dump --gzip -O fastqs "$sra"
fi
}
cd $WORKDIR
## create dirs if not exists
mkdir -p fastqs
mkdir -p paired_fastqs
mkdir -p fastQC_output
mkdir -p kallisto_output
########## Step 1: .sra -> .fastq ##########
## Dump .sra to .fastq
echo "Dumping .sra files to .fastq.gz files"
## Dump in parallel using xargs
export -f is_paired
export -f dump_sra
find SR*/*.sra | xargs --max-args=1 --max-procs=$N_CPUS -I {} bash -c 'dump_sra "$@"' _ {}
########## Step 2: QC, align and assemble sequencing reads ##########
## Align and assemble single-end sequencing reads
echo "Started to align reads to the genome and assemble transcriptome"
cd fastqs
for fq in $(ls); do
basename=$(echo $fq | cut -f1 -d '.')
if [ "$skip_qc" = false ]; then
echo "Performing FastQC for $basename"
fastqc $fq -o ../fastQC_output
fi
echo "Aligning reads from $basename to the reference genome"
kallisto quant \
-t $N_CPUS \
-i $KALLISTO_INDEX \
-o ../kallisto_output/$basename \
$fq
done
## Align and assemble paired-end sequencing reads
cd ../paired_fastqs
for basename in $(ls | cut -f1 -d '_' | sort | uniq); do
echo $basename
fq1="_1.fastq.gz"
fq2="_2.fastq.gz"
fq1=$basename$fq1
fq2=$basename$fq2
if [ "$skip_qc" = false ]; then
echo "Performing FastQC for $basename"
fastqc $fq1 -o ../fastQC_output
fastqc $fq2 -o ../fastQC_output
fi
echo "Aligning reads from $basename to the reference genome"
kallisto quant \
-t $N_CPUS \
-i $KALLISTO_INDEX \
-o ../kallisto_output/$basename \
$fq1 $fq2
done