-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathollamautil.py
775 lines (639 loc) · 27.5 KB
/
ollamautil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#!/Users/andrew/venvs/ollamautil/bin/python
# To make this executable, update shebang to your python executable
# (this should be your venv/bin/python file usually, not /usr/bin/python)
# To run as a command line util, run 'CHMOD +x ollamautil.py', and then put
# the final executable in your PATH. Optionally remove .py from the filename.
# command line execution: ollamautil
# ---------------------------
# OllamaUtil
#
# A CLI utility for working with and moving the Ollama cache
# Currently has certain configurations hard-coded for my own setup
# but easily adaptable to a configuraiton file.
# Current as of the cache file structure of Ollama 0.1.29.
#
# ---------------------------
# Copyright (C) 2024 Andrew M. Cox
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import os
import json
import ast
import argparse
import hashlib
from prettytable import PrettyTable
from tqdm import tqdm as tqdm
from typing import List, Tuple
import shutil
import ollama
import warnings
from copy import deepcopy
from contextlib import contextmanager
VERSION = "2.0.0"
GITPAGE = "https://github.com/sealad886/ollama_util"
def display_welcome() -> None:
'''
Print a welcome message and version number to stdout.
Input: None
Output: None
'''
welcome_message = f"\033[1;4mOllamaUtil\033[0m (c) 2024" \
f"\nVersion {VERSION}\nMore info at: {GITPAGE}"
print(welcome_message)
class Model:
valid_cache_types = ['internal', 'external']
def __init__(self, config, layers, library, model, version):
self.config: dict = config
self.layers: dict = layers
self.caches: List[Tuple[str, str]] = []
self.library: str = library
self.model: str = model
self.version: str = version
@property
def name(self):
if self.library == "library":
return f"{self.model}:{self.version}"
else:
return f"{self.library}/{self.model}:{self.version}"
@property
def manifest(self):
return f"{self.library}/{self.model}/{self.version}"
@property
def size(self):
size = 0
if 'size' in self.config:
size += self.config['size']
for layer in self.layers:
if 'size' in layer:
size += layer['size']
return size
def add_cache_flag(self, cache: Tuple[str, str]):
if cache[0] not in self.valid_cache_types:
warn_text = "Unable to set invalid cache flag for cache type: %s."
warnings.warn(warn_text % cache)
return
if cache not in self.caches:
self.caches.append(cache)
def remove_cache_flag(self, cache: Tuple[str, str]):
if cache in self.caches:
self.caches.remove(cache)
else:
warnings.warn(f"Attempted to remove cache flag {cache[0]} "
f"from model {self.name}, but model does not exist "
"in the specified cache.")
def is_in_cache(self, cache_str: str = ""):
if cache_str not in self.valid_cache_types:
warnings.warn(f"Attempt to check cache {cache_str} but "
f"{cache_str} is not a valid cache type.")
return False
for cache in self.caches:
if cache_str in cache:
return True
return False
def to_dict(self):
model_dict = {
"name": self.name,
"config": self.config,
"layers": self.layers,
"caches": self.caches,
"size": self.size,
"library": self.library,
"model": self.model,
"version": self.version
}
return model_dict
def __eq__(self, other):
if not isinstance(other, Model):
return False
return (
self.name == other.name and
self.get_digests() == other.get_digests()
)
def copy(self):
return deepcopy(self)
def get_digests(self):
'''
Return a list of the digest/blod file names to be moved.
If the manifest file describes the filenames using a ':'
character, this returns the file names using a '-' instead.
Returns:
List of digest filenames, replaces ':' with '-'
'''
digests = []
digests.append(self.config['digest'].replace(':', '-'))
for layer in self.layers:
digests.append(layer['digest'].replace(':', '-'))
return digests
def get_size(self):
def convert_bytes(size):
for x in ['bytes', 'KB', 'MB', 'GB', 'TB']:
if size < 1024.0:
return "%3.1f %s" % (size, x)
size /= 1024.0
return size
return convert_bytes(self.size)
def __str__(self):
return f"{self.name} ({self.get_size()}): contains {len(self.get_digests())} digests."
@contextmanager
def auto_cache_state():
original_cache = get_curnow_cache()
try:
yield
finally:
_toggle_cache(original_cache, silent=True)
def cache_type_to_cache(cache_type: str) -> Tuple[str, str]:
return next((cache, path) for cache, path in valid_caches if cache == cache_type)
def get_user_confirmation(prompt: str):
'''
Prompts the user with a yes/no question and returns True/False based on the response.
Args:
prompt (str): The question or prompt to display to the user.
Returns:
bool: True if the user confirms (yes), False otherwise (no).
'''
valid_responses = {"yes": True, "y": True, "no": False, "n": False}
prompt = prompt.strip()
while True:
# Ask the user and get the response
user_response = input(f"{prompt} (yes/no): ").lower()
# Validate and process the response
if user_response in valid_responses:
return valid_responses[user_response]
else:
print("Invalid response. Please answer 'yes' or 'no'.")
def get_curnow_cache():
home = os.path.expanduser("~")
current_path = os.path.realpath(os.path.join(home, '.ollama', 'models'))
curnow = None
if current_path == ollama_int_dir:
curnow = ("internal", current_path)
elif current_path == ollama_ext_dir:
curnow = ("external", current_path)
else:
AssertionError(f"Error: somehow managed to get to {current_path}")
return curnow
def toggle_cache(skip_conf: bool = False) -> str:
curnow, curnow_path = get_curnow_cache()
toggle_to = {
'internal': next((cache, path) for cache, path in valid_caches if cache == 'external'),
'external': next((cache, path) for cache, path in valid_caches if cache == 'internal')
}
print(f"Current Ollama cache set to: {curnow.upper()}.")
prompt = f"Would you like to swap symlink to \033[1m{toggle_to[curnow][0].upper()}\033[0m source? (yN): "
if skip_conf or get_user_confirmation(prompt):
_toggle_cache(toggle_to[curnow])
else:
print(f"No changes to Ollama cache pointer made. Still using \033[1;4m{curnow.upper()}\033[0m.")
def _toggle_cache(toggle_target: Tuple[str, str], *, silent=False) -> str:
'''
WARNING: any calling function should ensure that the cache state is returned
to the original state when that function returns.
Use decorator @auto_cache_state() where possible
Change the cache symlinked at $HOME/.ollama.
'''
if not is_cache_available(toggle_target):
warnings.warn(f"Target cache toggle {toggle_target[0].upper()} is not available.")
return
if toggle_target[0] == "internal":
os.system(f"ln -s -F -f -h {ollama_int_dir} ${{HOME}}/.ollama/models")
if not silent:
print("Changed .ollama symlink to look to INTERNAL drive.")
return "external"
elif toggle_target[0] == "external":
os.system(f"ln -s -F -f -h {ollama_ext_dir} ${{HOME}}/.ollama/models")
if not silent:
print("Changed .ollama symlink to look to EXTERNAL drive.")
return "internal"
else:
warnings.warn(f'Cache target not toggled. Requested target \'{toggle_target[0]}\' not defined.')
def models_in_cache_list() -> List[Tuple[str, str, str]]:
model_list = ollama.list()['models']
model_names: List[str] = []
for mod in model_list:
model_names.append(mod['name'])
for i, name in enumerate(model_names):
if "/" in name:
fq_library, fq_model = name.split('/', 1)
fq_model, fq_version = fq_model.split(':', 1)
else:
fq_library = 'library'
fq_model, fq_version = name.split(':', 1)
model_names[i] = (fq_library, fq_model, fq_version)
return model_names
@auto_cache_state()
def build_model_list(models: List[Model], *, force_rebuild: bool = False) -> list:
if models != [] and not force_rebuild:
warn_text = "Attempted to build_model_list, but the model_list is already built. " \
"Use force_rebuild=True if the list should be rebuilt regardless."
warnings.warn(warn_text)
return
caches = available_caches()
# print(f'Available caches: {[c[0] for c in caches]}')
for cache, cache_path in caches:
_toggle_cache((cache, cache_path), silent=True)
skipped_models = 0
manifest_path = os.path.join(cache_path, "manifests", "registry.ollama.ai")
for model in models_in_cache_list():
try:
with open(os.path.join(manifest_path, *model), 'r') as man:
manifest = json.load(man)
except OSError as e:
warnings.warn(f"Attempting to read manifest {model}, cached files do not exist.", source=e)
continue
new_model = Model(
manifest['config'],
manifest['layers'],
*model
)
new_model.add_cache_flag((cache, cache_path))
pass
existing_model: Model = next((m for m in models if m == new_model), None)
if existing_model:
existing_model.add_cache_flag((cache, cache_path))
skipped_models += 1
else:
models.append(new_model)
return models
def is_cache_available(cache_tuple: str) -> bool:
return os.path.isdir(cache_tuple[1])
def available_caches() -> List[Tuple[str, str]]:
available_caches = []
for cache in valid_caches:
if is_cache_available(cache):
available_caches.append(cache)
return available_caches
def display_models(models: List[Model]) -> None:
"""
Display the list of models and their metadata using PrettyTable.
Parameters:
models (List[Model]): The list of Model objects to display.
"""
# Create a PrettyTable object
table = PrettyTable()
# Set the field names (column headers)
table.field_names = ["Library", "Model", "Version", "Size", "Int?", "Ext?"]
# Add rows to the table for each model
for model in models:
table.add_row([model.library, model.model, model.version,
model.get_size(), model.is_in_cache('internal'),
model.is_in_cache('external')])
table.add_autoindex("No.")
# Print the table
print(table)
def copy_models_cache_to_cache(models: List[Model]):
def convert_bytes(size):
for x in ['bytes', 'KB', 'MB', 'GB', 'TB']:
if size < 1024.0:
return "%3.1f %s" % (size, x)
size /= 1024.0
return size
# Step 1: Confirm the current and target caches
current_cache = get_curnow_cache()
if len(valid_caches) == 2:
target_cache = next((cache for cache in valid_caches if cache != current_cache))
else:
print("Multiple caches found.")
for i, cache in enumerate(valid_caches):
print(f"{i + 1}. {cache[0].capitalize()} ({cache[1]})")
target_choice = int(input("Select the target cache number: ")) - 1
target_cache = valid_caches[target_choice]
if current_cache == target_cache:
print("Current cache and target cache are the same. No action taken.")
return
# Step 2: Display available models
selected_models = user_select_models(models)
if not selected_models:
print("No valid models selected. Exiting copy operation.")
return
# Step 3: Build the list of files to copy
files_to_copy = build_files_to_copy(selected_models, current_cache)
# Check if files already exist in the destination cache
target_cache_path = target_cache[1]
existing_files = [
f for f in files_to_copy if os.path.exists(f.replace(current_cache[1], target_cache_path))
]
if existing_files:
print(f"\nOf {len(files_to_copy)} total files, {len(existing_files)} files already exist in the destination cache.")
overwrite = get_user_confirmation("Do you want to overwrite these files?")
if not overwrite:
# Remove the existing files from the list of files to copy
files_to_copy = [f for f in files_to_copy if f not in existing_files]
if not files_to_copy:
print("No files to copy. Exiting copy operation.")
return
# Step 4: Confirm transfer details
print(f"Copying from {current_cache[0]} to {target_cache[0]}.")
total_size = sum(os.path.getsize(f) for f in files_to_copy)
print(f"Total files to copy: {len(files_to_copy)} "
f"{f'(excluding {len(existing_files)} existing files)' if not overwrite else ''}")
print(f"Total size: {convert_bytes(total_size)}")
if not get_user_confirmation("Proceed with the transfer? "):
print("Transfer cancelled by the user.")
return
# Step 5: Copy files and verify integrity
copy_files(files_to_copy, current_cache, target_cache)
# Step 6: Handle any errors and cleanup if necessary
print("Transfer completed successfully.")
def parse_indices(indices: str, models: List) -> List:
"""
Parse user input indices to select models.
Args:
indices (str): The indices entered by the user.
models (List[Model]): The list of models.
Returns:
List[Model]: The list of selected models.
"""
selected = []
if indices.lower() == 'all':
selected = models
else:
try:
ranges = indices.split(',')
for r in ranges:
if '-' in r:
start, end = map(int, r.split('-'))
selected.extend(models[start - 1:end])
else:
selected.append(models[int(r) - 1])
except (ValueError, IndexError):
print("Invalid selection. Please enter valid indices.")
return selected
def build_files_to_copy(models: List[Model], current_cache: Tuple[str, str]) -> List[str]:
"""
Build the list of files to copy for the selected models.
Args:
models (List[Model]): The selected models.
current_cache (Tuple[str, str]): The current cache.
Returns:
List[str]: The list of file paths to copy.
"""
files_to_copy = set()
for model in models:
for digest in model.get_digests():
digest_path = os.path.join(current_cache[1], 'blobs', digest)
if os.path.exists(digest_path):
files_to_copy.add(digest_path)
manifest_path = os.path.join(current_cache[1], 'manifests', 'registry.ollama.ai', model.manifest)
if os.path.exists(manifest_path):
files_to_copy.add(manifest_path)
return list(files_to_copy)
def copy_files(files_to_copy: List[str], current_cache: Tuple[str, str], target_cache: Tuple[str, str]) -> None:
"""
Copy the files and verify integrity.
Args:
files_to_copy (List[str]): The files to copy.
current_cache (Tuple[str, str]): The current cache.
target_cache (Tuple[str, str]): The target cache.
"""
target_dir = target_cache[1]
for file in tqdm(files_to_copy, desc="Copying files", unit="file", dynamic_ncols=True, miniters=1):
target_file = file.replace(current_cache[1], target_dir)
target_dir_path = os.path.realpath(os.path.dirname(target_file))
os.makedirs(target_dir_path, exist_ok=True)
shutil.copy2(file, target_file)
if not file_integrity_check(file, target_file):
warnings.warn(f"Integrity check failed for file: {file}")
def file_integrity_check(source_file: str, target_file: str) -> bool:
"""
Check if the copied file has the same hash as the source file.
Args:
source_file (str): The source file.
target_file (str): The target file.
Returns:
bool: True if integrity is intact, False otherwise.
"""
return file_hash(source_file) == file_hash(target_file)
def file_hash(file_path: str) -> str:
"""
Calculate the hash of a file.
Args:
file_path (str): The path to the file.
Returns:
str: The hash of the file.
"""
hash_md5 = hashlib.md5()
buffer_size = 65536
with open(file_path, "rb") as f:
for chunk in iter(lambda: f.read(buffer_size), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def user_select_models(models):
display_models(models)
model_indices = input("\nSelect models by index (e.g., 1,2,3 or 1-3): ")
selected_models = parse_indices(model_indices, models)
return selected_models
def user_select_cache(curcache, avail_caches):
for i, av_c in enumerate(avail_caches):
print(f"{'*' if cache_type_to_cache(curcache) == av_c else ''}{i+1} {av_c}")
print("* indicates current cache")
selected = input("Which cache(s) should models be removed from? (e.g. 1,2,3 or 1-3): ")
return parse_indices(selected, avail_caches)
@auto_cache_state()
def remove_model_from_cache(models: List[Model]) -> None:
"""
Remove one or more models from the specified cache.
Prompts the user to select models to remove, confirms the action, and deletes the relevant files.
Parameters:
models (List[Model]): The list of available Model objects.
"""
# Display available models for removal
display_models(models)
current_cache_type, current_cache_path = get_curnow_cache()
# Prompt user to select models to remove
selected_models = user_select_models(models)
# Validate the selection
if not selected_models:
print("No valid models selected. Operation canceled.")
return
# Prompt user to select cache(s)
selected_caches = user_select_cache(current_cache_type, available_caches())
if not selected_caches:
print("No caches selected. Operation canceled.")
return
print("\nSelected models for removal:")
for model in selected_models:
print(f" - {model.name}")
print(f"Models will be removed from the following cache(s): {[c[0] for c in selected_caches]}")
# Confirm with the user before proceeding
if not get_user_confirmation("This operation can not be undone.\nAre you sure you want to remove the above models?"):
print("Removal canceled.")
return
# Remove the selected models
for cache in selected_caches:
_toggle_cache(cache)
for model in tqdm(selected_models, desc="Deleting models", unit="models", dynamic_ncols=True):
ollama.delete(model.name)
# I think ollama.list() will force the ollama server to do its cleanup activites?
_ = ollama.list()
# Display results
print(f"Removed {len(selected_models)} models successfully.")
# Refresh models list after removal
models = build_model_list(models, force_rebuild=True)
def pull_models(models: List[Model]) -> None:
"""
Pull selected models from Ollama.com.
Args:
models (List[Model]): The list of available Model objects.
"""
selected_models = user_select_models(models)
if not selected_models:
print("No valid models selected. Operation canceled.")
return
print("\nSelected models to pull:")
for model in selected_models:
print(f" - {model.name}")
# Confirm with the user before proceeding
prompt = "This operation may take some time depending on the number of" \
"models and your connection speed.\nAre you sure you want to pull the above models?"
if not get_user_confirmation(prompt):
print("Pull operation canceled.")
return
for model in tqdm(selected_models, desc="Pulling models", unit="models", dynamic_ncols=True):
ollama.pull(model.name)
print(f"Pulled {len(selected_models)} models successfully.")
def push_models(models: List[Model]) -> None:
"""
Push selected models to Ollama.com.
Args:
models (List[Model]): The list of available Model objects.
"""
selected_models = user_select_models(models)
if not selected_models:
print("No valid models selected. Operation canceled.")
return
print("\nSelected models to push:")
for model in selected_models:
print(f" - {model.name}")
# Confirm with the user before proceeding
prompt = "This operation may take some time depending on the number " \
"of models and your connection speed.\nAre you sure you want to push the above models?"
if not get_user_confirmation(prompt):
print("Push operation canceled.")
return
for model in tqdm(selected_models, desc="Pushing models", unit="models", dynamic_ncols=True):
ollama.push(model.name)
print(f"Pushed {len(selected_models)} models successfully.")
def ftStr(word: str, emphasis_index=0, emphasis_span=1) -> str:
"""
Formats a string with escape chars to bold and underline chosen chars.
Parameters:
word (str): String to format; can be of any length including zero.
emphasis_index (int, optional): Index of first emphasized char
(default is 0).
emphasis_span (int, optional): Number of consecutive emphasized chars
after the index (default is 1).
Returns:
str: Formatted string with embedded escape characters.
Raises:
TypeError: If word is not a string or both index and span are not integers.
ValueError: If emphasis_index is outside the bounds of the string.
"""
if not isinstance(word, str) or not all(isinstance(arg, int) for arg in [emphasis_index, emphasis_span]):
raise TypeError("Word must be a string; emphasis index and span must be integers.")
word = word.strip()
if len(word) == 0:
return ""
if emphasis_index < 0 or emphasis_index >= len(word):
raise ValueError("Emphasis index must be between 0 and the length of the string.")
opt = "\033[1m" + word[:emphasis_index] + "\033[0m"
if emphasis_span > 0:
opt += "\033[4;1m" + word[emphasis_index:emphasis_index+emphasis_span] + "\033[0m"
if emphasis_index + emphasis_span < len(word):
opt += "\033[1m" + word[emphasis_index+emphasis_span:] + "\033[0m"
return opt
def process_choice(choice: str, models: List[Model]):
choice = choice.lower()
if choice in ['0', 'd', 'display']:
print(f"{ftStr('Display')} contents of internal and external cache directories in a table.")
display_models(models)
elif choice in ['1', 'c', 'copy']:
print(f"{ftStr('Copy')} cache: migrate files between internal and external cache folders.")
copy_models_cache_to_cache(models)
elif choice in ['2', 't', 'toggle']:
print(f"{ftStr('Toggle')} Ollama Int/Ext Cache: Swtich between internal and external cache folders.")
toggle_cache()
elif choice in ['3', 'r', 'remove']:
print(f"{ftStr('Remove')} from cache: remove one or more model/tag from internal or external cache.")
remove_model_from_cache(models)
elif choice in ['4', 'p', 'pull']:
print(f"{ftStr('Pull')} selected models from Ollama.com, will not pull files if they already exist.")
pull_models(models)
elif choice in [5, 'u', 'push']:
print(f"{ftStr('Push', 1)} selected models to Ollama.com.")
push_models(models)
elif choice in ['Q', 'q', 'quit']:
print(f"{ftStr('Quit')} utility, exiting...")
exit()
else:
print("Invalid choice, please try again.")
return
input("Press return to continue...")
def main_menu():
print("\n\033[1mMain Menu\033[0m")
print(f"0. {ftStr('Display')} cache contents")
print(f"1. {ftStr('Copy')} Ollama data files from internal or external cache")
print(f"2. {ftStr('Toggle')} Ollama internal/external cache")
print(f"3. {ftStr('Remove')} from cache")
print(f"4. {ftStr('Pull')} selected models from Ollama.com")
print(f"5. {ftStr('Push')} selected models to Ollama.com")
print(f"Q. {ftStr('Quit')}")
choice = input("Select: ")
return choice
def main() -> None:
models = []
build_model_list(models)
choice = None
while True:
if choice is None:
display_welcome()
choice = main_menu()
process_choice(choice, models)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Ollamautil",
description="Command line utility to manage the Ollama cache"
"and make it easier to maintain a larger externally cached "
"database and move models on- and off-device. Assumes Ollama "
"defaults on installation (namely ~/.ollama is default directory) "
"is used.\n\nBefore using this utility, you should configure "
"OLLAMAUTIL_INTERNAL_DIR and OLLAMAUTIL_EXTERNAL_DIR to point "
"to the \033[1mmodels/\033[0m directory in your internal and "
"external caches, respectively.]]")
# define the default source directories (no training delimiter)
# points to path of internal "modules" directory
global ollama_int_dir
ollama_int_dir = os.getenv("OLLAMAUTIL_INTERNAL_DIR")
# points to path of external "modules" directory
global ollama_ext_dir
ollama_ext_dir = os.getenv("OLLAMAUTIL_EXTERNAL_DIR")
global valid_caches
valid_caches = [
('internal', ollama_int_dir),
('external', ollama_ext_dir)
]
# Note that this should be set as '["val1" "val2"]' in the environment global other this won't load properly
try:
global ollama_file_ignore
ollama_file_ignore = ast.literal_eval(os.getenv("OLLAMAUTIL_FILE_IGNORE"))
except OSError:
print("\033[1mOLLAMAUTIL_FILE_IGNORE not set, using defaults.\033[0m")
ollama_file_ignore = ['.DS_Store']
if not ollama_ext_dir or not ollama_int_dir or not ollama_file_ignore:
print(("Warning: environment variables not configured correctly",
f"OLLAMAUTIL_INTERNAL_DIR: {ollama_int_dir}",
f"OLLAMAUTIL_EXTERNAL_DIR: {ollama_ext_dir}",
f"OLLAMAUTIL_FILE_IGNORE: {ollama_file_ignore} (optional)"
"Please configure these before using this utility."))
raise RuntimeError.add_note(note="Environment variables not configured correctly. Unable to run utility.")
FILE_LIST_IGNORE = ollama_file_ignore
main()