This example project demonstrates a generic IoT use case for ScyllaDB in Go.
The documentation for this application and guided exercise is here.
The application allows tracking of pets health indicators and consist of three parts:
- migrate (
/cmd/migrate
) - creates thecarepet
keyspace and tables - collar (
/cmd/sensor
) - generates a pet health data and pushes it into the storage - web app (
/cmd/server
) - REST API service for tracking pets health state
Prerequisites:
- go at least 1.14
- docker
- docker-compose
To run a local ScyllaDB cluster consisting of three nodes with
the help of docker
and docker-compose
execute:
$ docker-compose up -d
Docker-compose will spin up three nodes: carepet-scylla1
, carepet-scylla2
and carepet-scylla3
. You can access them with the docker
command.
To execute CQLSH:
$ docker exec -it carepet-scylla1 cqlsh
To execute nodetool:
$ docker exec -it carepet-scylla1 nodetool status
Shell:
$ docker exec -it carepet-scylla1 shell
You can inspect any node by means of the docker inspect
command
as follows. for example:
$ docker inspect carepet-scylla1
To get node IP address run:
$ docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' carepet-scylla1
To initialize database execute:
$ docker exec -it go-app run ./cmd/migrate
Expected output:
2020/08/06 16:43:01 Bootstrap database...
2020/08/06 16:43:13 Keyspace metadata = {Name:carepet DurableWrites:true StrategyClass:org.apache.cassandra.locator.NetworkTopologyStrategy StrategyOptions:map[datacenter1:3] Tables:map[gocqlx_migrate:0xc00016ca80 measurement:0xc00016cbb0 owner:0xc00016cce0 pet:0xc00016ce10 sensor:0xc00016cf40 sensor_avg:0xc00016d070] Functions:map[] Aggregates:map[] Types:map[] Indexes:map[] Views:map[]}
You can check the database structure with:
$ docker exec -it carepet-scylla1 cqlsh
cqlsh> DESCRIBE KEYSPACES
carepet system_schema system_auth system system_distributed system_traces
cqlsh> USE carepet;
cqlsh:carepet> DESCRIBE TABLES
pet sensor_avg gocqlx_migrate measurement owner sensor
cqlsh:carepet> DESCRIBE TABLE pet
CREATE TABLE carepet.pet (
owner_id uuid,
pet_id uuid,
chip_id text,
species text,
breed text,
color text,
gender text,
address text,
age int,
name text,
weight float,
PRIMARY KEY (owner_id, pet_id)
) WITH CLUSTERING ORDER BY (pet_id ASC)
AND bloom_filter_fp_chance = 0.01
AND caching = {'keys': 'ALL', 'rows_per_partition': 'ALL'}
AND comment = ''
AND compaction = {'class': 'SizeTieredCompactionStrategy'}
AND compression = {'sstable_compression': 'org.apache.cassandra.io.compress.LZ4Compressor'}
AND crc_check_chance = 1.0
AND dclocal_read_repair_chance = 0.1
AND default_time_to_live = 0
AND gc_grace_seconds = 864000
AND max_index_interval = 2048
AND memtable_flush_period_in_ms = 0
AND min_index_interval = 128
AND read_repair_chance = 0.0
AND speculative_retry = '99.0PERCENTILE';
cqlsh:carepet> exit
To start pet collar simulation execute the following in the separate terminal:
$ docker exec -it go-app run ./cmd/sensor
Expected output:
2020/08/06 16:44:33 Welcome to the Pet collar simulator
2020/08/06 16:44:33 New owner # 9b20764b-f947-45bb-a020-bf6d02cc2224
2020/08/06 16:44:33 New pet # f3a836c7-ec64-44c3-b66f-0abe9ad2befd
2020/08/06 16:44:33 sensor # 48212af8-afff-43ea-9240-c0e5458d82c1 type L new measure 51.360596 ts 2020-08-06T16:44:33+02:00
2020/08/06 16:44:33 sensor # 2ff06ffb-ecad-4c55-be78-0a3d413231d9 type R new measure 36 ts 2020-08-06T16:44:33+02:00
2020/08/06 16:44:33 sensor # 821588e0-840d-48c6-b9c9-7d1045e0f38c type L new measure 26.380281 ts 2020-08-06T16:44:33+02:00
...
In a minute (a --buffer-interval
) you will see a data push (push data
) log line.
That means that the collar has been pushed buffered measurements to the app.
Write down the pet Owner ID (ID is something after the #
sign without trailing spaces).
To start REST API service execute the following in the separate terminal:
$ docker exec -it go-app run ./cmd/server --port 8000
Expected output:
2020/08/06 16:45:58 Serving care pet at http://127.0.0.1:8000
Now you can open http://127.0.0.1:8000/
in the browser or send an HTTP request from the CLI:
$ curl -v http://127.0.0.1:8000/
Expected output:
> GET / HTTP/1.1
> Host: 127.0.0.1:8000
> User-Agent: curl/7.71.1
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 404 Not Found
< Content-Type: application/json
< Date: Thu, 06 Aug 2020 14:47:41 GMT
< Content-Length: 45
< Connection: close
<
* Closing connection 0
{"code":404,"message":"path / was not found"}
This is ok. If you see this JSON in the end with 404, it means everything works as expected.
To read an owner data you can use saved owner_id
as follows:
$ curl http://127.0.0.1:8000/api/owner/{owner_id}
For example:
$ curl http://127.0.0.1:8000/api/owner/a05fd0df-0f97-4eec-a211-cad28a6e5360
Expected result:
{"address":"home","name":"gmwjgsap","owner_id":"a05fd0df-0f97-4eec-a211-cad28a6e5360"}
To list the owners pets use:
$ curl http://127.0.0.1:8000/api/owner/{owner_id}/pets
For example:
$ curl http://127.0.0.1:8000/api/owner/a05fd0df-0f97-4eec-a211-cad28a6e5360/pets
Expected output:
[{"address":"home","age":57,"name":"tlmodylu","owner_id":"a05fd0df-0f97-4eec-a211-cad28a6e5360","pet_id":"a52adc4e-7cf4-47ca-b561-3ceec9382917","weight":5}]
To list pet's sensors use:
$ curl http://127.0.0.1:8000/api/pet/{pet_id}/sensors
For example:
$ curl http://127.0.0.1:8000/api/pet/cef72f58-fc78-4cae-92ae-fb3c3eed35c4/sensors
[{"pet_id":"cef72f58-fc78-4cae-92ae-fb3c3eed35c4","sensor_id":"5a9da084-ea49-4ab1-b2f8-d3e3d9715e7d","type":"L"},{"pet_id":"cef72f58-fc78-4cae-92ae-fb3c3eed35c4","sensor_id":"5c70cd8a-d9a6-416f-afd6-c99f90578d99","type":"R"},{"pet_id":"cef72f58-fc78-4cae-92ae-fb3c3eed35c4","sensor_id":"fbefa67a-ceb1-4dcc-bbf1-c90d71176857","type":"L"}]
To review the pet's sensors data use:
$ curl http://127.0.0.1:8000/api/sensor/{sensor_id}/values?from=2006-01-02T15:04:05Z07:00&to=2006-01-02T15:04:05Z07:00
For example:
$ curl http://127.0.0.1:8000/api/sensor/5a9da084-ea49-4ab1-b2f8-d3e3d9715e7d/values\?from\="2020-08-06T00:00:00Z"\&to\="2020-08-06T23:59:59Z"
Expected output:
[51.360596,26.737432,77.88015,...]
To read the pet's daily average per sensor use:
$ curl http://127.0.0.1:8000/api/sensor/{sensor_id}/values/day/{date}
For example:
$ curl http://127.0.0.1:8000/api/sensor/5a9da084-ea49-4ab1-b2f8-d3e3d9715e7d/values/day/2020-08-06
Expected output:
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,42.55736]
Package structure is as follows:
Name | Purpose |
---|---|
/api | swagger api spec |
/cmd | applications executables |
/cmd/migrate | install database schema |
/cmd/sensor | simulate pet collar |
/cmd/server | web application backend |
/config | database configuration |
/db | database handlers (gocql/x) |
/db/cql | database schema |
/handler | swagger REST API handlers |
/model | application models and ORM metadata |
Swagger specification.
Collars are small devices that attach to pets and collect data with the help of different sensors. After the data is collected it may be delivered to the central database for the analysis and health status checking.
Collar code sits in the /cmd/sensor
and uses scylladb/gocqlx
Go driver to connect to the database directly and publish its data.
Collar gathers sensors measurements, aggregates data in a buffer and
sends it every hour.
Overall all applications in this repository use scylladb/gocqlx
for:
- Relational Object Mapping (ORM)
- Build Queries
- Migrate database schemas
The web application REST API server resides in /cmd/server
and uses
go-swagger
that supports OpenAPI 2.0 to expose its API. API
handlers reside in /handler
. Most of the queries are reads.
The application is capable of caching sensor measurements data
on hourly basis. It uses lazy evaluation to manage sensor_avg
.
It can be viewed as an application-level lazy-evaluated
materialized view.
The algorithm is simple and resides in /handler/avg.go
:
- read
sensor_avg
- if no data, read
measurement
data, aggregate in memory, save - serve request
Pet --> Sensor --> ScyllaDB <-> REST API Server <-> User
Install Go. Create a repository. Clone it. Execute inside of your repository:
$ go mod init github.com/my_name/my_module
Now when you have your go module spec connect the ScyllaDB Go driver as a dependency with:
$ go get -u github.com/scylladb/gocqlx/v2
Now your go.mod
will be looking something like this:
module github.com/blah/blah
go 1.14
require (
github.com/gocql/gocql v0.0.0-20200624222514-34081eda590e // indirect
github.com/scylladb/gocqlx/v2 v2.1.0 // indirect
)
Add a gocql
driver replacement with our version with:
replace github.com/gocql/gocql => github.com/scylladb/gocql v1.4.0
Now go.mod
must look like:
module github.com/blah/blah
go 1.14
require (
github.com/gocql/gocql v0.0.0-20200624222514-34081eda590e // indirect
github.com/scylladb/gocqlx/v2 v2.1.0 // indirect
)
replace github.com/gocql/gocql => github.com/scylladb/gocql v1.4.0
Now you are ready to connect to the database and start working. To connect to the database, do the following:
import (
"github.com/gocql/gocql"
"github.com/scylladb/gocqlx/v2"
)
var cfg *gocql.ClusterConfig = gocql.NewCluster()
cfg.Hosts = []string{"127.0.0.1"}
cfg.Keyspace = "my_keyspace"
ses := gocqlx.WrapSession(gocql.NewSession(cfg))
Now you can issue CQL commands:
iter := ses.Session.Query("SELECT name FROM hello").Iter()
for {
var t string
if !iter.Scan(&t) {
break
}
}
if err := iter.Close(); err != nil {
...
}
Or save models:
var owner model.Owner
if err := db.TableOwner.GetQuery(ses).Bind(id).GetRelease(&owner); err == gocql.ErrNotFound {
...
} else if err != nil {
...
}
For more details, check out /handler
, /db
and /config
packages.