diff --git a/examples/tmva/plot_multiclass.py b/examples/tmva/plot_multiclass.py index ce42356..319c603 100644 --- a/examples/tmva/plot_multiclass.py +++ b/examples/tmva/plot_multiclass.py @@ -47,18 +47,18 @@ # The following line is necessary if events have been added individually: factory.PrepareTrainingAndTestTree(TCut('1'), 'NormMode=EqualNumEvents') -# Train a BDT -factory.BookMethod('BDT', 'BDTG', - 'nCuts=20:NTrees=20:MaxDepth=4:' - 'BoostType=Grad:Shrinkage=0.10') +# Train an MLP +factory.BookMethod('MLP', 'MLP', + 'NeuronType=tanh:NCycles=200:HiddenLayers=N+2,2:' + 'TestRate=5:EstimatorType=MSE') factory.TrainAllMethods() # Classify the test dataset with the BDT reader = TMVA.Reader() for n in range(2): reader.AddVariable('f{0}'.format(n), array('f', [0.])) -reader.BookMVA('BDT', 'weights/classifier_BDTG.weights.xml') -class_proba = evaluate_reader(reader, 'BDT', X_test) +reader.BookMVA('MLP', 'weights/classifier_MLP.weights.xml') +class_proba = evaluate_reader(reader, 'MLP', X_test) # Plot the decision boundaries plot_colors = "rgb" @@ -72,11 +72,10 @@ xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) -Z = evaluate_reader(reader, 'BDT', np.c_[xx.ravel(), yy.ravel()]) +Z = evaluate_reader(reader, 'MLP', np.c_[xx.ravel(), yy.ravel()]) Z = np.argmax(Z, axis=1) - 1 Z = Z.reshape(xx.shape) -plt.contourf(xx, yy, Z, cmap=cmap, vmin=Z.min(), vmax=Z.max(), - levels=np.linspace(Z.min(), Z.max(), 50)) +plt.contourf(xx, yy, Z, cmap=cmap, alpha=0.5) plt.axis("tight") # Plot the training points diff --git a/root_numpy/tmva/_evaluate.py b/root_numpy/tmva/_evaluate.py index d76ad43..e9f9cbc 100644 --- a/root_numpy/tmva/_evaluate.py +++ b/root_numpy/tmva/_evaluate.py @@ -10,19 +10,23 @@ ] -def evaluate_reader(reader, name, events): +def evaluate_reader(reader, name, events, aux=0.): """Evaluate a TMVA::Reader over a NumPy array. Parameters ---------- reader : TMVA::Reader - A TMVA::Factory instance with variables booked in - exactly the same order as the columns in ``events``. + A TMVA::Factory instance with variables booked in exactly the same + order as the columns in ``events``. name : string The method name. events : numpy array of shape [n_events, n_variables] - A two-dimensional NumPy array containing the rows of events - and columns of variables. + A two-dimensional NumPy array containing the rows of events and columns + of variables. The order of the columns must match the order in which + you called ``AddVariable()`` for each variable. + aux : float, optional (default=0.) + Auxiliary value used by MethodCuts to set the desired signal + efficiency. Returns ------- @@ -44,10 +48,11 @@ def evaluate_reader(reader, name, events): raise ValueError( "events must be a two-dimensional array " "with one event per row") - return _libtmvanumpy.evaluate_reader(ROOT.AsCObject(reader), name, events) + return _libtmvanumpy.evaluate_reader( + ROOT.AsCObject(reader), name, events, aux) -def evaluate_method(method, events): +def evaluate_method(method, events, aux=0.): """Evaluate a TMVA::MethodBase over a NumPy array. .. warning:: TMVA::Reader has known problems with thread safety in versions @@ -59,11 +64,15 @@ def evaluate_method(method, events): Parameters ---------- method : TMVA::MethodBase - A TMVA::MethodBase instance with variables booked in - exactly the same order as the columns in ``events``. + A TMVA::MethodBase instance with variables booked in exactly the same + order as the columns in ``events``. events : numpy array of shape [n_events, n_variables] - A two-dimensional NumPy array containing the rows of events - and columns of variables. + A two-dimensional NumPy array containing the rows of events and columns + of variables. The order of the columns must match the order in which + you called ``AddVariable()`` for each variable. + aux : float, optional (default=0.) + Auxiliary value used by MethodCuts to set the desired signal + efficiency. Returns ------- @@ -85,4 +94,4 @@ def evaluate_method(method, events): raise ValueError( "events must be a two-dimensional array " "with one event per row") - return _libtmvanumpy.evaluate_method(ROOT.AsCObject(method), events) + return _libtmvanumpy.evaluate_method(ROOT.AsCObject(method), events, aux) diff --git a/root_numpy/tmva/_factory.py b/root_numpy/tmva/_factory.py index 5bce005..dbd2525 100644 --- a/root_numpy/tmva/_factory.py +++ b/root_numpy/tmva/_factory.py @@ -17,22 +17,28 @@ def add_classification_events(factory, events, labels, signal_label=None, Parameters ---------- factory : TMVA::Factory - A TMVA::Factory instance with variables already booked in - exactly the same order as the columns in ``events``. + A TMVA::Factory instance with variables already booked in exactly the + same order as the columns in ``events``. events : numpy array of shape [n_events, n_variables] - A two-dimensional NumPy array containing the rows of events - and columns of variables. + A two-dimensional NumPy array containing the rows of events and columns + of variables. The order of the columns must match the order in which + you called ``AddVariable()`` for each variable. labels : numpy array of shape [n_events] - The class labels (signal or background) corresponding to each event - in ``events``. + The class labels (signal or background) corresponding to each event in + ``events``. signal_label : float or int, optional (default=None) The value in ``labels`` for signal events, if ``labels`` contains only two classes. If None, the highest value in ``labels`` is used. weights : numpy array of shape [n_events], optional Event weights. test : bool, optional (default=False) - If True, then the events will be added as test events, otherwise - they are added as training events by default. + If True, then the events will be added as test events, otherwise they + are added as training events by default. + + Notes + ----- + A TMVA::Factory requires you to add both training and test events even if + you don't intend to call ``TestAllMethods()``. """ if not isinstance(factory, TMVA.Factory): @@ -78,18 +84,26 @@ def add_regression_events(factory, events, targets, weights=None, test=False): Parameters ---------- factory : TMVA::Factory - A TMVA::Factory instance with variables already booked in - exactly the same order as the columns in ``events``. + A TMVA::Factory instance with variables already booked in exactly the + same order as the columns in ``events``. events : numpy array of shape [n_events, n_variables] - A two-dimensional NumPy array containing the rows of events - and columns of variables. + A two-dimensional NumPy array containing the rows of events and columns + of variables. The order of the columns must match the order in which + you called ``AddVariable()`` for each variable. targets : numpy array of shape [n_events] or [n_events, n_targets] - The target value(s) for each event in ``events``. + The target value(s) for each event in ``events``. For multiple target + values, ``targets`` must be a two-dimensional array with a column for + each target in the same order in which you called ``AddTarget()``. weights : numpy array of shape [n_events], optional Event weights. test : bool, optional (default=False) - If True, then the events will be added as test events, otherwise - they are added as training events by default. + If True, then the events will be added as test events, otherwise they + are added as training events by default. + + Notes + ----- + A TMVA::Factory requires you to add both training and test events even if + you don't intend to call ``TestAllMethods()``. """ if not isinstance(factory, TMVA.Factory): diff --git a/root_numpy/tmva/src/TMVA.pxi b/root_numpy/tmva/src/TMVA.pxi index 6f38d37..60b4a39 100644 --- a/root_numpy/tmva/src/TMVA.pxi +++ b/root_numpy/tmva/src/TMVA.pxi @@ -3,6 +3,9 @@ cdef extern from "2to3.h": pass cdef extern from "TMVA/Types.h" namespace "TMVA": + ctypedef enum EMVA "TMVA::Types::EMVA": + kCuts "TMVA::Types::kCuts" + ctypedef enum ETreeType "TMVA::Types::ETreeType": kTraining "TMVA::Types::kTraining" kTesting "TMVA::Types::kTesting" @@ -30,6 +33,7 @@ cdef extern from "TMVA/IMethod.h" namespace "TMVA": cdef extern from "TMVA/MethodBase.h" namespace "TMVA": cdef cppclass MethodBase: + EMVA GetMethodType() EAnalysisType GetAnalysisType() DataSetInfo DataInfo() unsigned int GetNVariables() @@ -39,6 +43,10 @@ cdef extern from "TMVA/MethodBase.h" namespace "TMVA": vector[float] GetRegressionValues() Event* fTmpEvent +cdef extern from "TMVA/MethodCuts.h" namespace "TMVA": + cdef cppclass MethodCuts: + void SetTestSignalEfficiency(double eff) + cdef extern from "TMVA/Factory.h" namespace "TMVA": cdef cppclass Factory: void AddEvent(string& classname, ETreeType treetype, vector[double]& event, double weight) diff --git a/root_numpy/tmva/src/_libtmvanumpy.cpp b/root_numpy/tmva/src/_libtmvanumpy.cpp index e6f4d65..05465cc 100644 --- a/root_numpy/tmva/src/_libtmvanumpy.cpp +++ b/root_numpy/tmva/src/_libtmvanumpy.cpp @@ -253,6 +253,7 @@ void __Pyx_call_destructor(T* x) { #include "TMVA/DataSetInfo.h" #include "TMVA/IMethod.h" #include "TMVA/MethodBase.h" +#include "TMVA/MethodCuts.h" #include "TMVA/Factory.h" #include "TMVA/Reader.h" #ifdef _OPENMP @@ -1431,8 +1432,8 @@ static CYTHON_INLINE int __pyx_f_7cpython_5array_extend_buffer(arrayobject *, ch /* Module declarations from 'libcpp.string' */ /* Module declarations from '_libtmvanumpy' */ -static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBase *, PyArrayObject *); /*proto*/ -static PyObject *__pyx_f_13_libtmvanumpy_evaluate_twoclass(TMVA::MethodBase *, PyArrayObject *); /*proto*/ +static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBase *, PyArrayObject *, double); /*proto*/ +static PyObject *__pyx_f_13_libtmvanumpy_evaluate_twoclass(TMVA::MethodBase *, PyArrayObject *, double); /*proto*/ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_multiclass(TMVA::MethodBase *, PyArrayObject *, unsigned int); /*proto*/ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_regression(TMVA::MethodBase *, PyArrayObject *, unsigned int); /*proto*/ static std::string __pyx_convert_string_from_py_std__string(PyObject *); /*proto*/ @@ -1451,8 +1452,8 @@ static PyObject *__pyx_builtin_RuntimeError; static PyObject *__pyx_pf_13_libtmvanumpy_factory_add_events_twoclass(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_factory, PyArrayObject *__pyx_v_events, PyArrayObject *__pyx_v_labels, int __pyx_v_signal_label, PyArrayObject *__pyx_v_weights, bool __pyx_v_test); /* proto */ static PyObject *__pyx_pf_13_libtmvanumpy_2factory_add_events_multiclass(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_factory, PyArrayObject *__pyx_v_events, PyArrayObject *__pyx_v_labels, PyArrayObject *__pyx_v_weights, bool __pyx_v_test); /* proto */ static PyObject *__pyx_pf_13_libtmvanumpy_4factory_add_events_regression(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_factory, PyArrayObject *__pyx_v_events, PyArrayObject *__pyx_v_targets, PyArrayObject *__pyx_v_weights, bool __pyx_v_test); /* proto */ -static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_reader, PyObject *__pyx_v_name, PyArrayObject *__pyx_v_events); /* proto */ -static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_method, PyArrayObject *__pyx_v_events); /* proto */ +static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_reader, PyObject *__pyx_v_name, PyArrayObject *__pyx_v_events, double __pyx_v_aux); /* proto */ +static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_method, PyArrayObject *__pyx_v_events, double __pyx_v_aux); /* proto */ static int __pyx_pf_7cpython_5array_5array___getbuffer__(arrayobject *__pyx_v_self, Py_buffer *__pyx_v_info, CYTHON_UNUSED int __pyx_v_flags); /* proto */ static void __pyx_pf_7cpython_5array_5array_2__releasebuffer__(CYTHON_UNUSED arrayobject *__pyx_v_self, Py_buffer *__pyx_v_info); /* proto */ static int __pyx_pf_5numpy_7ndarray___getbuffer__(PyArrayObject *__pyx_v_self, Py_buffer *__pyx_v_info, int __pyx_v_flags); /* proto */ @@ -1476,6 +1477,7 @@ static char __pyx_k_Zd[] = "Zd"; static char __pyx_k_Zf[] = "Zf"; static char __pyx_k_Zg[] = "Zg"; static char __pyx_k_np[] = "np"; +static char __pyx_k_aux[] = "aux"; static char __pyx_k_main[] = "__main__"; static char __pyx_k_name[] = "name"; static char __pyx_k_size[] = "size"; @@ -1546,6 +1548,7 @@ static PyObject *__pyx_n_b_Regression; static PyObject *__pyx_n_s_RuntimeError; static PyObject *__pyx_n_b_Signal; static PyObject *__pyx_n_s_ValueError; +static PyObject *__pyx_n_s_aux; static PyObject *__pyx_n_s_double; static PyObject *__pyx_n_s_dtype; static PyObject *__pyx_n_s_empty; @@ -4280,7 +4283,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_4factory_add_events_regression(CYTHON_ /* "root_numpy/tmva/src/evaluate.pyx":3 * @cython.boundscheck(False) * @cython.wraparound(False) - * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef Reader* _reader = PyCObject_AsVoidPtr(reader) * cdef IMethod* imeth = _reader.FindMVA(name) */ @@ -4307,6 +4310,9 @@ static PyObject *__pyx_pw_13_libtmvanumpy_7evaluate_reader(PyObject *__pyx_self, ; PyArrayObject *__pyx_v_events = 0 #line 3 "root_numpy/tmva/src/evaluate.pyx" +; + double __pyx_v_aux +#line 3 "root_numpy/tmva/src/evaluate.pyx" ; int __pyx_lineno = 0; const char *__pyx_filename = NULL; @@ -4325,10 +4331,10 @@ static PyObject *__pyx_pw_13_libtmvanumpy_7evaluate_reader(PyObject *__pyx_self, { #line 3 "root_numpy/tmva/src/evaluate.pyx" - static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_reader,&__pyx_n_s_name,&__pyx_n_s_events,0}; + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_reader,&__pyx_n_s_name,&__pyx_n_s_events,&__pyx_n_s_aux,0}; #line 3 "root_numpy/tmva/src/evaluate.pyx" - PyObject* values[3] = {0,0,0}; + PyObject* values[4] = {0,0,0,0}; #line 3 "root_numpy/tmva/src/evaluate.pyx" if (unlikely(__pyx_kwds)) { @@ -4341,6 +4347,9 @@ static PyObject *__pyx_pw_13_libtmvanumpy_7evaluate_reader(PyObject *__pyx_self, #line 3 "root_numpy/tmva/src/evaluate.pyx" switch (pos_args) { + case 4: +#line 3 "root_numpy/tmva/src/evaluate.pyx" +values[3] = PyTuple_GET_ITEM(__pyx_args, 3); case 3: #line 3 "root_numpy/tmva/src/evaluate.pyx" values[2] = PyTuple_GET_ITEM(__pyx_args, 2); @@ -4383,7 +4392,7 @@ goto __pyx_L5_argtuple_error; #line 3 "root_numpy/tmva/src/evaluate.pyx" else { - __Pyx_RaiseArgtupleInvalid("evaluate_reader", 1, 3, 3, 1); + __Pyx_RaiseArgtupleInvalid("evaluate_reader", 1, 4, 4, 1); #line 3 "root_numpy/tmva/src/evaluate.pyx" {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L3_error;} @@ -4398,7 +4407,22 @@ goto __pyx_L5_argtuple_error; #line 3 "root_numpy/tmva/src/evaluate.pyx" else { - __Pyx_RaiseArgtupleInvalid("evaluate_reader", 1, 3, 3, 2); + __Pyx_RaiseArgtupleInvalid("evaluate_reader", 1, 4, 4, 2); +#line 3 "root_numpy/tmva/src/evaluate.pyx" +{__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L3_error;} + +#line 3 "root_numpy/tmva/src/evaluate.pyx" + } + +#line 3 "root_numpy/tmva/src/evaluate.pyx" + case 3: + +#line 3 "root_numpy/tmva/src/evaluate.pyx" + if (likely((values[3] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_aux)) != 0)) kw_args--; + +#line 3 "root_numpy/tmva/src/evaluate.pyx" + else { + __Pyx_RaiseArgtupleInvalid("evaluate_reader", 1, 4, 4, 3); #line 3 "root_numpy/tmva/src/evaluate.pyx" {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L3_error;} @@ -4418,7 +4442,7 @@ goto __pyx_L5_argtuple_error; } #line 3 "root_numpy/tmva/src/evaluate.pyx" - } else if (PyTuple_GET_SIZE(__pyx_args) != 3) { + } else if (PyTuple_GET_SIZE(__pyx_args) != 4) { #line 3 "root_numpy/tmva/src/evaluate.pyx" goto __pyx_L5_argtuple_error; @@ -4435,6 +4459,9 @@ goto __pyx_L5_argtuple_error; #line 3 "root_numpy/tmva/src/evaluate.pyx" values[2] = PyTuple_GET_ITEM(__pyx_args, 2); +#line 3 "root_numpy/tmva/src/evaluate.pyx" + values[3] = PyTuple_GET_ITEM(__pyx_args, 3); + #line 3 "root_numpy/tmva/src/evaluate.pyx" } @@ -4447,6 +4474,9 @@ goto __pyx_L5_argtuple_error; #line 3 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_events = ((PyArrayObject *)values[2]); +#line 3 "root_numpy/tmva/src/evaluate.pyx" + __pyx_v_aux = __pyx_PyFloat_AsDouble(values[3]); if (unlikely((__pyx_v_aux == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L3_error;} + #line 3 "root_numpy/tmva/src/evaluate.pyx" } @@ -4455,7 +4485,7 @@ goto __pyx_L5_argtuple_error; #line 3 "root_numpy/tmva/src/evaluate.pyx" __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("evaluate_reader", 1, 3, 3, PyTuple_GET_SIZE(__pyx_args)); + __Pyx_RaiseArgtupleInvalid("evaluate_reader", 1, 4, 4, PyTuple_GET_SIZE(__pyx_args)); #line 3 "root_numpy/tmva/src/evaluate.pyx" {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L3_error;} @@ -4478,7 +4508,7 @@ goto __pyx_L5_argtuple_error; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_events), __pyx_ptype_5numpy_ndarray, 1, "events", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_r = #line 3 "root_numpy/tmva/src/evaluate.pyx" -__pyx_pf_13_libtmvanumpy_6evaluate_reader(__pyx_self, __pyx_v_reader, __pyx_v_name, __pyx_v_events); +__pyx_pf_13_libtmvanumpy_6evaluate_reader(__pyx_self, __pyx_v_reader, __pyx_v_name, __pyx_v_events, __pyx_v_aux); #line 3 "root_numpy/tmva/src/evaluate.pyx" @@ -4511,7 +4541,7 @@ __pyx_pf_13_libtmvanumpy_6evaluate_reader(__pyx_self, __pyx_v_reader, __pyx_v_na #line 3 "root_numpy/tmva/src/evaluate.pyx" -static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_reader, PyObject *__pyx_v_name, PyArrayObject *__pyx_v_events) { +static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_reader, PyObject *__pyx_v_name, PyArrayObject *__pyx_v_events, double __pyx_v_aux) { TMVA::Reader *__pyx_v__reader #line 3 "root_numpy/tmva/src/evaluate.pyx" ; @@ -4575,7 +4605,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObjec /* "root_numpy/tmva/src/evaluate.pyx":4 * @cython.wraparound(False) - * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events): + * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events, double aux): * cdef Reader* _reader = PyCObject_AsVoidPtr(reader) # <<<<<<<<<<<<<< * cdef IMethod* imeth = _reader.FindMVA(name) * if imeth == NULL: @@ -4588,7 +4618,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObjec __pyx_v__reader = ((TMVA::Reader *)__pyx_t_1); /* "root_numpy/tmva/src/evaluate.pyx":5 - * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events): + * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events, double aux): * cdef Reader* _reader = PyCObject_AsVoidPtr(reader) * cdef IMethod* imeth = _reader.FindMVA(name) # <<<<<<<<<<<<<< * if imeth == NULL: @@ -4620,7 +4650,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObjec * raise ValueError( * "method '{0}' is not booked in this reader".format(name)) # <<<<<<<<<<<<<< * cdef MethodBase* method = dynamic_cast["MethodBase*"](imeth) - * return evaluate_method_dispatch(method, events) + * return evaluate_method_dispatch(method, events, aux) */ #line 8 "root_numpy/tmva/src/evaluate.pyx" @@ -4752,7 +4782,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObjec * raise ValueError( * "method '{0}' is not booked in this reader".format(name)) * cdef MethodBase* method = dynamic_cast["MethodBase*"](imeth) # <<<<<<<<<<<<<< - * return evaluate_method_dispatch(method, events) + * return evaluate_method_dispatch(method, events, aux) * */ @@ -4780,7 +4810,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObjec /* "root_numpy/tmva/src/evaluate.pyx":10 * "method '{0}' is not booked in this reader".format(name)) * cdef MethodBase* method = dynamic_cast["MethodBase*"](imeth) - * return evaluate_method_dispatch(method, events) # <<<<<<<<<<<<<< + * return evaluate_method_dispatch(method, events, aux) # <<<<<<<<<<<<<< * * */ @@ -4789,7 +4819,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObjec __Pyx_XDECREF(__pyx_r); #line 10 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_4 = __pyx_f_13_libtmvanumpy_evaluate_method_dispatch(__pyx_v_method, ((PyArrayObject *)__pyx_v_events)); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 10; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_4 = __pyx_f_13_libtmvanumpy_evaluate_method_dispatch(__pyx_v_method, ((PyArrayObject *)__pyx_v_events), __pyx_v_aux); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 10; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #line 10 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_4); @@ -4806,7 +4836,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObjec /* "root_numpy/tmva/src/evaluate.pyx":3 * @cython.boundscheck(False) * @cython.wraparound(False) - * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef Reader* _reader = PyCObject_AsVoidPtr(reader) * cdef IMethod* imeth = _reader.FindMVA(name) */ @@ -4877,9 +4907,9 @@ static PyObject *__pyx_pf_13_libtmvanumpy_6evaluate_reader(CYTHON_UNUSED PyObjec /* "root_numpy/tmva/src/evaluate.pyx":15 * @cython.boundscheck(False) * @cython.wraparound(False) - * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef MethodBase* _method = PyCObject_AsVoidPtr(method) - * return evaluate_method_dispatch(_method, events) + * return evaluate_method_dispatch(_method, events, aux) */ #line 15 "root_numpy/tmva/src/evaluate.pyx" @@ -4901,6 +4931,9 @@ static PyObject *__pyx_pw_13_libtmvanumpy_9evaluate_method(PyObject *__pyx_self, ; PyArrayObject *__pyx_v_events = 0 #line 15 "root_numpy/tmva/src/evaluate.pyx" +; + double __pyx_v_aux +#line 15 "root_numpy/tmva/src/evaluate.pyx" ; int __pyx_lineno = 0; const char *__pyx_filename = NULL; @@ -4919,10 +4952,10 @@ static PyObject *__pyx_pw_13_libtmvanumpy_9evaluate_method(PyObject *__pyx_self, { #line 15 "root_numpy/tmva/src/evaluate.pyx" - static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_method,&__pyx_n_s_events,0}; + static PyObject **__pyx_pyargnames[] = {&__pyx_n_s_method,&__pyx_n_s_events,&__pyx_n_s_aux,0}; #line 15 "root_numpy/tmva/src/evaluate.pyx" - PyObject* values[2] = {0,0}; + PyObject* values[3] = {0,0,0}; #line 15 "root_numpy/tmva/src/evaluate.pyx" if (unlikely(__pyx_kwds)) { @@ -4935,6 +4968,9 @@ static PyObject *__pyx_pw_13_libtmvanumpy_9evaluate_method(PyObject *__pyx_self, #line 15 "root_numpy/tmva/src/evaluate.pyx" switch (pos_args) { + case 3: +#line 15 "root_numpy/tmva/src/evaluate.pyx" +values[2] = PyTuple_GET_ITEM(__pyx_args, 2); case 2: #line 15 "root_numpy/tmva/src/evaluate.pyx" values[1] = PyTuple_GET_ITEM(__pyx_args, 1); @@ -4974,7 +5010,22 @@ goto __pyx_L5_argtuple_error; #line 15 "root_numpy/tmva/src/evaluate.pyx" else { - __Pyx_RaiseArgtupleInvalid("evaluate_method", 1, 2, 2, 1); + __Pyx_RaiseArgtupleInvalid("evaluate_method", 1, 3, 3, 1); +#line 15 "root_numpy/tmva/src/evaluate.pyx" +{__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L3_error;} + +#line 15 "root_numpy/tmva/src/evaluate.pyx" + } + +#line 15 "root_numpy/tmva/src/evaluate.pyx" + case 2: + +#line 15 "root_numpy/tmva/src/evaluate.pyx" + if (likely((values[2] = PyDict_GetItem(__pyx_kwds, __pyx_n_s_aux)) != 0)) kw_args--; + +#line 15 "root_numpy/tmva/src/evaluate.pyx" + else { + __Pyx_RaiseArgtupleInvalid("evaluate_method", 1, 3, 3, 2); #line 15 "root_numpy/tmva/src/evaluate.pyx" {__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L3_error;} @@ -4994,7 +5045,7 @@ goto __pyx_L5_argtuple_error; } #line 15 "root_numpy/tmva/src/evaluate.pyx" - } else if (PyTuple_GET_SIZE(__pyx_args) != 2) { + } else if (PyTuple_GET_SIZE(__pyx_args) != 3) { #line 15 "root_numpy/tmva/src/evaluate.pyx" goto __pyx_L5_argtuple_error; @@ -5008,6 +5059,9 @@ goto __pyx_L5_argtuple_error; #line 15 "root_numpy/tmva/src/evaluate.pyx" values[1] = PyTuple_GET_ITEM(__pyx_args, 1); +#line 15 "root_numpy/tmva/src/evaluate.pyx" + values[2] = PyTuple_GET_ITEM(__pyx_args, 2); + #line 15 "root_numpy/tmva/src/evaluate.pyx" } @@ -5017,6 +5071,9 @@ goto __pyx_L5_argtuple_error; #line 15 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_events = ((PyArrayObject *)values[1]); +#line 15 "root_numpy/tmva/src/evaluate.pyx" + __pyx_v_aux = __pyx_PyFloat_AsDouble(values[2]); if (unlikely((__pyx_v_aux == (double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L3_error;} + #line 15 "root_numpy/tmva/src/evaluate.pyx" } @@ -5025,7 +5082,7 @@ goto __pyx_L5_argtuple_error; #line 15 "root_numpy/tmva/src/evaluate.pyx" __pyx_L5_argtuple_error:; - __Pyx_RaiseArgtupleInvalid("evaluate_method", 1, 2, 2, PyTuple_GET_SIZE(__pyx_args)); + __Pyx_RaiseArgtupleInvalid("evaluate_method", 1, 3, 3, PyTuple_GET_SIZE(__pyx_args)); #line 15 "root_numpy/tmva/src/evaluate.pyx" {__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L3_error;} @@ -5048,7 +5105,7 @@ goto __pyx_L5_argtuple_error; if (unlikely(!__Pyx_ArgTypeTest(((PyObject *)__pyx_v_events), __pyx_ptype_5numpy_ndarray, 1, "events", 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_r = #line 15 "root_numpy/tmva/src/evaluate.pyx" -__pyx_pf_13_libtmvanumpy_8evaluate_method(__pyx_self, __pyx_v_method, __pyx_v_events); +__pyx_pf_13_libtmvanumpy_8evaluate_method(__pyx_self, __pyx_v_method, __pyx_v_events, __pyx_v_aux); #line 15 "root_numpy/tmva/src/evaluate.pyx" @@ -5081,7 +5138,7 @@ __pyx_pf_13_libtmvanumpy_8evaluate_method(__pyx_self, __pyx_v_method, __pyx_v_ev #line 15 "root_numpy/tmva/src/evaluate.pyx" -static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_method, PyArrayObject *__pyx_v_events) { +static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObject *__pyx_self, PyObject *__pyx_v_method, PyArrayObject *__pyx_v_events, double __pyx_v_aux) { TMVA::MethodBase *__pyx_v__method #line 15 "root_numpy/tmva/src/evaluate.pyx" ; @@ -5133,9 +5190,9 @@ static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObjec /* "root_numpy/tmva/src/evaluate.pyx":16 * @cython.wraparound(False) - * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events): + * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events, double aux): * cdef MethodBase* _method = PyCObject_AsVoidPtr(method) # <<<<<<<<<<<<<< - * return evaluate_method_dispatch(_method, events) + * return evaluate_method_dispatch(_method, events, aux) * */ @@ -5146,9 +5203,9 @@ static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObjec __pyx_v__method = ((TMVA::MethodBase *)__pyx_t_1); /* "root_numpy/tmva/src/evaluate.pyx":17 - * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events): + * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events, double aux): * cdef MethodBase* _method = PyCObject_AsVoidPtr(method) - * return evaluate_method_dispatch(_method, events) # <<<<<<<<<<<<<< + * return evaluate_method_dispatch(_method, events, aux) # <<<<<<<<<<<<<< * * */ @@ -5157,7 +5214,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObjec __Pyx_XDECREF(__pyx_r); #line 17 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_2 = __pyx_f_13_libtmvanumpy_evaluate_method_dispatch(__pyx_v__method, ((PyArrayObject *)__pyx_v_events)); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_2 = __pyx_f_13_libtmvanumpy_evaluate_method_dispatch(__pyx_v__method, ((PyArrayObject *)__pyx_v_events), __pyx_v_aux); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 17; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #line 17 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_2); @@ -5174,9 +5231,9 @@ static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObjec /* "root_numpy/tmva/src/evaluate.pyx":15 * @cython.boundscheck(False) * @cython.wraparound(False) - * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef MethodBase* _method = PyCObject_AsVoidPtr(method) - * return evaluate_method_dispatch(_method, events) + * return evaluate_method_dispatch(_method, events, aux) */ #line 15 "root_numpy/tmva/src/evaluate.pyx" @@ -5236,7 +5293,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObjec /* "root_numpy/tmva/src/evaluate.pyx":22 * @cython.boundscheck(False) * @cython.wraparound(False) - * cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef long n_features = events.shape[1] * cdef unsigned int n_classes, n_targets */ @@ -5245,7 +5302,7 @@ static PyObject *__pyx_pf_13_libtmvanumpy_8evaluate_method(CYTHON_UNUSED PyObjec #line 22 "root_numpy/tmva/src/evaluate.pyx" -static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBase *__pyx_v__method, PyArrayObject *__pyx_v_events) { +static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBase *__pyx_v__method, PyArrayObject *__pyx_v_events, double __pyx_v_aux) { long __pyx_v_n_features #line 22 "root_numpy/tmva/src/evaluate.pyx" ; @@ -5315,7 +5372,7 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa /* "root_numpy/tmva/src/evaluate.pyx":23 * @cython.wraparound(False) - * cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): + * cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, double aux): * cdef long n_features = events.shape[1] # <<<<<<<<<<<<<< * cdef unsigned int n_classes, n_targets * if n_features != _method.GetNVariables(): @@ -5502,7 +5559,7 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa * cdef EAnalysisType analysistype * analysistype = _method.GetAnalysisType() # <<<<<<<<<<<<<< * if analysistype == kClassification: - * return evaluate_twoclass(_method, events) + * return evaluate_twoclass(_method, events, aux) */ #line 31 "root_numpy/tmva/src/evaluate.pyx" @@ -5523,7 +5580,7 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa * cdef EAnalysisType analysistype * analysistype = _method.GetAnalysisType() * if analysistype == kClassification: # <<<<<<<<<<<<<< - * return evaluate_twoclass(_method, events) + * return evaluate_twoclass(_method, events, aux) * elif analysistype == kMulticlass: */ @@ -5533,7 +5590,7 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa /* "root_numpy/tmva/src/evaluate.pyx":33 * analysistype = _method.GetAnalysisType() * if analysistype == kClassification: - * return evaluate_twoclass(_method, events) # <<<<<<<<<<<<<< + * return evaluate_twoclass(_method, events, aux) # <<<<<<<<<<<<<< * elif analysistype == kMulticlass: * n_classes = _method.DataInfo().GetNClasses() */ @@ -5542,7 +5599,7 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa __Pyx_XDECREF(__pyx_r); #line 33 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_2 = __pyx_f_13_libtmvanumpy_evaluate_twoclass(__pyx_v__method, ((PyArrayObject *)__pyx_v_events)); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 33; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_2 = __pyx_f_13_libtmvanumpy_evaluate_twoclass(__pyx_v__method, ((PyArrayObject *)__pyx_v_events), __pyx_v_aux); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 33; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #line 33 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_2); @@ -5561,7 +5618,7 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa /* "root_numpy/tmva/src/evaluate.pyx":34 * if analysistype == kClassification: - * return evaluate_twoclass(_method, events) + * return evaluate_twoclass(_method, events, aux) * elif analysistype == kMulticlass: # <<<<<<<<<<<<<< * n_classes = _method.DataInfo().GetNClasses() * if n_classes < 2: @@ -5571,7 +5628,7 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa case TMVA::Types::kMulticlass: /* "root_numpy/tmva/src/evaluate.pyx":35 - * return evaluate_twoclass(_method, events) + * return evaluate_twoclass(_method, events, aux) * elif analysistype == kMulticlass: * n_classes = _method.DataInfo().GetNClasses() # <<<<<<<<<<<<<< * if n_classes < 2: @@ -5914,7 +5971,7 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa /* "root_numpy/tmva/src/evaluate.pyx":22 * @cython.boundscheck(False) * @cython.wraparound(False) - * cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef long n_features = events.shape[1] * cdef unsigned int n_classes, n_targets */ @@ -5994,16 +6051,19 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_method_dispatch(TMVA::MethodBa /* "root_numpy/tmva/src/evaluate.pyx":52 * @cython.boundscheck(False) * @cython.wraparound(False) - * cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< + * cdef MethodCuts* mc * cdef long size = events.shape[0] - * cdef long n_features = events.shape[1] */ #line 52 "root_numpy/tmva/src/evaluate.pyx" #line 52 "root_numpy/tmva/src/evaluate.pyx" -static PyObject *__pyx_f_13_libtmvanumpy_evaluate_twoclass(TMVA::MethodBase *__pyx_v__method, PyArrayObject *__pyx_v_events) { +static PyObject *__pyx_f_13_libtmvanumpy_evaluate_twoclass(TMVA::MethodBase *__pyx_v__method, PyArrayObject *__pyx_v_events, double __pyx_v_aux) { + TMVA::MethodCuts *__pyx_v_mc +#line 52 "root_numpy/tmva/src/evaluate.pyx" +; long __pyx_v_size #line 52 "root_numpy/tmva/src/evaluate.pyx" ; @@ -6047,10 +6107,12 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_twoclass(TMVA::MethodBase *__p PyObject *__pyx_t_4 = NULL; PyObject *__pyx_t_5 = NULL; PyArrayObject *__pyx_t_6 = NULL; - long __pyx_t_7; - long __pyx_t_8; + int __pyx_t_7; + TMVA::MethodCuts *__pyx_t_8; long __pyx_t_9; long __pyx_t_10; + long __pyx_t_11; + long __pyx_t_12; int __pyx_lineno = 0; const char *__pyx_filename = NULL; int __pyx_clineno = 0; @@ -6097,29 +6159,29 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_twoclass(TMVA::MethodBase *__p #line 52 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_events.diminfo[0].strides = __pyx_pybuffernd_events.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_events.diminfo[0].shape = __pyx_pybuffernd_events.rcbuffer->pybuffer.shape[0]; __pyx_pybuffernd_events.diminfo[1].strides = __pyx_pybuffernd_events.rcbuffer->pybuffer.strides[1]; __pyx_pybuffernd_events.diminfo[1].shape = __pyx_pybuffernd_events.rcbuffer->pybuffer.shape[1]; - /* "root_numpy/tmva/src/evaluate.pyx":53 - * @cython.wraparound(False) - * cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): + /* "root_numpy/tmva/src/evaluate.pyx":54 + * cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, double aux): + * cdef MethodCuts* mc * cdef long size = events.shape[0] # <<<<<<<<<<<<<< * cdef long n_features = events.shape[1] * cdef long i, j */ -#line 53 "root_numpy/tmva/src/evaluate.pyx" +#line 54 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_size = (__pyx_v_events->dimensions[0]); - /* "root_numpy/tmva/src/evaluate.pyx":54 - * cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): + /* "root_numpy/tmva/src/evaluate.pyx":55 + * cdef MethodCuts* mc * cdef long size = events.shape[0] * cdef long n_features = events.shape[1] # <<<<<<<<<<<<<< * cdef long i, j * cdef vector[float] features */ -#line 54 "root_numpy/tmva/src/evaluate.pyx" +#line 55 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_n_features = (__pyx_v_events->dimensions[1]); - /* "root_numpy/tmva/src/evaluate.pyx":57 + /* "root_numpy/tmva/src/evaluate.pyx":58 * cdef long i, j * cdef vector[float] features * cdef Event* event = new Event(features, 0) # <<<<<<<<<<<<<< @@ -6127,174 +6189,260 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_twoclass(TMVA::MethodBase *__p * cdef np.ndarray[np.double_t, ndim=1] output = np.empty(size, dtype=np.double) */ -#line 57 "root_numpy/tmva/src/evaluate.pyx" +#line 58 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_event = new TMVA::Event(__pyx_v_features, 0); - /* "root_numpy/tmva/src/evaluate.pyx":58 + /* "root_numpy/tmva/src/evaluate.pyx":59 * cdef vector[float] features * cdef Event* event = new Event(features, 0) * _method.fTmpEvent = event # <<<<<<<<<<<<<< * cdef np.ndarray[np.double_t, ndim=1] output = np.empty(size, dtype=np.double) - * for i from 0 <= i < size: + * if _method.GetMethodType() == kCuts: */ -#line 58 "root_numpy/tmva/src/evaluate.pyx" +#line 59 "root_numpy/tmva/src/evaluate.pyx" __pyx_v__method->fTmpEvent = __pyx_v_event; - /* "root_numpy/tmva/src/evaluate.pyx":59 + /* "root_numpy/tmva/src/evaluate.pyx":60 * cdef Event* event = new Event(features, 0) * _method.fTmpEvent = event * cdef np.ndarray[np.double_t, ndim=1] output = np.empty(size, dtype=np.double) # <<<<<<<<<<<<<< - * for i from 0 <= i < size: - * for j from 0 <= j < n_features: + * if _method.GetMethodType() == kCuts: + * mc = dynamic_cast["MethodCuts*"](_method) */ -#line 59 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 59 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_2); -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; -#line 59 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v_size); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v_size); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 59 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_3); -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_1); -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GIVEREF(__pyx_t_1); -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_1 = 0; -#line 59 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = PyDict_New(); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 59 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_4); -#line 59 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_double); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_double); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_5); -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; -#line 59 "root_numpy/tmva/src/evaluate.pyx" - if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + if (PyDict_SetItem(__pyx_t_1, __pyx_n_s_dtype, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; -#line 59 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_5); -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; -#line 59 "root_numpy/tmva/src/evaluate.pyx" - if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_6 = ((PyArrayObject *)__pyx_t_5); -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" { -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __Pyx_BufFmt_StackElem __pyx_stack[1]; -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_output.rcbuffer->pybuffer, (PyObject*)__pyx_t_6, &__Pyx_TypeInfo_nn___pyx_t_5numpy_double_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) { -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_output = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_output.rcbuffer->pybuffer.buf = NULL; -#line 59 "root_numpy/tmva/src/evaluate.pyx" - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 59; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 60 "root_numpy/tmva/src/evaluate.pyx" + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 60; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } else { -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_output.diminfo[0].shape = __pyx_pybuffernd_output.rcbuffer->pybuffer.shape[0]; -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" } -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" } -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_6 = 0; -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_output = ((PyArrayObject *)__pyx_t_5); -#line 59 "root_numpy/tmva/src/evaluate.pyx" +#line 60 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_5 = 0; - /* "root_numpy/tmva/src/evaluate.pyx":60 + /* "root_numpy/tmva/src/evaluate.pyx":61 * _method.fTmpEvent = event * cdef np.ndarray[np.double_t, ndim=1] output = np.empty(size, dtype=np.double) + * if _method.GetMethodType() == kCuts: # <<<<<<<<<<<<<< + * mc = dynamic_cast["MethodCuts*"](_method) + * if mc != NULL: + */ + +#line 61 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_7 = ((__pyx_v__method->GetMethodType() == TMVA::Types::kCuts) != 0); + +#line 61 "root_numpy/tmva/src/evaluate.pyx" + if (__pyx_t_7) { + + /* "root_numpy/tmva/src/evaluate.pyx":62 + * cdef np.ndarray[np.double_t, ndim=1] output = np.empty(size, dtype=np.double) + * if _method.GetMethodType() == kCuts: + * mc = dynamic_cast["MethodCuts*"](_method) # <<<<<<<<<<<<<< + * if mc != NULL: + * mc.SetTestSignalEfficiency(aux) + */ + +#line 62 "root_numpy/tmva/src/evaluate.pyx" + try { + +#line 62 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_8 = dynamic_cast(__pyx_v__method); + +#line 62 "root_numpy/tmva/src/evaluate.pyx" + } catch(...) { + +#line 62 "root_numpy/tmva/src/evaluate.pyx" + __Pyx_CppExn2PyErr(); + +#line 62 "root_numpy/tmva/src/evaluate.pyx" + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + +#line 62 "root_numpy/tmva/src/evaluate.pyx" + } + +#line 62 "root_numpy/tmva/src/evaluate.pyx" + __pyx_v_mc = __pyx_t_8; + + /* "root_numpy/tmva/src/evaluate.pyx":63 + * if _method.GetMethodType() == kCuts: + * mc = dynamic_cast["MethodCuts*"](_method) + * if mc != NULL: # <<<<<<<<<<<<<< + * mc.SetTestSignalEfficiency(aux) + * for i from 0 <= i < size: + */ + +#line 63 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_7 = ((__pyx_v_mc != NULL) != 0); + +#line 63 "root_numpy/tmva/src/evaluate.pyx" + if (__pyx_t_7) { + + /* "root_numpy/tmva/src/evaluate.pyx":64 + * mc = dynamic_cast["MethodCuts*"](_method) + * if mc != NULL: + * mc.SetTestSignalEfficiency(aux) # <<<<<<<<<<<<<< + * for i from 0 <= i < size: + * for j from 0 <= j < n_features: + */ + +#line 64 "root_numpy/tmva/src/evaluate.pyx" + __pyx_v_mc->SetTestSignalEfficiency(__pyx_v_aux); + +#line 64 "root_numpy/tmva/src/evaluate.pyx" + goto __pyx_L4; + +#line 64 "root_numpy/tmva/src/evaluate.pyx" + } + +#line 64 "root_numpy/tmva/src/evaluate.pyx" + __pyx_L4:; + +#line 64 "root_numpy/tmva/src/evaluate.pyx" + goto __pyx_L3; + +#line 64 "root_numpy/tmva/src/evaluate.pyx" + } + +#line 64 "root_numpy/tmva/src/evaluate.pyx" + __pyx_L3:; + + /* "root_numpy/tmva/src/evaluate.pyx":65 + * if mc != NULL: + * mc.SetTestSignalEfficiency(aux) * for i from 0 <= i < size: # <<<<<<<<<<<<<< * for j from 0 <= j < n_features: * event.SetVal(j, events[i, j]) */ -#line 60 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_7 = __pyx_v_size; +#line 65 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_9 = __pyx_v_size; -#line 60 "root_numpy/tmva/src/evaluate.pyx" - for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_7; __pyx_v_i++) { +#line 65 "root_numpy/tmva/src/evaluate.pyx" + for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_9; __pyx_v_i++) { - /* "root_numpy/tmva/src/evaluate.pyx":61 - * cdef np.ndarray[np.double_t, ndim=1] output = np.empty(size, dtype=np.double) + /* "root_numpy/tmva/src/evaluate.pyx":66 + * mc.SetTestSignalEfficiency(aux) * for i from 0 <= i < size: * for j from 0 <= j < n_features: # <<<<<<<<<<<<<< * event.SetVal(j, events[i, j]) * output[i] = _method.GetMvaValue() */ -#line 61 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_8 = __pyx_v_n_features; +#line 66 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_10 = __pyx_v_n_features; -#line 61 "root_numpy/tmva/src/evaluate.pyx" - for (__pyx_v_j = 0; __pyx_v_j < __pyx_t_8; __pyx_v_j++) { +#line 66 "root_numpy/tmva/src/evaluate.pyx" + for (__pyx_v_j = 0; __pyx_v_j < __pyx_t_10; __pyx_v_j++) { - /* "root_numpy/tmva/src/evaluate.pyx":62 + /* "root_numpy/tmva/src/evaluate.pyx":67 * for i from 0 <= i < size: * for j from 0 <= j < n_features: * event.SetVal(j, events[i, j]) # <<<<<<<<<<<<<< @@ -6302,19 +6450,19 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * _method.fTmpEvent = NULL */ -#line 62 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_9 = __pyx_v_i; +#line 67 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_11 = __pyx_v_i; -#line 62 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_10 = __pyx_v_j; +#line 67 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_12 = __pyx_v_j; -#line 62 "root_numpy/tmva/src/evaluate.pyx" - __pyx_v_event->SetVal(__pyx_v_j, (*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_double_t *, __pyx_pybuffernd_events.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_events.diminfo[0].strides, __pyx_t_10, __pyx_pybuffernd_events.diminfo[1].strides))); +#line 67 "root_numpy/tmva/src/evaluate.pyx" + __pyx_v_event->SetVal(__pyx_v_j, (*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_double_t *, __pyx_pybuffernd_events.rcbuffer->pybuffer.buf, __pyx_t_11, __pyx_pybuffernd_events.diminfo[0].strides, __pyx_t_12, __pyx_pybuffernd_events.diminfo[1].strides))); -#line 62 "root_numpy/tmva/src/evaluate.pyx" +#line 67 "root_numpy/tmva/src/evaluate.pyx" } - /* "root_numpy/tmva/src/evaluate.pyx":63 + /* "root_numpy/tmva/src/evaluate.pyx":68 * for j from 0 <= j < n_features: * event.SetVal(j, events[i, j]) * output[i] = _method.GetMvaValue() # <<<<<<<<<<<<<< @@ -6322,16 +6470,16 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * del event */ -#line 63 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_8 = __pyx_v_i; +#line 68 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_10 = __pyx_v_i; -#line 63 "root_numpy/tmva/src/evaluate.pyx" - *__Pyx_BufPtrStrided1d(__pyx_t_5numpy_double_t *, __pyx_pybuffernd_output.rcbuffer->pybuffer.buf, __pyx_t_8, __pyx_pybuffernd_output.diminfo[0].strides) = __pyx_v__method->GetMvaValue(); +#line 68 "root_numpy/tmva/src/evaluate.pyx" + *__Pyx_BufPtrStrided1d(__pyx_t_5numpy_double_t *, __pyx_pybuffernd_output.rcbuffer->pybuffer.buf, __pyx_t_10, __pyx_pybuffernd_output.diminfo[0].strides) = __pyx_v__method->GetMvaValue(); -#line 63 "root_numpy/tmva/src/evaluate.pyx" +#line 68 "root_numpy/tmva/src/evaluate.pyx" } - /* "root_numpy/tmva/src/evaluate.pyx":64 + /* "root_numpy/tmva/src/evaluate.pyx":69 * event.SetVal(j, events[i, j]) * output[i] = _method.GetMvaValue() * _method.fTmpEvent = NULL # <<<<<<<<<<<<<< @@ -6339,10 +6487,10 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * return output */ -#line 64 "root_numpy/tmva/src/evaluate.pyx" +#line 69 "root_numpy/tmva/src/evaluate.pyx" __pyx_v__method->fTmpEvent = NULL; - /* "root_numpy/tmva/src/evaluate.pyx":65 + /* "root_numpy/tmva/src/evaluate.pyx":70 * output[i] = _method.GetMvaValue() * _method.fTmpEvent = NULL * del event # <<<<<<<<<<<<<< @@ -6350,10 +6498,10 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * */ -#line 65 "root_numpy/tmva/src/evaluate.pyx" +#line 70 "root_numpy/tmva/src/evaluate.pyx" delete __pyx_v_event; - /* "root_numpy/tmva/src/evaluate.pyx":66 + /* "root_numpy/tmva/src/evaluate.pyx":71 * _method.fTmpEvent = NULL * del event * return output # <<<<<<<<<<<<<< @@ -6361,24 +6509,24 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * */ -#line 66 "root_numpy/tmva/src/evaluate.pyx" +#line 71 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_r); -#line 66 "root_numpy/tmva/src/evaluate.pyx" +#line 71 "root_numpy/tmva/src/evaluate.pyx" __Pyx_INCREF(((PyObject *)__pyx_v_output)); -#line 66 "root_numpy/tmva/src/evaluate.pyx" +#line 71 "root_numpy/tmva/src/evaluate.pyx" __pyx_r = ((PyObject *)__pyx_v_output); -#line 66 "root_numpy/tmva/src/evaluate.pyx" +#line 71 "root_numpy/tmva/src/evaluate.pyx" goto __pyx_L0; /* "root_numpy/tmva/src/evaluate.pyx":52 * @cython.boundscheck(False) * @cython.wraparound(False) - * cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< + * cdef MethodCuts* mc * cdef long size = events.shape[0] - * cdef long n_features = events.shape[1] */ #line 52 "root_numpy/tmva/src/evaluate.pyx" @@ -6456,7 +6604,7 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p #line 52 "root_numpy/tmva/src/evaluate.pyx" } -/* "root_numpy/tmva/src/evaluate.pyx":71 +/* "root_numpy/tmva/src/evaluate.pyx":76 * @cython.boundscheck(False) * @cython.wraparound(False) * cdef evaluate_multiclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, unsigned int n_classes): # <<<<<<<<<<<<<< @@ -6464,46 +6612,46 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * cdef long n_features = events.shape[1] */ -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" static PyObject *__pyx_f_13_libtmvanumpy_evaluate_multiclass(TMVA::MethodBase *__pyx_v__method, PyArrayObject *__pyx_v_events, unsigned int __pyx_v_n_classes) { long __pyx_v_size -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; long __pyx_v_n_features -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; long __pyx_v_i -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; long __pyx_v_j -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; std::vector __pyx_v_features -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; TMVA::Event *__pyx_v_event -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; PyArrayObject *__pyx_v_output = 0 -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; __Pyx_LocalBuf_ND __pyx_pybuffernd_events -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; __Pyx_Buffer __pyx_pybuffer_events -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; __Pyx_LocalBuf_ND __pyx_pybuffernd_output -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; __Pyx_Buffer __pyx_pybuffer_output -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" ; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; @@ -6521,49 +6669,49 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_multiclass(TMVA::MethodBase *_ const char *__pyx_filename = NULL; int __pyx_clineno = 0; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_RefNannySetupContext("evaluate_multiclass", 0); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffer_output.pybuffer.buf = NULL; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffer_output.refcount = 0; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_output.data = NULL; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_output.rcbuffer = &__pyx_pybuffer_output; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffer_events.pybuffer.buf = NULL; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffer_events.refcount = 0; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_events.data = NULL; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_events.rcbuffer = &__pyx_pybuffer_events; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" { -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_BufFmt_StackElem __pyx_stack[1]; -#line 71 "root_numpy/tmva/src/evaluate.pyx" - if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_events.rcbuffer->pybuffer, (PyObject*)__pyx_v_events, &__Pyx_TypeInfo_nn___pyx_t_5numpy_double_t, PyBUF_FORMAT| PyBUF_STRIDES, 2, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 71; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 76 "root_numpy/tmva/src/evaluate.pyx" + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_events.rcbuffer->pybuffer, (PyObject*)__pyx_v_events, &__Pyx_TypeInfo_nn___pyx_t_5numpy_double_t, PyBUF_FORMAT| PyBUF_STRIDES, 2, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" } -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_events.diminfo[0].strides = __pyx_pybuffernd_events.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_events.diminfo[0].shape = __pyx_pybuffernd_events.rcbuffer->pybuffer.shape[0]; __pyx_pybuffernd_events.diminfo[1].strides = __pyx_pybuffernd_events.rcbuffer->pybuffer.strides[1]; __pyx_pybuffernd_events.diminfo[1].shape = __pyx_pybuffernd_events.rcbuffer->pybuffer.shape[1]; - /* "root_numpy/tmva/src/evaluate.pyx":72 + /* "root_numpy/tmva/src/evaluate.pyx":77 * @cython.wraparound(False) * cdef evaluate_multiclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, unsigned int n_classes): * cdef long size = events.shape[0] # <<<<<<<<<<<<<< @@ -6571,10 +6719,10 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_multiclass(TMVA::MethodBase *_ * cdef long i, j */ -#line 72 "root_numpy/tmva/src/evaluate.pyx" +#line 77 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_size = (__pyx_v_events->dimensions[0]); - /* "root_numpy/tmva/src/evaluate.pyx":73 + /* "root_numpy/tmva/src/evaluate.pyx":78 * cdef evaluate_multiclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, unsigned int n_classes): * cdef long size = events.shape[0] * cdef long n_features = events.shape[1] # <<<<<<<<<<<<<< @@ -6582,10 +6730,10 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_multiclass(TMVA::MethodBase *_ * cdef vector[float] features */ -#line 73 "root_numpy/tmva/src/evaluate.pyx" +#line 78 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_n_features = (__pyx_v_events->dimensions[1]); - /* "root_numpy/tmva/src/evaluate.pyx":76 + /* "root_numpy/tmva/src/evaluate.pyx":81 * cdef long i, j * cdef vector[float] features * cdef Event* event = new Event(features, 0) # <<<<<<<<<<<<<< @@ -6593,10 +6741,10 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_multiclass(TMVA::MethodBase *_ * cdef np.ndarray[np.float32_t, ndim=2] output = np.empty((size, n_classes), dtype=np.float32) */ -#line 76 "root_numpy/tmva/src/evaluate.pyx" +#line 81 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_event = new TMVA::Event(__pyx_v_features, 0); - /* "root_numpy/tmva/src/evaluate.pyx":77 + /* "root_numpy/tmva/src/evaluate.pyx":82 * cdef vector[float] features * cdef Event* event = new Event(features, 0) * _method.fTmpEvent = event # <<<<<<<<<<<<<< @@ -6604,10 +6752,10 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_multiclass(TMVA::MethodBase *_ * for i from 0 <= i < size: */ -#line 77 "root_numpy/tmva/src/evaluate.pyx" +#line 82 "root_numpy/tmva/src/evaluate.pyx" __pyx_v__method->fTmpEvent = __pyx_v_event; - /* "root_numpy/tmva/src/evaluate.pyx":78 + /* "root_numpy/tmva/src/evaluate.pyx":83 * cdef Event* event = new Event(features, 0) * _method.fTmpEvent = event * cdef np.ndarray[np.float32_t, ndim=2] output = np.empty((size, n_classes), dtype=np.float32) # <<<<<<<<<<<<<< @@ -6615,154 +6763,154 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_multiclass(TMVA::MethodBase *_ * for j from 0 <= j < n_features: */ -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_2); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v_size); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v_size); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_3 = __Pyx_PyInt_From_unsigned_int(__pyx_v_n_classes); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_3 = __Pyx_PyInt_From_unsigned_int(__pyx_v_n_classes); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_3); -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_4); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GIVEREF(__pyx_t_1); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GIVEREF(__pyx_t_3); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_1 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_3 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_3); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GIVEREF(__pyx_t_4); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_4 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_4 = PyDict_New(); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_4 = PyDict_New(); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_4); -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_float32); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_float32); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_5); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" - if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_5); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" - if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_6 = ((PyArrayObject *)__pyx_t_5); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" { -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __Pyx_BufFmt_StackElem __pyx_stack[1]; -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_output.rcbuffer->pybuffer, (PyObject*)__pyx_t_6, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 2, 0, __pyx_stack) == -1)) { -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_output = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_output.rcbuffer->pybuffer.buf = NULL; -#line 78 "root_numpy/tmva/src/evaluate.pyx" - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 78; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 83 "root_numpy/tmva/src/evaluate.pyx" + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 83; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } else { -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_output.diminfo[0].shape = __pyx_pybuffernd_output.rcbuffer->pybuffer.shape[0]; __pyx_pybuffernd_output.diminfo[1].strides = __pyx_pybuffernd_output.rcbuffer->pybuffer.strides[1]; __pyx_pybuffernd_output.diminfo[1].shape = __pyx_pybuffernd_output.rcbuffer->pybuffer.shape[1]; -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" } -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" } -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_6 = 0; -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_output = ((PyArrayObject *)__pyx_t_5); -#line 78 "root_numpy/tmva/src/evaluate.pyx" +#line 83 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_5 = 0; - /* "root_numpy/tmva/src/evaluate.pyx":79 + /* "root_numpy/tmva/src/evaluate.pyx":84 * _method.fTmpEvent = event * cdef np.ndarray[np.float32_t, ndim=2] output = np.empty((size, n_classes), dtype=np.float32) * for i from 0 <= i < size: # <<<<<<<<<<<<<< @@ -6770,13 +6918,13 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * event.SetVal(j, events[i, j]) */ -#line 79 "root_numpy/tmva/src/evaluate.pyx" +#line 84 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_7 = __pyx_v_size; -#line 79 "root_numpy/tmva/src/evaluate.pyx" +#line 84 "root_numpy/tmva/src/evaluate.pyx" for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_7; __pyx_v_i++) { - /* "root_numpy/tmva/src/evaluate.pyx":80 + /* "root_numpy/tmva/src/evaluate.pyx":85 * cdef np.ndarray[np.float32_t, ndim=2] output = np.empty((size, n_classes), dtype=np.float32) * for i from 0 <= i < size: * for j from 0 <= j < n_features: # <<<<<<<<<<<<<< @@ -6784,13 +6932,13 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * memcpy(&output[i, 0], &(_method.GetMulticlassValues()[0]), sizeof(np.float32_t) * n_classes) */ -#line 80 "root_numpy/tmva/src/evaluate.pyx" +#line 85 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_8 = __pyx_v_n_features; -#line 80 "root_numpy/tmva/src/evaluate.pyx" +#line 85 "root_numpy/tmva/src/evaluate.pyx" for (__pyx_v_j = 0; __pyx_v_j < __pyx_t_8; __pyx_v_j++) { - /* "root_numpy/tmva/src/evaluate.pyx":81 + /* "root_numpy/tmva/src/evaluate.pyx":86 * for i from 0 <= i < size: * for j from 0 <= j < n_features: * event.SetVal(j, events[i, j]) # <<<<<<<<<<<<<< @@ -6798,19 +6946,19 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * _method.fTmpEvent = NULL */ -#line 81 "root_numpy/tmva/src/evaluate.pyx" +#line 86 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_9 = __pyx_v_i; -#line 81 "root_numpy/tmva/src/evaluate.pyx" +#line 86 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_10 = __pyx_v_j; -#line 81 "root_numpy/tmva/src/evaluate.pyx" +#line 86 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_event->SetVal(__pyx_v_j, (*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_double_t *, __pyx_pybuffernd_events.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_events.diminfo[0].strides, __pyx_t_10, __pyx_pybuffernd_events.diminfo[1].strides))); -#line 81 "root_numpy/tmva/src/evaluate.pyx" +#line 86 "root_numpy/tmva/src/evaluate.pyx" } - /* "root_numpy/tmva/src/evaluate.pyx":82 + /* "root_numpy/tmva/src/evaluate.pyx":87 * for j from 0 <= j < n_features: * event.SetVal(j, events[i, j]) * memcpy(&output[i, 0], &(_method.GetMulticlassValues()[0]), sizeof(np.float32_t) * n_classes) # <<<<<<<<<<<<<< @@ -6818,19 +6966,19 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * del event */ -#line 82 "root_numpy/tmva/src/evaluate.pyx" +#line 87 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_8 = __pyx_v_i; -#line 82 "root_numpy/tmva/src/evaluate.pyx" +#line 87 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_11 = 0; -#line 82 "root_numpy/tmva/src/evaluate.pyx" +#line 87 "root_numpy/tmva/src/evaluate.pyx" memcpy((&(*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_output.rcbuffer->pybuffer.buf, __pyx_t_8, __pyx_pybuffernd_output.diminfo[0].strides, __pyx_t_11, __pyx_pybuffernd_output.diminfo[1].strides))), (&(__pyx_v__method->GetMulticlassValues()[0])), ((sizeof(__pyx_t_5numpy_float32_t)) * __pyx_v_n_classes)); -#line 82 "root_numpy/tmva/src/evaluate.pyx" +#line 87 "root_numpy/tmva/src/evaluate.pyx" } - /* "root_numpy/tmva/src/evaluate.pyx":83 + /* "root_numpy/tmva/src/evaluate.pyx":88 * event.SetVal(j, events[i, j]) * memcpy(&output[i, 0], &(_method.GetMulticlassValues()[0]), sizeof(np.float32_t) * n_classes) * _method.fTmpEvent = NULL # <<<<<<<<<<<<<< @@ -6838,10 +6986,10 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * return output */ -#line 83 "root_numpy/tmva/src/evaluate.pyx" +#line 88 "root_numpy/tmva/src/evaluate.pyx" __pyx_v__method->fTmpEvent = NULL; - /* "root_numpy/tmva/src/evaluate.pyx":84 + /* "root_numpy/tmva/src/evaluate.pyx":89 * memcpy(&output[i, 0], &(_method.GetMulticlassValues()[0]), sizeof(np.float32_t) * n_classes) * _method.fTmpEvent = NULL * del event # <<<<<<<<<<<<<< @@ -6849,10 +6997,10 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * */ -#line 84 "root_numpy/tmva/src/evaluate.pyx" +#line 89 "root_numpy/tmva/src/evaluate.pyx" delete __pyx_v_event; - /* "root_numpy/tmva/src/evaluate.pyx":85 + /* "root_numpy/tmva/src/evaluate.pyx":90 * _method.fTmpEvent = NULL * del event * return output # <<<<<<<<<<<<<< @@ -6860,19 +7008,19 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * */ -#line 85 "root_numpy/tmva/src/evaluate.pyx" +#line 90 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_r); -#line 85 "root_numpy/tmva/src/evaluate.pyx" +#line 90 "root_numpy/tmva/src/evaluate.pyx" __Pyx_INCREF(((PyObject *)__pyx_v_output)); -#line 85 "root_numpy/tmva/src/evaluate.pyx" +#line 90 "root_numpy/tmva/src/evaluate.pyx" __pyx_r = ((PyObject *)__pyx_v_output); -#line 85 "root_numpy/tmva/src/evaluate.pyx" +#line 90 "root_numpy/tmva/src/evaluate.pyx" goto __pyx_L0; - /* "root_numpy/tmva/src/evaluate.pyx":71 + /* "root_numpy/tmva/src/evaluate.pyx":76 * @cython.boundscheck(False) * @cython.wraparound(False) * cdef evaluate_multiclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, unsigned int n_classes): # <<<<<<<<<<<<<< @@ -6880,82 +7028,82 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * cdef long n_features = events.shape[1] */ -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" /* function exit code */ -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_L1_error:; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_1); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_2); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_3); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_4); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_5); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_events.rcbuffer->pybuffer); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_output.rcbuffer->pybuffer); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_AddTraceback("_libtmvanumpy.evaluate_multiclass", __pyx_clineno, __pyx_lineno, __pyx_filename); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_r = 0; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" goto __pyx_L2; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_L0:; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_events.rcbuffer->pybuffer); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_output.rcbuffer->pybuffer); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __pyx_L2:; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF((PyObject *)__pyx_v_output); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XGIVEREF(__pyx_r); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" __Pyx_RefNannyFinishContext(); -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" return __pyx_r; -#line 71 "root_numpy/tmva/src/evaluate.pyx" +#line 76 "root_numpy/tmva/src/evaluate.pyx" } -/* "root_numpy/tmva/src/evaluate.pyx":90 +/* "root_numpy/tmva/src/evaluate.pyx":95 * @cython.boundscheck(False) * @cython.wraparound(False) * cdef evaluate_regression(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, unsigned int n_targets): # <<<<<<<<<<<<<< @@ -6963,46 +7111,46 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * cdef long n_features = events.shape[1] */ -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" static PyObject *__pyx_f_13_libtmvanumpy_evaluate_regression(TMVA::MethodBase *__pyx_v__method, PyArrayObject *__pyx_v_events, unsigned int __pyx_v_n_targets) { long __pyx_v_size -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; long __pyx_v_n_features -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; long __pyx_v_i -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; long __pyx_v_j -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; std::vector __pyx_v_features -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; TMVA::Event *__pyx_v_event -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; PyArrayObject *__pyx_v_output = 0 -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; __Pyx_LocalBuf_ND __pyx_pybuffernd_events -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; __Pyx_Buffer __pyx_pybuffer_events -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; __Pyx_LocalBuf_ND __pyx_pybuffernd_output -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; __Pyx_Buffer __pyx_pybuffer_output -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" ; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" PyObject *__pyx_r = NULL; __Pyx_RefNannyDeclarations PyObject *__pyx_t_1 = NULL; @@ -7020,49 +7168,49 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_regression(TMVA::MethodBase *_ const char *__pyx_filename = NULL; int __pyx_clineno = 0; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_RefNannySetupContext("evaluate_regression", 0); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffer_output.pybuffer.buf = NULL; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffer_output.refcount = 0; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_output.data = NULL; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_output.rcbuffer = &__pyx_pybuffer_output; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffer_events.pybuffer.buf = NULL; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffer_events.refcount = 0; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_events.data = NULL; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_events.rcbuffer = &__pyx_pybuffer_events; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" { -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_BufFmt_StackElem __pyx_stack[1]; -#line 90 "root_numpy/tmva/src/evaluate.pyx" - if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_events.rcbuffer->pybuffer, (PyObject*)__pyx_v_events, &__Pyx_TypeInfo_nn___pyx_t_5numpy_double_t, PyBUF_FORMAT| PyBUF_STRIDES, 2, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 95 "root_numpy/tmva/src/evaluate.pyx" + if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_events.rcbuffer->pybuffer, (PyObject*)__pyx_v_events, &__Pyx_TypeInfo_nn___pyx_t_5numpy_double_t, PyBUF_FORMAT| PyBUF_STRIDES, 2, 0, __pyx_stack) == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" } -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_events.diminfo[0].strides = __pyx_pybuffernd_events.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_events.diminfo[0].shape = __pyx_pybuffernd_events.rcbuffer->pybuffer.shape[0]; __pyx_pybuffernd_events.diminfo[1].strides = __pyx_pybuffernd_events.rcbuffer->pybuffer.strides[1]; __pyx_pybuffernd_events.diminfo[1].shape = __pyx_pybuffernd_events.rcbuffer->pybuffer.shape[1]; - /* "root_numpy/tmva/src/evaluate.pyx":91 + /* "root_numpy/tmva/src/evaluate.pyx":96 * @cython.wraparound(False) * cdef evaluate_regression(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, unsigned int n_targets): * cdef long size = events.shape[0] # <<<<<<<<<<<<<< @@ -7070,10 +7218,10 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_regression(TMVA::MethodBase *_ * cdef long i, j */ -#line 91 "root_numpy/tmva/src/evaluate.pyx" +#line 96 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_size = (__pyx_v_events->dimensions[0]); - /* "root_numpy/tmva/src/evaluate.pyx":92 + /* "root_numpy/tmva/src/evaluate.pyx":97 * cdef evaluate_regression(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, unsigned int n_targets): * cdef long size = events.shape[0] * cdef long n_features = events.shape[1] # <<<<<<<<<<<<<< @@ -7081,10 +7229,10 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_regression(TMVA::MethodBase *_ * cdef vector[float] features */ -#line 92 "root_numpy/tmva/src/evaluate.pyx" +#line 97 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_n_features = (__pyx_v_events->dimensions[1]); - /* "root_numpy/tmva/src/evaluate.pyx":95 + /* "root_numpy/tmva/src/evaluate.pyx":100 * cdef long i, j * cdef vector[float] features * cdef Event* event = new Event(features, 0) # <<<<<<<<<<<<<< @@ -7092,10 +7240,10 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_regression(TMVA::MethodBase *_ * cdef np.ndarray[np.float32_t, ndim=2] output = np.empty((size, n_targets), dtype=np.float32) */ -#line 95 "root_numpy/tmva/src/evaluate.pyx" +#line 100 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_event = new TMVA::Event(__pyx_v_features, 0); - /* "root_numpy/tmva/src/evaluate.pyx":96 + /* "root_numpy/tmva/src/evaluate.pyx":101 * cdef vector[float] features * cdef Event* event = new Event(features, 0) * _method.fTmpEvent = event # <<<<<<<<<<<<<< @@ -7103,10 +7251,10 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_regression(TMVA::MethodBase *_ * for i from 0 <= i < size: */ -#line 96 "root_numpy/tmva/src/evaluate.pyx" +#line 101 "root_numpy/tmva/src/evaluate.pyx" __pyx_v__method->fTmpEvent = __pyx_v_event; - /* "root_numpy/tmva/src/evaluate.pyx":97 + /* "root_numpy/tmva/src/evaluate.pyx":102 * cdef Event* event = new Event(features, 0) * _method.fTmpEvent = event * cdef np.ndarray[np.float32_t, ndim=2] output = np.empty((size, n_targets), dtype=np.float32) # <<<<<<<<<<<<<< @@ -7114,154 +7262,154 @@ static PyObject *__pyx_f_13_libtmvanumpy_evaluate_regression(TMVA::MethodBase *_ * for j from 0 <= j < n_features: */ -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_2 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_empty); if (unlikely(!__pyx_t_2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_2); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v_size); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = __Pyx_PyInt_From_long(__pyx_v_size); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_3 = __Pyx_PyInt_From_unsigned_int(__pyx_v_n_targets); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_3 = __Pyx_PyInt_From_unsigned_int(__pyx_v_n_targets); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_3); -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_4 = PyTuple_New(2); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_4); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_t_1); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GIVEREF(__pyx_t_1); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" PyTuple_SET_ITEM(__pyx_t_4, 1, __pyx_t_3); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GIVEREF(__pyx_t_3); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_1 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_3 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_3 = PyTuple_New(1); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_3); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GIVEREF(__pyx_t_4); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_4 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_4 = PyDict_New(); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_4 = PyDict_New(); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_4); -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_1 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_1); -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_float32); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_1, __pyx_n_s_float32); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_5); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_1); __pyx_t_1 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" - if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + if (PyDict_SetItem(__pyx_t_4, __pyx_n_s_dtype, __pyx_t_5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_2, __pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_t_5); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_2); __pyx_t_2 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" - if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + if (!(likely(((__pyx_t_5) == Py_None) || likely(__Pyx_TypeTest(__pyx_t_5, __pyx_ptype_5numpy_ndarray))))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_6 = ((PyArrayObject *)__pyx_t_5); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" { -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __Pyx_BufFmt_StackElem __pyx_stack[1]; -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_output.rcbuffer->pybuffer, (PyObject*)__pyx_t_6, &__Pyx_TypeInfo_nn___pyx_t_5numpy_float32_t, PyBUF_FORMAT| PyBUF_STRIDES, 2, 0, __pyx_stack) == -1)) { -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_output = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_output.rcbuffer->pybuffer.buf = NULL; -#line 97 "root_numpy/tmva/src/evaluate.pyx" - {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;} +#line 102 "root_numpy/tmva/src/evaluate.pyx" + {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } else { -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_output.diminfo[0].shape = __pyx_pybuffernd_output.rcbuffer->pybuffer.shape[0]; __pyx_pybuffernd_output.diminfo[1].strides = __pyx_pybuffernd_output.rcbuffer->pybuffer.strides[1]; __pyx_pybuffernd_output.diminfo[1].shape = __pyx_pybuffernd_output.rcbuffer->pybuffer.shape[1]; -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" } -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" } -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_6 = 0; -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_output = ((PyArrayObject *)__pyx_t_5); -#line 97 "root_numpy/tmva/src/evaluate.pyx" +#line 102 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_5 = 0; - /* "root_numpy/tmva/src/evaluate.pyx":98 + /* "root_numpy/tmva/src/evaluate.pyx":103 * _method.fTmpEvent = event * cdef np.ndarray[np.float32_t, ndim=2] output = np.empty((size, n_targets), dtype=np.float32) * for i from 0 <= i < size: # <<<<<<<<<<<<<< @@ -7269,13 +7417,13 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * event.SetVal(j, events[i, j]) */ -#line 98 "root_numpy/tmva/src/evaluate.pyx" +#line 103 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_7 = __pyx_v_size; -#line 98 "root_numpy/tmva/src/evaluate.pyx" +#line 103 "root_numpy/tmva/src/evaluate.pyx" for (__pyx_v_i = 0; __pyx_v_i < __pyx_t_7; __pyx_v_i++) { - /* "root_numpy/tmva/src/evaluate.pyx":99 + /* "root_numpy/tmva/src/evaluate.pyx":104 * cdef np.ndarray[np.float32_t, ndim=2] output = np.empty((size, n_targets), dtype=np.float32) * for i from 0 <= i < size: * for j from 0 <= j < n_features: # <<<<<<<<<<<<<< @@ -7283,13 +7431,13 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * memcpy(&output[i, 0], &(_method.GetRegressionValues()[0]), sizeof(np.float32_t) * n_targets) */ -#line 99 "root_numpy/tmva/src/evaluate.pyx" +#line 104 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_8 = __pyx_v_n_features; -#line 99 "root_numpy/tmva/src/evaluate.pyx" +#line 104 "root_numpy/tmva/src/evaluate.pyx" for (__pyx_v_j = 0; __pyx_v_j < __pyx_t_8; __pyx_v_j++) { - /* "root_numpy/tmva/src/evaluate.pyx":100 + /* "root_numpy/tmva/src/evaluate.pyx":105 * for i from 0 <= i < size: * for j from 0 <= j < n_features: * event.SetVal(j, events[i, j]) # <<<<<<<<<<<<<< @@ -7297,19 +7445,19 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * _method.fTmpEvent = NULL */ -#line 100 "root_numpy/tmva/src/evaluate.pyx" +#line 105 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_9 = __pyx_v_i; -#line 100 "root_numpy/tmva/src/evaluate.pyx" +#line 105 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_10 = __pyx_v_j; -#line 100 "root_numpy/tmva/src/evaluate.pyx" +#line 105 "root_numpy/tmva/src/evaluate.pyx" __pyx_v_event->SetVal(__pyx_v_j, (*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_double_t *, __pyx_pybuffernd_events.rcbuffer->pybuffer.buf, __pyx_t_9, __pyx_pybuffernd_events.diminfo[0].strides, __pyx_t_10, __pyx_pybuffernd_events.diminfo[1].strides))); -#line 100 "root_numpy/tmva/src/evaluate.pyx" +#line 105 "root_numpy/tmva/src/evaluate.pyx" } - /* "root_numpy/tmva/src/evaluate.pyx":101 + /* "root_numpy/tmva/src/evaluate.pyx":106 * for j from 0 <= j < n_features: * event.SetVal(j, events[i, j]) * memcpy(&output[i, 0], &(_method.GetRegressionValues()[0]), sizeof(np.float32_t) * n_targets) # <<<<<<<<<<<<<< @@ -7317,19 +7465,19 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * del event */ -#line 101 "root_numpy/tmva/src/evaluate.pyx" +#line 106 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_8 = __pyx_v_i; -#line 101 "root_numpy/tmva/src/evaluate.pyx" +#line 106 "root_numpy/tmva/src/evaluate.pyx" __pyx_t_11 = 0; -#line 101 "root_numpy/tmva/src/evaluate.pyx" +#line 106 "root_numpy/tmva/src/evaluate.pyx" memcpy((&(*__Pyx_BufPtrStrided2d(__pyx_t_5numpy_float32_t *, __pyx_pybuffernd_output.rcbuffer->pybuffer.buf, __pyx_t_8, __pyx_pybuffernd_output.diminfo[0].strides, __pyx_t_11, __pyx_pybuffernd_output.diminfo[1].strides))), (&(__pyx_v__method->GetRegressionValues()[0])), ((sizeof(__pyx_t_5numpy_float32_t)) * __pyx_v_n_targets)); -#line 101 "root_numpy/tmva/src/evaluate.pyx" +#line 106 "root_numpy/tmva/src/evaluate.pyx" } - /* "root_numpy/tmva/src/evaluate.pyx":102 + /* "root_numpy/tmva/src/evaluate.pyx":107 * event.SetVal(j, events[i, j]) * memcpy(&output[i, 0], &(_method.GetRegressionValues()[0]), sizeof(np.float32_t) * n_targets) * _method.fTmpEvent = NULL # <<<<<<<<<<<<<< @@ -7337,38 +7485,38 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * return output */ -#line 102 "root_numpy/tmva/src/evaluate.pyx" +#line 107 "root_numpy/tmva/src/evaluate.pyx" __pyx_v__method->fTmpEvent = NULL; - /* "root_numpy/tmva/src/evaluate.pyx":103 + /* "root_numpy/tmva/src/evaluate.pyx":108 * memcpy(&output[i, 0], &(_method.GetRegressionValues()[0]), sizeof(np.float32_t) * n_targets) * _method.fTmpEvent = NULL * del event # <<<<<<<<<<<<<< * return output */ -#line 103 "root_numpy/tmva/src/evaluate.pyx" +#line 108 "root_numpy/tmva/src/evaluate.pyx" delete __pyx_v_event; - /* "root_numpy/tmva/src/evaluate.pyx":104 + /* "root_numpy/tmva/src/evaluate.pyx":109 * _method.fTmpEvent = NULL * del event * return output # <<<<<<<<<<<<<< */ -#line 104 "root_numpy/tmva/src/evaluate.pyx" +#line 109 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_r); -#line 104 "root_numpy/tmva/src/evaluate.pyx" +#line 109 "root_numpy/tmva/src/evaluate.pyx" __Pyx_INCREF(((PyObject *)__pyx_v_output)); -#line 104 "root_numpy/tmva/src/evaluate.pyx" +#line 109 "root_numpy/tmva/src/evaluate.pyx" __pyx_r = ((PyObject *)__pyx_v_output); -#line 104 "root_numpy/tmva/src/evaluate.pyx" +#line 109 "root_numpy/tmva/src/evaluate.pyx" goto __pyx_L0; - /* "root_numpy/tmva/src/evaluate.pyx":90 + /* "root_numpy/tmva/src/evaluate.pyx":95 * @cython.boundscheck(False) * @cython.wraparound(False) * cdef evaluate_regression(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, unsigned int n_targets): # <<<<<<<<<<<<<< @@ -7376,79 +7524,79 @@ __pyx_pybuffernd_output.diminfo[0].strides = __pyx_pybuffernd_output.rcbuffer->p * cdef long n_features = events.shape[1] */ -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" /* function exit code */ -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_L1_error:; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_1); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_2); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_3); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_4); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF(__pyx_t_5); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" { PyObject *__pyx_type, *__pyx_value, *__pyx_tb; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_events.rcbuffer->pybuffer); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_output.rcbuffer->pybuffer); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);} -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_AddTraceback("_libtmvanumpy.evaluate_regression", __pyx_clineno, __pyx_lineno, __pyx_filename); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_r = 0; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" goto __pyx_L2; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_L0:; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_events.rcbuffer->pybuffer); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_SafeReleaseBuffer(&__pyx_pybuffernd_output.rcbuffer->pybuffer); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __pyx_L2:; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XDECREF((PyObject *)__pyx_v_output); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_XGIVEREF(__pyx_r); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" __Pyx_RefNannyFinishContext(); -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" return __pyx_r; -#line 90 "root_numpy/tmva/src/evaluate.pyx" +#line 95 "root_numpy/tmva/src/evaluate.pyx" } /* "array.pxd":91 @@ -12301,6 +12449,7 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { {&__pyx_n_s_RuntimeError, __pyx_k_RuntimeError, sizeof(__pyx_k_RuntimeError), 0, 0, 1, 1}, {&__pyx_n_b_Signal, __pyx_k_Signal, sizeof(__pyx_k_Signal), 0, 0, 0, 1}, {&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1}, + {&__pyx_n_s_aux, __pyx_k_aux, sizeof(__pyx_k_aux), 0, 0, 1, 1}, {&__pyx_n_s_double, __pyx_k_double, sizeof(__pyx_k_double), 0, 0, 1, 1}, {&__pyx_n_s_dtype, __pyx_k_dtype, sizeof(__pyx_k_dtype), 0, 0, 1, 1}, {&__pyx_n_s_empty, __pyx_k_empty, sizeof(__pyx_k_empty), 0, 0, 1, 1}, @@ -12585,13 +12734,13 @@ static int __Pyx_InitCachedConstants(void) { /* "root_numpy/tmva/src/evaluate.pyx":3 * @cython.boundscheck(False) * @cython.wraparound(False) - * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef Reader* _reader = PyCObject_AsVoidPtr(reader) * cdef IMethod* imeth = _reader.FindMVA(name) */ #line 3 "root_numpy/tmva/src/evaluate.pyx" - __pyx_tuple__16 = PyTuple_Pack(6, __pyx_n_s_reader, __pyx_n_s_name, __pyx_n_s_events, __pyx_n_s_reader_2, __pyx_n_s_imeth, __pyx_n_s_method); if (unlikely(!__pyx_tuple__16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_tuple__16 = PyTuple_Pack(7, __pyx_n_s_reader, __pyx_n_s_name, __pyx_n_s_events, __pyx_n_s_aux, __pyx_n_s_reader_2, __pyx_n_s_imeth, __pyx_n_s_method); if (unlikely(!__pyx_tuple__16)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #line 3 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_tuple__16); @@ -12600,18 +12749,18 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_GIVEREF(__pyx_tuple__16); #line 3 "root_numpy/tmva/src/evaluate.pyx" - __pyx_codeobj__17 = (PyObject*)__Pyx_PyCode_New(3, 0, 6, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__16, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_endw_workspace_root_numpy_2, __pyx_n_s_evaluate_reader, 3, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__17)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_codeobj__17 = (PyObject*)__Pyx_PyCode_New(4, 0, 7, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__16, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_endw_workspace_root_numpy_2, __pyx_n_s_evaluate_reader, 3, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__17)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 3; __pyx_clineno = __LINE__; goto __pyx_L1_error;} /* "root_numpy/tmva/src/evaluate.pyx":15 * @cython.boundscheck(False) * @cython.wraparound(False) - * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef MethodBase* _method = PyCObject_AsVoidPtr(method) - * return evaluate_method_dispatch(_method, events) + * return evaluate_method_dispatch(_method, events, aux) */ #line 15 "root_numpy/tmva/src/evaluate.pyx" - __pyx_tuple__18 = PyTuple_Pack(3, __pyx_n_s_method, __pyx_n_s_events, __pyx_n_s_method_2); if (unlikely(!__pyx_tuple__18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_tuple__18 = PyTuple_Pack(4, __pyx_n_s_method, __pyx_n_s_events, __pyx_n_s_aux, __pyx_n_s_method_2); if (unlikely(!__pyx_tuple__18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #line 15 "root_numpy/tmva/src/evaluate.pyx" __Pyx_GOTREF(__pyx_tuple__18); @@ -12620,7 +12769,7 @@ static int __Pyx_InitCachedConstants(void) { __Pyx_GIVEREF(__pyx_tuple__18); #line 15 "root_numpy/tmva/src/evaluate.pyx" - __pyx_codeobj__19 = (PyObject*)__Pyx_PyCode_New(2, 0, 3, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__18, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_endw_workspace_root_numpy_2, __pyx_n_s_evaluate_method, 15, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_codeobj__19 = (PyObject*)__Pyx_PyCode_New(3, 0, 4, 0, 0, __pyx_empty_bytes, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_tuple__18, __pyx_empty_tuple, __pyx_empty_tuple, __pyx_kp_s_home_endw_workspace_root_numpy_2, __pyx_n_s_evaluate_method, 15, __pyx_empty_bytes); if (unlikely(!__pyx_codeobj__19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 15; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #line 15 "root_numpy/tmva/src/evaluate.pyx" __Pyx_RefNannyFinishContext(); @@ -12841,7 +12990,7 @@ PyMODINIT_FUNC PyInit__libtmvanumpy(void) /* "root_numpy/tmva/src/evaluate.pyx":3 * @cython.boundscheck(False) * @cython.wraparound(False) - * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef Reader* _reader = PyCObject_AsVoidPtr(reader) * cdef IMethod* imeth = _reader.FindMVA(name) */ @@ -12861,9 +13010,9 @@ PyMODINIT_FUNC PyInit__libtmvanumpy(void) /* "root_numpy/tmva/src/evaluate.pyx":15 * @cython.boundscheck(False) * @cython.wraparound(False) - * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events): # <<<<<<<<<<<<<< + * def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events, double aux): # <<<<<<<<<<<<<< * cdef MethodBase* _method = PyCObject_AsVoidPtr(method) - * return evaluate_method_dispatch(_method, events) + * return evaluate_method_dispatch(_method, events, aux) */ #line 15 "root_numpy/tmva/src/evaluate.pyx" diff --git a/root_numpy/tmva/src/evaluate.pyx b/root_numpy/tmva/src/evaluate.pyx index af6be37..246eb7e 100644 --- a/root_numpy/tmva/src/evaluate.pyx +++ b/root_numpy/tmva/src/evaluate.pyx @@ -1,25 +1,25 @@ @cython.boundscheck(False) @cython.wraparound(False) -def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events): +def evaluate_reader(reader, name, np.ndarray[np.double_t, ndim=2] events, double aux): cdef Reader* _reader = PyCObject_AsVoidPtr(reader) cdef IMethod* imeth = _reader.FindMVA(name) if imeth == NULL: raise ValueError( "method '{0}' is not booked in this reader".format(name)) cdef MethodBase* method = dynamic_cast["MethodBase*"](imeth) - return evaluate_method_dispatch(method, events) + return evaluate_method_dispatch(method, events, aux) @cython.boundscheck(False) @cython.wraparound(False) -def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events): +def evaluate_method(method, np.ndarray[np.double_t, ndim=2] events, double aux): cdef MethodBase* _method = PyCObject_AsVoidPtr(method) - return evaluate_method_dispatch(_method, events) + return evaluate_method_dispatch(_method, events, aux) @cython.boundscheck(False) @cython.wraparound(False) -cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): +cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, double aux): cdef long n_features = events.shape[1] cdef unsigned int n_classes, n_targets if n_features != _method.GetNVariables(): @@ -30,7 +30,7 @@ cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim= cdef EAnalysisType analysistype analysistype = _method.GetAnalysisType() if analysistype == kClassification: - return evaluate_twoclass(_method, events) + return evaluate_twoclass(_method, events, aux) elif analysistype == kMulticlass: n_classes = _method.DataInfo().GetNClasses() if n_classes < 2: @@ -49,7 +49,8 @@ cdef evaluate_method_dispatch(MethodBase* _method, np.ndarray[np.double_t, ndim= @cython.boundscheck(False) @cython.wraparound(False) -cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events): +cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] events, double aux): + cdef MethodCuts* mc cdef long size = events.shape[0] cdef long n_features = events.shape[1] cdef long i, j @@ -57,6 +58,10 @@ cdef evaluate_twoclass(MethodBase* _method, np.ndarray[np.double_t, ndim=2] even cdef Event* event = new Event(features, 0) _method.fTmpEvent = event cdef np.ndarray[np.double_t, ndim=1] output = np.empty(size, dtype=np.double) + if _method.GetMethodType() == kCuts: + mc = dynamic_cast["MethodCuts*"](_method) + if mc != NULL: + mc.SetTestSignalEfficiency(aux) for i from 0 <= i < size: for j from 0 <= j < n_features: event.SetVal(j, events[i, j]) diff --git a/root_numpy/tmva/tests.py b/root_numpy/tmva/tests.py index 0a5dd00..f3a04f6 100644 --- a/root_numpy/tmva/tests.py +++ b/root_numpy/tmva/tests.py @@ -75,20 +75,28 @@ def fit(self, X, y, X_test=None, y_test=None, assert_raises(ValueError, func, self.factory, [[1, 2]], [[[1]]]) func(self.factory, X, y, weights=weights, **extra_kwargs) - if X_test is not None and y_test is not None: - func(self.factory, X_test, y_test, - weights=weights_test, test=True, **extra_kwargs) + if X_test is None: + X_test = X + y_test = y + weights_test = weights + func(self.factory, X_test, y_test, + weights=weights_test, test=True, **extra_kwargs) self.factory.PrepareTrainingAndTestTree( TCut('1'), 'NormMode=EqualNumEvents') - options = ':'.join(['{0}={1}'.format(param, value) - for param, value in kwargs.items()]) - if options: - options = ':' + options + options = [] + for param, value in kwargs.items(): + if value is True: + options.append(param) + elif value is False: + options.append('!{0}'.format(param)) + else: + options.append('{0}={1}'.format(param, value)) + options = ':'.join(options) self.factory.BookMethod(self.method, self.method, options) self.factory.TrainAllMethods() - def predict(self, X): + def predict(self, X, aux=0.): reader = TMVA.Reader() for n in range(self.n_vars): reader.AddVariable('X_{0}'.format(n), array('f', [0.])) @@ -105,32 +113,54 @@ def predict(self, X): if self.task != 'Regression': assert_raises(ValueError, rnp.tmva.evaluate_reader, reader, self.method, [1, 2, 3]) - output = rnp.tmva.evaluate_reader(reader, self.method, X) + output = rnp.tmva.evaluate_reader(reader, self.method, X, aux) if ROOT.gROOT.GetVersionInt() >= 60300: method = reader.FindMVA(self.method) assert_raises(TypeError, rnp.tmva.evaluate_method, object(), X) assert_raises(ValueError, rnp.tmva.evaluate_method, method, [[[1]]]) - output_method = rnp.tmva.evaluate_method(method, X) + output_method = rnp.tmva.evaluate_method(method, X, aux) assert_array_equal(output, output_method) return output -def test_tmva_twoclass(): - n_vars = 5 - n_events = 1000 - signal = RNG.multivariate_normal( - np.ones(n_vars), np.diag(np.ones(n_vars)), n_events) - background = RNG.multivariate_normal( - np.ones(n_vars) * -1, np.diag(np.ones(n_vars)), n_events) - X = np.concatenate([signal, background]) - y = np.ones(signal.shape[0] + background.shape[0]) - w = RNG.randint(1, 10, n_events * 2) - y[signal.shape[0]:] *= -1 +def make_classification(n_features, n_events_per_class, n_classes): + blobs = [] + for idx in range(n_classes): + blob = RNG.multivariate_normal( + np.ones(n_features) * idx * 5, + np.diag(np.ones(n_features)), + n_events_per_class) + blobs.append(blob) + X = np.concatenate(blobs) + # class labels + y = np.repeat(np.arange(n_classes), n_events_per_class) * 2 - 1 + # event weights + w = RNG.randint(1, 10, n_events_per_class * n_classes) + # shuffle permute = RNG.permutation(y.shape[0]) X = X[permute] y = y[permute] + return X, y, w + + +def test_tmva_methodcuts(): + X, y, w = make_classification(2, 300, 2) + est = TMVA_Estimator('Cuts', 2, method='Cuts') + est.fit(X, y, + FitMethod='MC', EffSel=True, SampleSize=100, + VarProp='FSmart') + y_predict_1 = est.predict(X, 0.1) + y_predict_9 = est.predict(X, 0.9) + assert_true((y_predict_1 != y_predict_9).any()) + assert_true((y_predict_1 <= y_predict_9).all()) + + +def test_tmva_twoclass(): + n_vars = 2 + n_events = 1000 + X, y, w = make_classification(n_vars, n_events, 2) X_train, y_train, w_train = X[:n_events], y[:n_events], w[:n_events] X_test, y_test, w_test = X[n_events:], y[n_events:], w[n_events:] @@ -172,21 +202,8 @@ def test_tmva_twoclass(): def test_tmva_multiclass(): n_vars = 2 - n_events = 1000 - class_0 = RNG.multivariate_normal( - np.ones(n_vars) * -10, np.diag(np.ones(n_vars)), n_events) - class_1 = RNG.multivariate_normal( - np.zeros(n_vars), np.diag(np.ones(n_vars)), n_events) - class_2 = RNG.multivariate_normal( - np.ones(n_vars) * 10, np.diag(np.ones(n_vars)), n_events) - X = np.concatenate([class_0, class_1, class_2]) - y = np.ones(X.shape[0]) - w = RNG.randint(1, 10, n_events * 3) - y[:class_0.shape[0]] *= 0 - y[-class_2.shape[0]:] *= 2 - permute = RNG.permutation(y.shape[0]) - X = X[permute] - y = y[permute] + n_events = 500 + X, y, w = make_classification(n_vars, n_events, 3) # Split into training and test datasets X_train, y_train, w_train = X[:n_events], y[:n_events], w[:n_events]