diff --git a/tutorials/how-to-implement-rag/index.mdx b/tutorials/how-to-implement-rag/index.mdx index 7413da1470..368d476f3f 100644 --- a/tutorials/how-to-implement-rag/index.mdx +++ b/tutorials/how-to-implement-rag/index.mdx @@ -1,10 +1,10 @@ --- meta: title: How to implement RAG with managed inference - description: + description: Learn how to implement Retrieval-Augmented Generation (RAG) using Scaleway's managed inference, PostgreSQL, pgvector, and object storage. content: h1: How to implement RAG with managed inference -tags: inference managed postgresql pgvector object storage +tags: inference, managed, postgresql, pgvector, object storage categories: - inference --- @@ -14,6 +14,7 @@ Scaleway's robust infrastructure makes it easier than ever to implement RAG, as By utilizing our managed inference services, managed databases, and object storage, you can effortlessly build and deploy a customized model tailored to your specific needs. + - A Scaleway account logged into the [console](https://console.scaleway.com) - [Owner](/identity-and-access-management/iam/concepts/#owner) status or [IAM permissions](/identity-and-access-management/iam/concepts/#permission) allowing you to perform actions in the intended Organization - [Inference Deployment](/ai-data/managed-inference/how-to/create-deployment/): Set up an inference deployment using [sentence-transformers/sentence-t5-xxl](/ai-data/managed-inference/reference-content/sentence-t5-xxl/) on an L4 instance to efficiently process embeddings. @@ -21,40 +22,69 @@ By utilizing our managed inference services, managed databases, and object stora - [Object Storage Bucket](/storage/object/how-to/create-a-bucket/) to store all the data you want to inject into your LLM model. - [Managed Database](/managed-databases/postgresql-and-mysql/how-to/create-a-database/) to securely store all your embeddings. -## Configure your developement environnement +## Configure your development environment + 1. Install necessary packages: run the following command to install the required packages: + ```sh pip install langchain psycopg2 python-dotenv scaleway ``` -2. Configure your environnement variables: create a .env file and add the following variables. These will store your API keys, database connection details, and other configuration values. +2. Configure your environment variables: create a .env file and add the following variables. These will store your API keys, database connection details, and other configuration values. + ```sh - # .env file - - # Scaleway API credentials - SCW_ACCESS_KEY=your_scaleway_access_key - SCW_SECRET_KEY=your_scaleway_secret_key - SCW_API_KEY=your_scaleway_api_key - - # Scaleway project and region - SCW_DEFAULT_PROJECT_ID=your_scaleway_project_id - SCW_DEFAULT_REGION=your_scaleway_region - - # Scaleway managed database (PostgreSQL) credentials - SCW_DB_NAME=your_scaleway_managed_db_name - SCW_DB_USER=your_scaleway_managed_db_username - SCW_DB_PASSWORD=your_scaleway_managed_db_password - SCW_DB_HOST=your_scaleway_managed_db_host # The IP address of your database instance - SCW_DB_PORT=your_scaleway_managed_db_port # The port number for your database instance - - # Scaleway S3 bucket configuration - SCW_BUCKET_NAME=your_scaleway_bucket_name - SCW_BUCKET_ENDPOINT=your_scaleway_bucket_endpoint # S3 endpoint, e.g., https://s3.fr-par.scw.cloud - - # Scaleway Inference API configuration (Embeddings) - SCW_INFERENCE_EMBEDDINGS_ENDPOINT=your_scaleway_inference_embeddings_endpoint # Endpoint for sentence-transformers/sentence-t5-xxl deployment - SCW_INFERENCE_API_KEY_EMBEDDINGS=your_scaleway_api_key_for_embeddings - - # Scaleway Inference API configuration (LLM deployment) - SCW_INFERENCE_DEPLOYMENT_ENDPOINT=your_scaleway_inference_endpoint # Endpoint for your LLM deployment - SCW_INFERENCE_API_KEY=your_scaleway_api_key_for_inference_deployment - ``` \ No newline at end of file + # .env file + + # Scaleway API credentials + SCW_ACCESS_KEY=your_scaleway_access_key + SCW_SECRET_KEY=your_scaleway_secret_key + SCW_API_KEY=your_scaleway_api_key + + # Scaleway project and region + SCW_DEFAULT_PROJECT_ID=your_scaleway_project_id + SCW_DEFAULT_REGION=your_scaleway_region + + # Scaleway managed database (PostgreSQL) credentials + SCW_DB_NAME=your_scaleway_managed_db_name + SCW_DB_USER=your_scaleway_managed_db_username + SCW_DB_PASSWORD=your_scaleway_managed_db_password + SCW_DB_HOST=your_scaleway_managed_db_host # The IP address of your database instance + SCW_DB_PORT=your_scaleway_managed_db_port # The port number for your database instance + + # Scaleway S3 bucket configuration + SCW_BUCKET_NAME=your_scaleway_bucket_name + SCW_BUCKET_ENDPOINT=your_scaleway_bucket_endpoint # S3 endpoint, e.g., https://s3.fr-par.scw.cloud + + # Scaleway Inference API configuration (Embeddings) + SCW_INFERENCE_EMBEDDINGS_ENDPOINT=your_scaleway_inference_embeddings_endpoint # Endpoint for sentence-transformers/sentence-t5-xxl deployment + SCW_INFERENCE_API_KEY_EMBEDDINGS=your_scaleway_api_key_for_embeddings + + # Scaleway Inference API configuration (LLM deployment) + SCW_INFERENCE_DEPLOYMENT_ENDPOINT=your_scaleway_inference_endpoint # Endpoint for your LLM deployment + SCW_INFERENCE_API_KEY=your_scaleway_api_key_for_inference_deployment + ``` + +### Set Up Managed Database + +1. Connect to your PostgreSQL instance and install the pg_vector extension. + + ```python + conn = psycopg2.connect( + database="your_database_name", + user="your_db_user", + password=os.getenv("SCW_DB_PASSWORD"), + host="your_db_host", + port="your_db_port" + ) + + cur = conn.cursor() + + # Install pg_vector extension + cur.execute("CREATE EXTENSION IF NOT EXISTS vector;") + conn.commit() + ``` +2. Create a table to keep track of the documents loaded from your S3 bucket. So you can add new object to your bucket and they won't be download and vectorize twice + + ```python + cur.execute("CREATE TABLE IF NOT EXISTS object_loaded (id SERIAL PRIMARY KEY, object_key TEXT)") + conn.commit() + ``` \ No newline at end of file