-
Notifications
You must be signed in to change notification settings - Fork 0
/
CaT.mod
283 lines (190 loc) · 11.5 KB
/
CaT.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
COMMENT
**************************************************
File generated by: neuroConstruct v1.6.0
**************************************************
This file holds the implementation in NEURON of the Cell Mechanism:
CaT (Type: Channel mechanism, Model: Template based ChannelML file)
with parameters:
/channelml/@units = Physiological Units
/channelml/notes = ChannelML file containing a single Channel from De Schutter and Bower 1998
/channelml/ion/@name = ca
/channelml/ion/@charge = 2
/channelml/ion/@default_erev = 137.52625
/channelml/channel_type/@name = CaT
/channelml/channel_type/@density = yes
/channelml/channel_type/status/@value = stable
/channelml/channel_type/status/comment = Verified equivalence of NEURON and GENESIS mapping to orig NEURON mod impl at 0.02ms dt with current pulse (but 0.002 is better)
/channelml/channel_type/status/contributor/name = Padraig Gleeson
/channelml/channel_type/notes = T type Ca current. Based on Roth et al's reimplementation of original GENESIS model in NEURON
/channelml/channel_type/authorList/modelAuthor[1]/name = De Schutter, E.
/channelml/channel_type/authorList/modelAuthor[2]/name = Bower, J.
/channelml/channel_type/authorList/modelTranslator[1]/name = Padraig Gleeson
/channelml/channel_type/authorList/modelTranslator[1]/institution = UCL
/channelml/channel_type/authorList/modelTranslator[1]/email = p.gleeson - at - ucl.ac.uk
/channelml/channel_type/authorList/modelTranslator[2]/name = Jenny Davie
/channelml/channel_type/authorList/modelTranslator[2]/institution = UCL
/channelml/channel_type/authorList/modelTranslator[2]/comment = Conversion of GENESIS model to NEURON
/channelml/channel_type/authorList/modelTranslator[3]/name = Arnd Roth
/channelml/channel_type/authorList/modelTranslator[3]/institution = UCL
/channelml/channel_type/authorList/modelTranslator[3]/comment = Conversion of GENESIS model to NEURON
/channelml/channel_type/authorList/modelTranslator[4]/name = Volker Steuber
/channelml/channel_type/authorList/modelTranslator[4]/institution = UCL
/channelml/channel_type/authorList/modelTranslator[4]/comment = Conversion of GENESIS model to NEURON
/channelml/channel_type/authorList/modelTranslator[5]/name = Michael Hausser
/channelml/channel_type/authorList/modelTranslator[5]/institution = UCL
/channelml/channel_type/authorList/modelTranslator[5]/comment = Conversion of GENESIS model to NEURON
/channelml/channel_type/publication/fullTitle = De Schutter, E., and Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurop ...
/channelml/channel_type/publication/pubmedRef = http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7512629
/channelml/channel_type/neuronDBref/modelName = Calcium channels
/channelml/channel_type/neuronDBref/uri = http://senselab.med.yale.edu/senselab/NeuronDB/channelGene2.htm#table1
/channelml/channel_type/current_voltage_relation/ohmic/@ion = ca
/channelml/channel_type/current_voltage_relation/ohmic/conductance/@default_gmax = 0.5
/channelml/channel_type/current_voltage_relation/ohmic/conductance/rate_adjustments/q10_settings/@q10_factor = 3
/channelml/channel_type/current_voltage_relation/ohmic/conductance/rate_adjustments/q10_settings/@experimental_temp = 37
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/@power = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/state/@name = m
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[1]/state/@fraction = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/@power = 1
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/state/@name = h
/channelml/channel_type/current_voltage_relation/ohmic/conductance/gate[2]/state/@fraction = 1
/channelml/channel_type/hh_gate[1]/@state = m
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@value = 2.6
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@value = -0.125
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@value = -21
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@value = 0.18
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@value = 0.25
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[1]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@value = -40
/channelml/channel_type/hh_gate[2]/@state = h
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[1]/@value = 0.0025
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[2]/@value = 0.125
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/alpha/parameterised_hh/parameter[3]/@value = -40
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/@type = sigmoid
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/@expr = A/(1 + exp(k*(v-d)))
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@name = A
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[1]/@value = 0.19
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@name = k
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[2]/@value = -0.1
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@name = d
/channelml/channel_type/hh_gate[2]/transition/voltage_gate/beta/parameterised_hh/parameter[3]/@value = -50
/channelml/channel_type/impl_prefs/table_settings/@max_v = 100
/channelml/channel_type/impl_prefs/table_settings/@min_v = -100
/channelml/channel_type/impl_prefs/table_settings/@table_divisions = 200
// File from which this was generated: /Users/hashmup/nC_projects/PurkinjeCell.ncx/cellMechanisms/CaT/CaT_Chan.xml
// XSL file with mapping to simulator: /Users/hashmup/nC_projects/PurkinjeCell.ncx/cellMechanisms/CaT/ChannelML_v1.8.1_NEURONmod.xsl
ENDCOMMENT
? This is a NEURON mod file generated from a ChannelML file
? Unit system of original ChannelML file: Physiological Units
COMMENT
ChannelML file containing a single Channel from De Schutter and Bower 1998
ENDCOMMENT
TITLE Channel: CaT
COMMENT
T type Ca current. Based on Roth et al's reimplementation of original GENESIS model in NEURON
ENDCOMMENT
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(S) = (siemens)
(um) = (micrometer)
(molar) = (1/liter)
(mM) = (millimolar)
(l) = (liter)
}
NEURON {
SUFFIX CaT
USEION ca READ eca WRITE ica VALENCE 2 ? reversal potential of ion is read, outgoing current is written
RANGE gmax, gion
RANGE minf, mtau
RANGE hinf, htau
}
PARAMETER {
gmax = 0.0005 (S/cm2) ? default value, should be overwritten when conductance placed on cell
}
ASSIGNED {
v (mV)
celsius (degC)
? Reversal potential of ca
eca (mV)
? The outward flow of ion: ca calculated by rate equations...
ica (mA/cm2)
gion (S/cm2)
minf
mtau (ms)
hinf
htau (ms)
}
BREAKPOINT {
SOLVE states METHOD cnexp
gion = gmax*((1*m)^1)*((1*h)^1)
ica = gion*(v - eca)
}
INITIAL {
eca = 137.52625
rates(v)
m = minf
h = hinf
}
STATE {
m
h
}
DERIVATIVE states {
rates(v)
m' = (minf - m)/mtau
h' = (hinf - h)/htau
}
PROCEDURE rates(v(mV)) {
? Note: not all of these may be used, depending on the form of rate equations
LOCAL alpha, beta, tau, inf, gamma, zeta, temp_adj_m, A_alpha_m, k_alpha_m, d_alpha_m, A_beta_m, k_beta_m, d_beta_m, temp_adj_h, A_alpha_h, k_alpha_h, d_alpha_h, A_beta_h, k_beta_h, d_beta_h
TABLE minf, mtau,hinf, htau
DEPEND celsius
FROM -100 TO 100 WITH 200
UNITSOFF
? There is a Q10 factor which will alter the tau of the gates
temp_adj_m = 3^((celsius - 37)/10)
temp_adj_h = 3^((celsius - 37)/10)
? *** Adding rate equations for gate: m ***
? Found a parameterised form of rate equation for alpha, using expression: A / (1 + exp(k*(v-d)))
A_alpha_m = 2.6
k_alpha_m = -0.125
d_alpha_m = -21
alpha = A_alpha_m / (exp((v - d_alpha_m) * k_alpha_m) + 1)
? Found a parameterised form of rate equation for beta, using expression: A / (1 + exp(k*(v-d)))
A_beta_m = 0.18
k_beta_m = 0.25
d_beta_m = -40
beta = A_beta_m / (exp((v - d_beta_m) * k_beta_m) + 1)
mtau = 1/(temp_adj_m*(alpha + beta))
minf = alpha/(alpha + beta)
? *** Finished rate equations for gate: m ***
? *** Adding rate equations for gate: h ***
? Found a parameterised form of rate equation for alpha, using expression: A / (1 + exp(k*(v-d)))
A_alpha_h = 0.0025
k_alpha_h = 0.125
d_alpha_h = -40
alpha = A_alpha_h / (exp((v - d_alpha_h) * k_alpha_h) + 1)
? Found a parameterised form of rate equation for beta, using expression: A / (1 + exp(k*(v-d)))
A_beta_h = 0.19
k_beta_h = -0.1
d_beta_h = -50
beta = A_beta_h / (exp((v - d_beta_h) * k_beta_h) + 1)
htau = 1/(temp_adj_h*(alpha + beta))
hinf = alpha/(alpha + beta)
? *** Finished rate equations for gate: h ***
}
UNITSON