diff --git a/class_6.tex b/class_6.tex index 09b5ee5..496fc04 100644 --- a/class_6.tex +++ b/class_6.tex @@ -32,7 +32,7 @@ \chapter{Class 6} Formal system $F$ is consistent unless $\vdash \bot$ (or equivalently, there exists a formula that is not a theorem). Rule $R$ is derivable in $F$ iff [for all formulas $\phi$, $\underset{F \cup \{R\}}\vdash \phi$ iff $\underset{F}\vdash \phi$]. Rule $R$ is admissible in $F$ iff $F \cup \{R\}$ is still consistent. -Formula $\phi$ is expressible in a logic $L$ iff [there exists a formula $\psi$ of $L$ such that, for all interpretations $v$, $[[ \phi ]]_v = [[ \psi ]]_v$. %`⟦φ⟧ᵥ = ⟦ψ⟧ᵥ`]. +Formula $\phi$ is expressible in a logic $L$ iff [there exists a formula $\psi$ of $L$ such that, for all interpretations $v$, $[[ \phi ]]_v = [[ \psi ]]_v$. For example $\phi_1 \wedge \phi_2$ is expressible using only $\neg$ and $\vee$ (de Morgan) as $\psi = \neg(\neg\phi_1 \wedge \neg\phi_2)$. @@ -70,9 +70,30 @@ \section{Hilbert formal system for propositional logic} \phi\rightarrow\psi\rightarrow\phi$ \item (S): $\qquad (\phi\rightarrow\psi\rightarrow\chi)\rightarrow((\phi\rightarrow\psi)\rightarrow(\phi\rightarrow\chi))$ -\item (EM): $\qquad +\item (em): $\qquad (\neg\phi\rightarrow\neg\psi)\rightarrow(\psi\rightarrow\phi)$ \end{itemize} -TODO +Example (prove $\phi \rightarrow \phi$ in Hilbert system):\\ +(K) $\phi \rightarrow (\psi \rightarrow \phi) \rightarrow \phi$\\ +(S) $(\phi \rightarrow (\psi \rightarrow \phi) \rightarrow \phi) \rightarrow ((\phi \rightarrow \psi \rightarrow \phi) \rightarrow (\phi \rightarrow \phi))$\\ +(MP) $(\phi \rightarrow \psi \rightarrow \phi) \rightarrow (\phi \rightarrow \phi)$\\ +(K) $\phi \rightarrow \psi \rightarrow \phi$\\ +(MP) $\phi \rightarrow \phi$\bigskip\\ +Notation: $\Gamma \vdash \phi$ means $\underset{F \,\cup\, \Gamma}\vdash \phi$ (the set of formulas $\Gamma$ is used as added axioms)\\ +Metatheorem (``deduction theorem''): +$\Gamma \vdash \phi \rightarrow \psi$ iff $\Gamma, \phi \vdash \psi$\\ +Metaproof:\\ +``$\implies$'': One application of modus ponens.\\ +``$\impliedby$'': +Assume $\psi$ has a proof $\pi$ using axioms $\Gamma$, $\phi$, (K), (S), (em). +Show that $\phi \rightarrow \psi$ has a proof $\pi'$ using $\Gamma$, (K), (S), (em) --- induction on length $n$ of $\pi$.\\ +Case $n=1$: $\psi$ must be an axiom. +Either $\psi \in \Gamma \cup \{\textup{K}, \textup{S}, \textup{em}\}$ so we prove it by (K), +or $\psi = \phi$ so we use $\vdash \phi \rightarrow \phi$ as derived above.\\ +Case $n>1$: $\psi$ is the result of an application of modus ponens. +We have $\chi$ and $\chi \rightarrow \psi$, both of which were derived from $\Gamma, \phi$ in fewer steps. +Induction hypothesis gives us $\Gamma \vdash \phi \rightarrow \chi$ and $\Gamma \vdash \phi \rightarrow \chi \rightarrow \psi$. +We use (S) in the form $(\phi \rightarrow \chi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi) \rightarrow (\phi \rightarrow \psi)$ and apply modus ponens twice, +resulting in $\phi \rightarrow \psi$ derived from $\Gamma$ only. }} % End localization of command definitions diff --git a/main.pdf b/main.pdf index 914412e..a19dae5 100644 Binary files a/main.pdf and b/main.pdf differ