forked from CarperAI/trlx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo_translation_t5.py
212 lines (182 loc) · 7.19 KB
/
ppo_translation_t5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
"""Example of using PPO to train a T5 model for translation.
Based on examples/summarize_daily_cnn/t5_summarize_daily_cnn.py"""
import json
import os
import sys
from typing import List
import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoTokenizer
import trlx
from trlx.data.configs import (
ModelConfig,
OptimizerConfig,
SchedulerConfig,
TokenizerConfig,
TrainConfig,
TRLConfig,
)
from trlx.models.modeling_ppo import PPOConfig
try:
import comet
import evaluate
if comet.__version__ != "1.1.3":
raise ImportError
except ImportError:
raise ImportError(
"To run this example, please install `evaluate`, `nltk` and `comet==1.1.3` packages by "
"running `pip install evaluate unbabel-comet==1.1.3`"
)
default_config = TRLConfig(
train=TrainConfig(
seq_length=612,
epochs=100,
total_steps=100000,
batch_size=12,
checkpoint_interval=10000,
eval_interval=200,
pipeline="PromptPipeline",
trainer="AcceleratePPOTrainer",
tracker="wandb",
),
model=ModelConfig(
model_path="t5-large",
model_arch_type="seq2seq",
num_layers_unfrozen=-1,
),
tokenizer=TokenizerConfig(
tokenizer_path="t5-large",
padding_side="right",
truncation_side="right",
),
optimizer=OptimizerConfig(
name="adamw",
kwargs={
"lr": 2.0e-6,
"betas": [0.9, 0.999],
"eps": 1.0e-8,
"weight_decay": 1.0e-6,
},
),
scheduler=SchedulerConfig(
name="cosine_annealing",
kwargs={
"T_max": 10000,
"eta_min": 1.0e-6,
},
),
method=PPOConfig(
name="PPOConfig",
num_rollouts=256,
chunk_size=12,
ppo_epochs=4,
init_kl_coef=0.05,
target=6,
horizon=10000,
gamma=0.99,
lam=0.95,
cliprange=0.2,
cliprange_value=0.2,
vf_coef=1.0,
scale_reward=None,
ref_mean=None,
ref_std=None,
cliprange_reward=10,
gen_kwargs={
"max_new_tokens": 100,
},
gen_experience_kwargs={
"max_new_tokens": 100,
"do_sample": False,
"num_beams": 4,
"temperature": 1.0,
},
),
)
def main(hparams={}):
config = TRLConfig.update(default_config, hparams)
# COMET is the metric we are optimizng for
comet_metric = evaluate.load("comet", "wmt20-comet-da", progress_bar=False)
bleu_metric = evaluate.load("bleu")
chrf_metric = evaluate.load("chrf")
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
def reward_fn(samples: List[str], prompts: List[str], outputs: List[str]) -> List[float]:
original_sents = [translation_map[prompt.strip()] for prompt in prompts]
scores = comet_metric.compute(
predictions=[output.strip() for output in outputs],
references=[original["tgt"] for original in original_sents],
sources=[original["src"] for original in original_sents],
)["scores"]
# TODO: This is needed since there seems to be a bug in the comet metric
# that changes torch's determinism setting. Remove this once the bug is fixed.
torch.use_deterministic_algorithms(False, warn_only=True)
return scores
def metric_fn(samples: List[str], prompts: List[str], outputs: List[str]) -> List[float]:
"""Compute COMET, BLEU and CHRF for evaluation"""
original_sents = [translation_map[prompt.strip()] for prompt in prompts]
comet_score = comet_metric.compute(
predictions=[output.strip() for output in outputs],
references=[original["tgt"] for original in original_sents],
sources=[original["src"] for original in original_sents],
)["mean_score"]
bleu_score = bleu_metric.compute(
predictions=[output.strip() for output in outputs],
references=[original["tgt"] for original in original_sents],
)["bleu"]
chrf_score = chrf_metric.compute(
predictions=[output.strip() for output in outputs],
references=[original["tgt"] for original in original_sents],
)["score"]
# TODO: This is needed since there seems to be a bug in the comet metric
# that changes torch's determinism setting. Remove this once the bug is fixed.
# Same issue as in `reward_fn`
torch.use_deterministic_algorithms(False, warn_only=True)
# For corpus-level metrics, it's better to ignore the sentence-level scores
return {"bleu": bleu_score, "chrf": chrf_score, "comet": comet_score}
# The WMT16 is large so we can benefit with using it as a streaming dataset
train_dataset = load_dataset("wmt16", "de-en", split="train", streaming=True)
valid_dataset = load_dataset("wmt16", "de-en", split="validation", streaming=True)
src_lang = "en"
tgt_lang = "de"
PREFIX = "translate English to German: "
# take 20,000 samples from the training set as prompts for training
original_src_dataset = [sent_pair["translation"][src_lang] for sent_pair in train_dataset.take(20000)]
tgt_dataset = [sent_pair["translation"][tgt_lang] for sent_pair in train_dataset.take(20000)]
src_dataset = [PREFIX + src_sent for src_sent in original_src_dataset]
# take 1,000 samples from the validation set as prompts for evaluation
val_original_src_dataset = [sent_pair["translation"][src_lang] for sent_pair in valid_dataset.take(1000)]
val_tgt_dataset = [sent_pair["translation"][tgt_lang] for sent_pair in valid_dataset.take(1000)]
val_src_dataset = [PREFIX + src_sent for src_sent in val_original_src_dataset]
# make dictionary of prompts and labels to use for reward function
tokenizer = AutoTokenizer.from_pretrained(config.model.model_path)
tokenizer.padding_side = "left"
tokenizer.truncation_side = "right"
tokenizer.sep_token = "<sep>"
max_length = config.train.seq_length - config.method.gen_kwargs["max_new_tokens"]
translation_map = {}
for i in tqdm(range(len(original_src_dataset))):
key = tokenizer.decode(
tokenizer(src_dataset[i], truncation=True, max_length=max_length, add_special_tokens=False)["input_ids"],
skip_special_tokens=True,
) # get prompt like trlx's prompt
translation_map[key.strip()] = {"src": original_src_dataset[i], "tgt": tgt_dataset[i]}
for i in tqdm(range(len(val_original_src_dataset))):
key = tokenizer.decode(
tokenizer(val_src_dataset[i], truncation=True, max_length=max_length, add_special_tokens=False)[
"input_ids"
],
skip_special_tokens=True,
) # get prompt like trlx's prompt
translation_map[key.strip()] = {"src": val_original_src_dataset[i], "tgt": val_tgt_dataset[i]}
trlx.train(
reward_fn=reward_fn,
metric_fn=metric_fn,
prompts=src_dataset,
eval_prompts=val_src_dataset,
config=config,
)
if __name__ == "__main__":
hparams = {} if len(sys.argv) == 1 else json.loads(sys.argv[1])
main(hparams)