-
Notifications
You must be signed in to change notification settings - Fork 9
/
trapAlogithm.m
195 lines (178 loc) · 8.7 KB
/
trapAlogithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
function res = trapAnalysis(Gt, method, varargin)
% Compute and summarize the relevant trap analysis information
% SYNOPSIS:
% function res = trapAnalysis(Gt, method)
%
% PARAMETERS:
% Gt - top surface grid to analyze
% method - true : use cell-centroid-based implementation
% false: use edge-based implementation
% OPTIONAL PARAMETERS:
% varargin - pair of 'key'/'value', where currently supported key is:
% * closed_boundary_edges - by default, boundary edges are
% considered open, but the boundary
% edges whose indices are found in the
% vector 'closed_boundary_edges' will
% be considered closed (no flow
% across)
% * closed_fault_edges - interior edges representing closed
% fault lines
% * project_to_cells - when running the edge-based trapping
% implementation, all information is expressed
% in terms of nodes, but will by default be
% converted into information that relates to
% cells. If 'project_to_cells' is set to
% false, information will be returned in
% terms of nodes. (Flag does not apply if
% the cell-centroid based implementation is
% run).
%
% DESCRIPTION:
% The function computes and summarizes information that describes the
% trapping structure using either a cell-centroid-based implementation
% that requires the Matlab Boost Graph Library (from 3rd-party module
% 'matlab_bgl') or an edge-based implementation. Regardless of
% implementation, the resulting information pertains to cells (not
% edges).
%
% RETURNS:
% res - structure describing the trap structure of Gt with the following
% fields:
% - traps - one index per cell in Gt. Gives index of trap
% cell belongs to, or '0' if the cell does not
% belong to a trap.
% - trap_z - One value per trap, giving the z-value at its
% bottom (spill point)
% - trap_regions - one index per cell in Gt. Gives the index of
% the trap that the cell 'spills into', or '0' if
% the cell spills out of the domain. NB: A cell
% does not have to lie in a trap in order to spill
% into it.
% - trap_adj - adjacency matrix describing connection between
% traps. Values are thus 0 or 1). A nonzero
% value at (i,j) indicates that region 'i' spills
% directly into region 'j'. This matrix is stored
% on the sparse format.
% - cell_lines - One cell array per trap, conaining the 'rivers'
% exiting that trap. A river is presented as a
% sequence of consecutive grid cells that lie
% geographically along the river. A river starts
% in a trap and ends either in another trap or at
% the boundary of the domain.
% - top - indices for all cells that represents local
% maxima in the grid. (NB: these are all trap
% cells, but there may be more than one local
% maxima per trap)
%
% EXAMPLE:
%
%{
Author : Salman Karim
%}
assert(isscalar(method),...
['Input parameter <method> must be a logical. '...
'Use true/false (or 1/0), not ''true''/''false''.'])
opt.closed_boundary_edges = [];
opt.closed_fault_edges = [];
opt.project_to_cells = true;
opt = merge_options(opt, varargin{:});
if method
% we will use the cell-based method
if ~isempty(opt.closed_boundary_edges)
warning(['Cell-based algorithm does not currently support closed ' ...
'boundary edges. Use edge-based algorithm instead if needed. ' ...
' Currently proceeding without closed boundaries.']);
end
if ~isempty(opt.closed_fault_edges)
warning(['Cell-based algorithm does not currently support closed ' ...
'fault edges. Use edge-based algorithm instead if needed. ' ...
' Currently proceeding without closed fault edges.']);
end
mlist = mrstModule();
moduleCheck('matlab_bgl','coarsegrid');
res = cell_based_trap_analysis(Gt);
mrstModule('reset', mlist{:})
else
% we will use the edge-based method
res = edge_based_trap_analysis(Gt, ...
opt.closed_boundary_edges, ...
opt.closed_fault_edges, ...
opt.project_to_cells);
end
end
%===============================================================================
function res = edge_based_trap_analysis(Gt, closed_bedges, closed_fedges, project)
% Identifying closed boundary and fault nodes, if any
closed_bnodes = Gt.faces.nodes(mcolon(Gt.faces.nodePos(closed_bedges), ...
Gt.faces.nodePos(closed_bedges+1)-1));
closed_fnodes = Gt.faces.nodes(mcolon(Gt.faces.nodePos(closed_fedges), ...
Gt.faces.nodePos(closed_fedges+1)-1));
% Computing essential trap information, based on geometry of edges
ntraps = computeNodeTraps(Gt, closed_bnodes, closed_fnodes);
if project
% Projecting trap information onto cells (from edges)
[ctraps, ctrap_zvals, ctrap_regions, csommets, cadj, crivers] = ...
n2cTraps(Gt, ntraps.trap_regions, ntraps.trap_zvals, ntraps.dstr_neigh, ...
ntraps.connectivity, ntraps.traps, ntraps.rivers);
res.traps = ctraps;
res.trap_z = ctrap_zvals;
res.trap_regions = ctrap_regions;
res.trap_adj = cadj;
res.cell_lines = crivers';
res.top = csommets;
else
res.traps = ntraps.traps;;
res.trap_z = ntraps.trap_zvals;
res.trap_regions = ntraps.trap_regions;
res.trap_adj = ntraps.connectivity;
res.cell_lines = ntraps.rivers';
node_sommets = zeros(size(res.trap_regions));
node_sommets(intersect(find(ntraps.dstr_neigh == 0), ...
find(ntraps.trap_regions ~=0))) = 1;
res.top = node_sommets;
end
end
%===============================================================================
function res = cell_based_trap_analysis(Gt)
trap_st = findTrappingStructure(Gt);
res.top = trap_st.top;
conn_st = findTrapConnections(trap_st.Gtop, trap_st.z_spill_loc);
res.traps = conn_st.traps;
res.trap_adj = conn_st.trap_matrix;
num_traps = max(res.traps);
res.trap_z = zeros(num_traps,1);
for i = 1:num_traps
trapcells=find(res.traps == i);
res.trap_z(i) = trap_st.z_spill_loc(trapcells(1)); % should be the
% same for all
% trap cells
if(~isempty(conn_st.cell_line_traps))
trap_rivers = find(conn_st.cell_line_traps(:,1) == i);
for j = 1:numel(trap_rivers)
res.cell_lines{i}{j} = conn_st.cell_lines{trap_rivers(j)};
end
end
end
% remove spillpoint from trap definition
%%{
for i=1:numel(res.trap_z)
tcells=find(res.traps==i);
bcells=tcells((Gt.cells.z(tcells)==res.trap_z(i)));
if(numel(bcells)>1)
dispif(mrstVerbose, 'Warning, Trap boundary or trap.')
end
z=max(Gt.cells.z(tcells));
assert(z<res.trap_z(i));
% remove b cell from trap
res.traps(bcells)=0;
end
%}
% Computing trap regions (based on separate algorithm for now)
%[C, N, CC] = maxTPFAGravityMatrix(Gt);
C = maxTPFAGravityMatrix(Gt);
% identifying spill region of each trap
res.trap_regions = zeros(size(res.traps));
for t_ix = res.top(:)'
res.trap_regions(bfs(C', t_ix)>=0) = res.traps(t_ix);
end
end